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Abstract—This work develops a novel estimation approach
for nonlinear dynamic stochastic systems by combining the
sequential Monte Carlo method with interval analysis. Unlike
the common pointwise measurements, the proposed solution
is for problems with interval measurements with association
uncertainty. The optimal theoretical solution can be formulated
in the framework of random set theory as the Bernoulli filter
for interval measurements. The straightforward particle filter
implementation of the Bernoulli filter typically requires a huge
number of particles since the posterior probability density
function occupies a significant portion of the state space.

In order to reduce the number of particles, without neces-
sarily sacrificing estimation accuracy, the paper investigates an
implementation based on box particles. A box particle occupies
a small and controllable rectangular region of non-zero volume
in the target state space. The numerical results demonstrate that
the filter performs remarkably well: both target state and target
presence are estimated reliably using a very small number of box
particles.

Index Terms—Sequential Bayesian Estimation, Box Particle fil-
ters, Detection, Random Sets, Interval Measurements.

I. INTRODUCTION

Traditionally, the measurements used for nonlinear filtering

are points in the measurement space, typically affected by

additive measurement noise of a known probability density

function (PDF) [2]. The traditional measurements express

uncertainty only due to randomness, often referred to as statis-

tical or stochastic uncertainty. In many practical applications,

however, the measurements are know within certain intervals.

In sensor networks, for example, in order to reduce the com-

munication bandwidth, the measurements are quantized to only

a few bits. Such measurements represent intervals rather than

point values. The intervals express a type of uncertainty which

is referred to as the set-theoretic uncertainty [3], vagueness

[4] or imprecision [5]. The importance and distinctness of

this type of uncertainty have been well recognised by the

researchers in expert systems [6]. In the context of Bayes

filtering, set-theoretic uncertainty is convenient for modeling

bounded errors with unknown distributions and unknown

measurement biases. The two types of uncertainties, the set-

theoretic and stochastic, can be treated in combination using

various modern formalisms, such as: the set of densities [7],

imprecise probabilities [8] or random sets [1].

Often, a third source of uncertainty in measurements is also

present. This is uncertainty due to the measurement origin,

which is a consequence of imperfections in the detection

process. Sensor measurements are typically characterised by

the probability of detection less than one, and with a certain

false detection rate [9]. This translates into uncertainty as to

which (if any) of the received measurements is due to the

target (the so called data association uncertainty).

The theoretical formulation of the optimal Bayes nonlinear

filter for the measurements affected by the three discussed

sources of uncertainty (stochastic, set-theoretic and association

uncertainty) has been carried out in the accompanying paper

[23]. Using Mahler’s framework for information fusion [1],

the solution is formulated as the Bernoulli filter for interval

measurements. The straightforward particle filter implementa-

tion of the Bernoulli filter typically requires a huge number

of particles since the posterior probability density function

occupies a significant portion of the state space. In order to

overcome this problem, the present paper proposes a novel

and very efficient implementation of the Bernoulli filter for

interval measurements. The proposed solution combines the

interval analysis approach with sequential Monte Carlo meth-

ods, known as particle filters [12].

Particle filters have emerged as a powerful tool for solv-

ing complex problems, with nonlinearities and non-Gaussian

noises. However, for high dimensional systems, the complexity

of the sequential Monte Carlo methods increases significantly.

Lead by the motivation to reduce the computational load,

the concept of a box particle was proposed in [17]. A box

particle occupies a small and controllable rectangular region

of non-zero volume in the target state space. Nonlinear filtering
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using box particles (the so-called box particle filter) relies

on methods and techniques developed in the field of interval

analysis, see [19]. A theoretical justification of the box particle

filter is given in [18], based on the concept that the posterior

state PDF can be represented by a mixture of uniform distri-

butions with box supports. In the present paper we propose

a novel box particle filter which is a combination of the

Bernoulli particle filter [23] with the box particle filter [17],

[18]. The new filter is referred to as the Box Bernoulli Particle

filter. The paper illustrates the usefulness and the efficiency

of the proposed approach by a numerical example with set

measurement uncertainties.

The paper is organised as follows. The formal description

of the problem is given in Sec. II. Section III briefly presents

interval analysis principles and relevant tools for non linear

filtering are introduced. Next, the Bernoulli filter is described

in Section IV. A box particle filter implementation is presented

in Section V. Numerical studies are presented in Section VI

and finally the conclusions are drawn in Section VII.

II. PROBLEM DESCRIPTION

The state vector of the dynamic system (target) at discrete

time k is denoted by xk; it takes values from the state space

X ⊆ R
nx . The target, however, may or may not be present

in the surveillance region at a particular time tk. We therefore

model the object state at discrete-time k by a finite set Xk

which can be either empty or a singleton. Mahler’s finite set

statistics (FISST) provides practical tools for mathematical

manipulations of finite-set random variables, including the

concept of probability density function and its integral [1].

A convenient model of target state at time k is the Bernoulli

random finite set (RFS) on X . A Bernoulli RFS X is defined

by a parameters q and a PDF s(.) defined on X . The RFS X
has a probability 1− q of being empty and a probability q of

being a singleton whose only element is distributed according

to the PDF s(.). The FISST probability density of a Bernoulli

RFS X is defined as

f(X) =











1− q, if X = ∅
q · s(x), if X = {x}
0, otherwise

. (1)

The objective of Bayes filtering is to sequentially estimate

Xk from measurements collected up to time k. Suppose

the measurement set at time k is denoted by Υk. Then

formally the goal is to estimate sequentially the posterior PDF

fk|k(X|Υ1:k) of a Bernoulli random finite process, where

Υ1:k = (Υ1, . . . ,Υk) denotes the set of up to time k. The

estimation process is based on prior knowledge of two models,

the target dynamics model and the measurement model.

A. Target dynamics model

The target dynamic model is defined by the probability

density φk+1|k(X|X′) associated with moving from state X′

at time k to X at time k+1. Since both X′ and X are Bernoulli

RFSs, φk+1|k(X|X′) can be defined as:

φk+1|k(X|X′) =


















1− pB, if X′ = ∅,X = ∅
pB · bk+1|k(x), if X′ = ∅,X = {x}
1− pS(x

′), if X′ = {x′},X = ∅
pS(x

′) · πk+1|k(x|x′), if X′ = {x′},X = {x}

,

(2)

where

• pB

abbr
= pB,k+1|k is the probability of target birth during

the time interval from k to k + 1;

• bk+1|k(x) is the spatial distribution of target birth during

the time interval from k to k + 1;

• pS(x
′)

abbr
= pS,k+1|k(x

′) is the probability that a target

with state x′ at time k will survive until time k + 1;

• πk+1|k(x|x′) is the target transition density from time k
to k + 1.

In the paper we assume that the transition density is

Gaussian, that is πk+1|k(x|x′) = N (x;ψk(x
′),Q), where Q

is a known process noise covariance matrix and the function

ψk is a known deterministic mapping from the state space X
to itself.

B. Measurement model

In general, target detection is imperfect: a target may not be

detected at scan k, whereas a set of non-existent objects may

be detected and reported (false detections or clutter). Let the

measurement space be denoted Z ⊆ R
nz . If a target exists,

i.e. Xk = {x}, and has been detected, the conventional point

measurement z ∈ Z is related to the target state via a nonlinear

equation:

z = hk(x) + v, (3)

where the function hk is a known deterministic mapping from

the state space X to the measurement space Z , while v is a

measurement noise vector characterised by PDF pv.

In this paper we assume that if a target exists (x ∈ Xk)

and is detected, the sensor does not report the conventional

measurement z ∈ Z¿ Instead, it reports a closed interval

[z] ⊂ Z such that the target originated measurement (3)

satisfies p(hk(x) ∈ [z]) = 1. Let us denote by IZ the set of

all such closed intervals. Note that interval measurements [z]
represent a special case of what Mahler [1] refers to as unam-

biguously generated ambiguous (UGA) measurements. More

general instances of UGA measurements include mixtures of

fuzzy membership functions, referred to as fuzzy Dempster-

Shafer evidence.

Due to the imperfect detection process, mk ≥ 0 interval

measurements [z]k,1, . . . , [z]k,mk
are collected at time k. The

measurements can be represented by a finite set:

Υk = {[z]k,1, . . . , [z]k,mk
} ∈ F(IZ), (4)

where F(IZ) is the space of finite subsets of IZ .

The probability of target detection can be state independent

and is denoted as pD(x). The false detections are assumed
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to be independent of the target state. The number of false

detections per scan is modeled by a Poisson distribution with

mean λ; the spatial distribution of false detections is modeled

by a PDF c([z]).
The measurement set Υk is characterised by three sources

of uncertainty. Additive noise v in (3) is the source of stochas-

tic uncertainty. The target originated interval measurement

[z] is non-specific and as such is the source of imprecision.

Finally, the existence of false detections and a possible absence

of target originated detection is the source of data association

uncertainty.

III. ELEMENTS OF INTERVAL ANALYSIS

A real interval, [x] = [x, x] is defined as a closed and

connected subset of the set R of real numbers. In a vector

form, a box [x] of R
nx is defined as a Cartesian product

of nx intervals: [x] = [x1] × [x2] · · · × [xn] = ×nx

i=1[xi]. In

this paper, the operator |[.]| denotes the size |[x]| of a box

[x]. The underlying concept of interval analysis is to deal

with intervals of real numbers instead of dealing with real

numbers. For that purpose, elementary arithmetic operations,

e.g., +,−, ∗,÷, etc., as well as operations between sets of

R
n, such as ⊂,⊃,∩,∪, etc., have been naturally extended to

interval analysis context.

In addition, a lot of research has been performed with

the so called inclusion functions [19]. An inclusion function

[f ] of a given function f is defined such that the image of

a box [x] is a box [f ]([x]) containing f([x]). The goal of

inclusion functions is to work only with intervals, to optimise

the interval enclosing the real image set and, then to decrease

the pessimism when intervals are propagated.

Often constraints have to be fulfilled which requires to solve

the Constraint Satisfaction Problems (CSPs). A CSP often

denoted H can be written:

H : (f(x) = 0,x ∈ [x]). (5)

Equation (5) can be interpreted as follows: find the optimal

box enclosure of the set of vector x belonging to a given prior

domain [x] ⊂ R
n satisfying a set of m constraints f (with f

a multivalued function, i.e., f = (f1, f2, · · · , fm)T , where the

fi are real valued functions). The solution set of H is defined

as:

S = {x ∈ [x] | f(x) = 0}. (6)

Contracting H means replacing [x] by a smaller domain [x]′

such that S ⊆ [x]′ ⊆ [x]. A contractor for H is any operator

that can be used to contract H. Several methods for building

contractors are described in [19, Chapter 4], including Gauss

elimination, the Gauss-Seidel algorithm, linear programming,

etc. Each of these methods may be more suitable to some

types of CSP. Although the approaches presented in this work

are not limited to any particular contractor, a general and well

known contraction method, the Constraints Propagation (CP)

technique is used in this paper. The main advantages of the CP

method is its efficiency in the presence of high redundancy of

data and equations. The CP method is also known to be simple

and, most importantly, to be independent of nonlinearities.

IV. BERNOULLI FILTER

The optimal Bayes filter for the problem described above

is the Bernoulli filter [1, Section 14.7], [10] for interval

measurements. Let fk|k(X|Υ1:k) denote the posterior PDF of

Bernoulli RFS X at k. The propagation of this posterior over

time is carried out in two steps, the prediction and update.

We have seen that fk|k(X|Υ1:k) is completely defined by

two posteriors: qk|k = Pr{|Xk| = 1 | Υk} is1 the posterior

probability of target existence, while sk|k(x) = p(xk|Υ1:k) is

the posterior spatial PDF of Xk = {x}. The Bernoulli filter

requires only these two quantities to be propagated.

A. Equations

Assuming that pS is state independent, the prediction step

equations are given by:

qk+1|k = pB · (1− qk|k) + pS · qk|k (7)

sk+1|k(x) =
pB · (1− qk|k)bk+1|k(x)

qk+1|k
+

pS qk|k
∫

πk+1|k(x|x′) · sk|k(x′) dx′

qk+1|k
. (8)

The predicted birth density bk+1|k(x) in general is unknown

and needs to be adaptively designed using the measurement

set Υk from the previous scan k. This is further discussed in

Section V.

Assuming pD is constant over the state-space X , the update

equations of the Bernoulli filter for interval measurements are

as follows [1, Section 14.7]. The probability of existence is

updated using the measurement set Υk+1 as:

qk+1|k+1 =
1− δk+1

1− δk+1 · qk+1|k
· qk+1|k, (9)

where

δk+1 = pD



1−
∑

[z]∈Υk+1

∫

gk+1([z]|x) sk+1|k(x) dx

λ c([z])



 .

(10)

Here gk+1([z]|x) is the generalised likelihood function at

k+1 for a target originated interval measurement. Furthermore

λ and c([z]) are already defined clutter parameters. The

generalised likelihood will be further discussed in Section V-B.

The target spatial PDF is updated as follows:

sk+1|k+1(x) =

1− pD + pD

∑

[z]∈Υk+1

gk+1([z]|x)
λc([z])

1− δk+1
sk+1|k(x).

(11)

In the special case where the detection process is perfect,

i.e. pD = 1 and no false detections, the measurement set

becomes a singleton Υk+1 = {[z]}, containing only the target

originated measurement. Then it is easy to verify that λc([z])
terms cancel out in (9) and (11) and with pB = 0, pS = 1, the

Bernoulli filter for interval measurements becomes identical

to the Bayes filter for interval measurements [1, p.159]. For

1|X| denotes the cardinality of set X.
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the more general case of pD(x) and pS(x), the Bernoulli filter

equations can be found in [1, Sec.14.7].

Remark 1: The proposed Bernoulli filter is the optimal

Bayes filter for the considered problem. Moreover, it is directly

applicable to multi-sensor tracking and fusion (unlike for

example the PHD filter [11]). While the Bernoulli filter is a

single-target tracking algorithm, it can be used in multi-target

applications by treating each target separately and by including

an appropriate data association technique when targets become

close to each other.

V. BOX PARTICLE FILTER IMPLEMENTATION

In general there is no analytic solution for the Bernoulli filter

(equations (8)-(11)). Particle filters have become a popular

class of numerical methods for implementation of Bayes

filters [12], [13], both in the context of single and multiple

targets [1]. When this method is applied to the Bernoulli

filter, the resulting Bernoulli particle filter approximates the

spatial PDF2 sk|k(x) by a set of N weighted random samples

or particles {wik,xik}Ni=1, where xik is the state of particle

i and wik is its corresponding normalised weight, such that
∑N

i=1 w
i
k = 1. The approximation of sk|k(x) can be written

as

sk|k(x) ≈
N
∑

i=1

wik δxi
k
(x), (12)

where δ
x
i
k
(x) denote the Dirac delta function concentrated at

xik. For an appropriately chosen importance density, the sum

in (12) converges to sk|k(x) as N → ∞ [14].

For some applications, the number N of particles to use is

a key issue since it may lead to a computationally demanding

filter. For instance, if the posterior PDFs to be estimated are

with very large supports, the number of particles has to be

chosen to be very large in order to explore a significant part

of the state space. One natural solution to reduce N is the use

of box particles [17]. The point particles are replaced with

box particles since they have the attractive property to cover

any prior region with far less boxes. In [17], the efficiency

of box particles combined with interval analysis tools [19] is

demonstrated. Furthermore, in [18] it is also shown that box

particles can be interpreted as being supports of uniform PDFs,

and in this respect, (12) becomes:

sk|k(x) ≈
N
∑

i=1

wik U[xi
k
](x), (13)

where U[xi
k
] denotes the uniform PDF over the box [xik].

Staring from the posterior Bernoulli density at scan k,

represented by qk|k and a set of weighted box particles

{wik, [xik]}Ni=1, a cycle of the Bernoulli box particle filter for

interval measurements is summarised in Algorithm1.

2Strictly speaking particle filters approximate integrals, not densities, [12],
[13].

A. Prediction step

The implementation of the prediction equation (8) requires

to use box particles samples approximation for two densities.

First, the predicted birth density bk+1|k(x) is implemented as:

bk+1|k(x) =

∫

πk+1|k(x|ξ) bk(ξ) dξ, (14)

where bk(.) is the birth density at the previous time step k. If

the target can appear anywhere in the state space X , an obvious

choice for bk(x) is the uniform density over X . This, however,

would not take into account the fact that the previous time

measurements are likely to contain information about birth

targets. Consequently bk(.) is designed adaptively, using the

measurement set from the previous scan k, Υk, i.e.

bk(x) ≈
1

|Υk|
∑

[z]∈Υk

β(x|[z]). (15)

The densities β(x|[z]) in the mixture (15) are also approx-

imated with a mixture of uniform PDFs compatible with the

interval measurement [z] ∈ Υk i.e.

β(x|[z]) ≈ 1

n0

n0
∑

i=1

U[xi
b,k

](x). (16)

Equations (15) and (16) mean that bk(.) is represented by a

set of Nb box particles {[xib,k]}Nb

i=1. The number of newborn

particles depends on the cardinality of Υk, that is Nb = |Υk| ·
n0, where n0 is a design parameter. In (16), to sample the n0

box particles {[xib,k]}n0

i=1, a reciprocal set [h−1
k ]([z]) of [z] has

first to be calculated. Then, [h−1
k ]([z]) is subdivided into n0

boxes. The weights associated with the newborn box particles

are made equal, i.e. wib,k = 1/Nb for i = 1, . . . , Nb. Box

particles are drawn from bk(x) in Step 4 of Algorithm 1.

Two clouds of weighted box particles, the “persis-

tent” {wip,k, [xip,k]}Ni=1 and the “newborn” box particles

{wib,k, [xib,k]}Nb

i=1, are used to approximate the predicted spatial

PDF of (8). The summation of the two terms on the right-

hand side of (8) is carried out by the union of these two sets

of particles (Step 7 in Algorithm1). The number of predicted

particles is then N ′ = N+Nb. It is shown in [18] that each of

these two terms representing the newborn and persistent box

particles can be approximated with box particles according to:

bk+1|k(x) =
∫

πk+1|k(x|ξ) bk(ξ) dξ
≈ wib,k

∑Nb

i=1 U[ψk]([xi
b,k

])(x), (17)

∫

πk+1|k(x|ξ) · sk|k(ξ) dξ ≈ wik
∑N

i=1 U[ψk]([xi
p,k

])(x).

(18)

Equations (17) and (18) mean that the predicted PDF sk+1|k(.)
can be approximated using the set of weighted box particles

{wi
k+1|k, [x

i
k+1|k]}N

′

i=1 constituted of the weighted box parti-

cles {wip,k+1, [ψk]([x
i
p,k])}Ni=1 and {wib,k+1, [ψk]([x

i
b,k])}Nb

i=1.

The weights {wip,k+1}Ni=1 and {wib,k+1}Nb

i=1 are computed

according to (8), see Step 6 in Algorithm1.
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Algorithm 1: The steps of the box Bernoulli particle filter for interval measurements

1: Input: qk|k,
{

wik,x
i
k

}N

i=1
, Υk, Υk+1;

Prediction

2: Compute qk+1|k using (7)

3: Propagate persistent box particles at k + 1: [xip,k+1] = [ψk+1]([x
i
k]) for i = 1, . . . , N

4: Create a weighted set of newborn box particles {wib,k, [xib,k]}Nb

i=1 at k from birth density bk(x) defined by (15) using Υk,

with wib,k = 1/Nb;

5: Propagate newborn particles at k + 1: [xib,k+1] = [ψk+1]([x
i
b,k)] for i = 1, . . . , Nb

6: Compute the box particle prediction weights at k + 1:

wip,k+1 = pS qk|k w
i
k/qk+1|k; for i = 1, . . . , N

wib,k+1 = pB (1− qk|k)w
i
b,k/qk+1|k; for i = 1, . . . , Nb

7: Union of weighted box particles: {wi
k+1|k, [x

i
k+1|k]}N

′

i=1 = {wib,k+1, [x
i
b,k+1]}Nb

i=1 ∪ {wip,k+1, [x
i
p,k+1]}Ni=1, where

N ′ = N +Nb;
Update

8: Replicate the box particle [xi
k+1|k] to obtain N ′ box particle x̃ik+1 with weights [w̃ik+1] = (1 − pD)w

i
k+1|k

9: For every box particle [xi
k+1|k], i = 1, . . . , N ′ and every measurement [z] ∈ Υk+1,

• use a contraction algorithm according to (24) to obtain a new box particle [x̃ik+1];
• compute the weight w̃ik+1 of [x̃ik+1] according to (26);

10: Compute δk+1 according to (10) and (28);

11: Compute qk+1|k+1 according to (9);

12: Normalise weights: w̃ik+1 = w̃ik+1/
∑N ′(1+mk)
j=1 w̃jk+1;

13: Resample N times from {w̃ik+1, [x
i
k+1|k]}

N ′(1+mk)
i=1 to obtain N equally weighted box particles {wik+1 = 1

N
, [xik+1]}Ni=1

14: Output: qk+1|k+1,
{

wik+1, [x
i
k+1]

}N

i=1

B. Generalised Likelihood Function

The update equations (9) and (11) are different from the

standard Bayesian filters since the standard measurement

likelihood function is replaced by the generalised likelihood

function gk([z]|x). Furthermore, in [18], it is shown that the

BPF update step requires contraction steps in addition to the

likelihood factors calculation. Here, in addition to a stochastic

noise assumed in [18], the measurements are assumed to

be perturbed by both uncertainty and set theoretic noise. If

[z] ∈ Υk and x a box in Xk, the generalised likelihood funtion

is defined as follows:

gk([z]|x) def
= Pr

{

hk(x) + v ∈ [z]
}

=

∫

[z]

pv(z − hk(x)) dz. (19)

Assume that the stochastic uncertainty (which is due to the

measurement noise v) is small. One can adopt the following

approximation using a uniform PDF: [1, p.101]:

pv(v) ≈ U[ε](v), (20)

where [ε] is the measurement noise support. Using the approx-

imation (20) in (19) results in:

gk([z]|x) ≈
∫

[z]

U[ε](z− hk(x)) dz

=
| [z] ∩ (hk(x) + [ε]) |

|[ε]| . (21)

Here |.| denotes the Lebesgue measure operator (e.g. the

volume for boxes in 3D). From (19) we can see that

gk([z]|x) ≈











1, if hk(x) + [ε] ⊆ [z]

0, if hk(x) + [ε] ∩ [z] = ∅
≤ 1, otherwise

. (22)

Remark 2: In the general case, pv cannot be approximated

with a single uniform PDF but can be appropriately approxi-

mated using a mixture of uniform PDFs. It can be seen that a

weighted sum of terms in the form of the fraction in (21) can

be used to approximate the generalised likelihood function for

a more general expression of the noise PDF pv. For simplicity

the expression (19) of the generalised likelihood is considered

for the rest of the paper and for each time instant k, pv is

approximated by U[εk].

C. Update step

The update equations of the Bernoulli box particle filter are

implemented by steps 8-13 of Algorithm1. Using the box par-

ticles approximation sk+1|k(x) ≈ ∑N ′

i=1 w
i
k+1|k U[xi

k+1|k
](x),

and the generalised likelihood (21), in (11) the terms pD
c([z]) ·
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gk+1([z]|x) · sk+1|k(x) can be written

pD

c([z])
· gk+1([z]|x) · sk+1|k(x) =

pD

c([z])
·
N ′
∑

i=1

wik+1|k

| [z] ∩ (hk(x) + [εk+1]) |
|[εk+1]|

U[xi
k+1|k

](x).

(23)

Similarly to what is theoretically derived in [18] for the

case of point measurements, the supports of the terms inside

the summation in the right-hand side in (23) can be approxi-

mated using contraction operations (see Section III). The exact

supports are the set solution of :

{x ∈ [xik+1|k]|[z] ∩ (hk(x) + [εk+1]) 6= ∅}. (24)

In Algorithm1, each term inside the summation in the

right-hand side of (23) is approximated by a weighted single

uniform PDFs U[xi
k+1

](x) i.e.

pD

c([z])
· gk+1([z]|x) · sk+1|k(x) ≃

N ′
∑

i=1

w̃ik+1U[x̃i
k+1

](x), (25)

where [x̃ik+1] is a box enclosure of the support (24) that can be

obtained by a contraction algorithm. The new weights w̃ik+1

are obtained from (23) and they have the expression

w̃ik+1 =
pD

c([z])
· wik+1|kκ

i
k+1

|[x̃ik+1]|
|[xi

k+1|k]|
, (26)

where κik+1 is chosen to be the expectation of the generalised

likelihood gk+1([z]|x) over the box particle [x̃ik+1] and κik+1

can be written:

κik+1 = 1
|[x̃i

k+1
]|

∫

[x̃i
k+1

]
|[z]∩(hk(x)+[εk+1])|

|[εk+1]|
dx. (27)

The integral defining (27) is not known in a closed form but

can be approximated (for instance by using a partition of the

set [x̃ik+1] as it is done in the Riemann integration theory [22]).

Remark 3: here, bearing in mind Equation (11), the poste-

rior PDF sk+1(.) at time instant k + 1 is approximated using

two new clouds of particles: N ′ particles [x̃i
k+1|k] with weights

(1− pD)w̃
i
k+1|k and mk×N ′ particles obtained from the mk

measurements according to (25) and (26).

Next, in (10), the terms
∫

gk+1([z]|x) sk+1|k(x) dx can be

written as
∫

gk+1([z]|x) sk+1|k(x) dx =

∫ | [z] ∩ (hk+1(x) + [εk+1]) |
|[εk+1]|

·
N ′
∑

i=1

wik+1|kU[xi
k+1|k

](x)dx =

N ′
∑

i=1

wik+1|k

|[xi
k+1|k]| · |[εk+1]|

∫

[xi
k+1|k

]

| [z] ∩ (hk+1(x) + [εk+1]) | dx

=

N ′
∑

i=1

wi
k+1|k

|[εk+1]|
|[x̃ik+1]|
|[xi

k+1|k]|
κik+1. (28)

The probability of existence is then updated as in (9). The

N ′ × (mk + 1) updated weights are then normalised to

obtain w̃ik+1 = w̃ik+1/
∑N ′

j=1 w̃
j
k+1. Finally, we resample N

times from {w̃ik+1, [x̃
i
k+1|k]}

N ′×(mk+1)
i=1 to obtain the new set

of box particle {wik+1 = 1
N
, [xik+1]}Ni=1. In addition here,

as presented in [17], instead of duplicating box particles

(sampled more than once in the resampling step), subdivision

steps are used. Several strategies of subdivision can be

used (e.g according the largest box face). In this paper we

randomly pick a dimension for the selected box particle. The

filter reports the posterior probability of existence qk+1|k+1

and the box particle approximation of the posterior spatial

PDF sk+1|k+1(x).

Remark 4: In [17], using the box particles at time k + 1,

an estimate can be obtained using the centre of the weighted

box particles according to

x̂k+1 =

N
∑

i=1

ωik+1c
i
k+1 (29)

where cik+1 is the center of the i-th box particle.

VI. NUMERICAL EXAMPLES

A. Simulation setup

Consider the problem of tracking a target in a two-

dimensional plane using range, range-rate and azimuth mea-

surements. The target state vector is x =
[

x ẋ y ẏ
]⊺

,

where (x, y) and (ẋ, ẏ) are target position and velocity,

respectively, in Cartesian coordinates. The target is moving

according to the nearly constant velocity motion model with

transitional density πk+1|k(x|x′) = N (x;Fx′,Q). Here

F = I2 ⊗
[

1 T
0 1

]

, Q = I2 ⊗
[

T 3

3
T 2

2
T 2

2 T

]

·̟, (30)

with ⊗ being the Kronecker product, T = tk+1 − tk the

sampling interval and ̟ the intensity of process noise [16].

The target appears at scan k = 3 and disappears at scan

k = 54. Initially (at k = 0) the target is located at (550, 300)m
and is moving with velocity (−5,−8.5)m/s. The sensor is

static, located at the origin of the x − y plane. Other values

are adopted as ̟ = 0.05, T = 1s, with the total observation

interval of 60s.

The measurement function hk(x) is defined as:

hk(x) =







√

x2 + y2
xẋ+ẏy√
x2+y2

arctan(y/x)






. (31)

The measurement noise v is zero-mean white Gaussian with

covariance Σ = diag[σ2
r , σ2

ṙ , σ2
θ ], where σr = 2.5m,

σṙ = 0.01m/s and σθ = 0.25◦. The sensors provides interval

measurements, with interval length ∆ = [∆r, ∆ṙ, ∆θ]⊺,

where ∆r = 50m, ∆ṙ = 0.2m/s and ∆θ = 4◦ are the lengths

of intervals in range, range-rate and azimuth, respectively.

721



The sensor has a bias (systematic error) in the sense that

the vector hk(x)+vk is not in the middle of the measurement

interval. A measurement at k is defined as:

[z]k = [hk(x) + vk −
3

4
∆, hk(x) + vk +

1

4
∆]. (32)

The filter is ignorant of the bias.

The probability of detection is pD = 0.95, the mean number

of clutter detections per scan is λ = 5. The clutter detection

spatial distribution c([z]) is uniformly across the range (mid

intervals from 30m to 700m), range-rate (mid intervals from

−15 to +15m/s) and azimuth (mid intervals from −π/2 to

π/2rad).

The filtering algorithm knows a priori the following: pD,

clutter statistics λ and c([z]), measurement function hk(x),
covariance Σ and the transitional density πk+1|k(x|x′). The

filter is making inference at every k using measurements Υ1:k,

and the following parameters: pB = 0.01, pS = 0.98, n0 = 1
and N = 16.

The experiment is implemented using MATLAB. Further-

more, the so called toolbox INTLAB [24] is used for the

interval calculations.

Figure 1(a) shows a global view of the filter performance

for one single run with measurements as described in (32). All

the measurements for 60 scans are represented (rectangular

regions around the sensor). In addition, the blue “plus” marks

represent the true target trajectory, while the black cirles

represent the estimated trajectory. The persistent box particles

positions are also shown with rectangular regions. From this

snapshot, we can see two interesting properties shown by

the persistent box particles over the time: firstly, the update

step is able to correctly weight the relevant box particles and

secondly, the contraction steps combined with the resampling-

subdivision steps helps reducing the size of the box particles

over the time. From Figure 1(a), one can observe that this

second property gives a visual convergence effect for the

algorithm.

Figure 1(b) shows the estimate of the probability of target

existence qk|k over time. Target presence is established at k =
6 with qk|k remaining close to 1.0 after that. Occasionally,

when the target detection is missing in the measurement set

Υk, qk|k drops below the value of 1.0.

B. Monte Carlo runs

The average performance of the proposed box particle

Bernoulli filter has been validated via Monte Carlo simulations

using the scenario and parameters described in Section VI-A

(remark that the randomness comes essentially from both the

resampling and the subdivision steps). Figure 2 shows: (a)

the mean square error for the target position; (b) the mean

square error for the target velocity. Averaging was carried out

over M = 100 independent Monte Carlo runs with N = 16
box particles. From Figure 2 (a) and (b) one can observe

the convergence and the very attractive potential of the Box

particle to accurately estimate the target state with a very small

cloud (in comparison to the thousands of particles usually

necessary to correctly represents the posteriors).
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Figure 1. (a) Snapshot of one run (60 scans) of the box particles Bernouilli
filter. The persistent box particles over the time are shown along with the
estimated trajectory and the true one. (b) The estimate of the probability of
target existence is also shown for one run.

VII. SUMMARY AND FUTURE WORK

The paper presented a box particle filter implementation of

the Bernoulli filter for measurements affected by three sources

of uncertainty: stochastic, set-theoretic and data association

uncertainty. The filter efficiency is demonstrated using numer-

ical simulations and it is shown to perform remarkably well:

both the target existence and the target state are estimated

reliably using a very small number of particles.

In the accompanying paper [23] an implementation of the
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Figure 2. Error performance of the Bernoulli box particle filter (averaged
over M = 100 independent Monte Carlo runs) using N = 16 box particles: (a)
the mean square error for the target position; (b) the mean square error for
the target velocity.

Bernoulli filter for measurements affected by three sources of

uncertainty using particle filtering is investigated. A detailed

comparison between the two filters would be useful to inves-

tigate in the future.
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