Lancaster EPrints

MCMC-Based Tracking and Identification of Leaders in Groups

Carmi, Avishy and Mihaylova, Lyudmila and Septier, Francois and Pang, S. K. and Godsill, Simon (2011) MCMC-Based Tracking and Identification of Leaders in Groups. In: IEEE International Conference on Computer Vision Workshops (ICCV Workshops), 2011. IEEE, pp. 112-119. ISBN 978-1-4673-0062-9

Full text not available from this repository.

Abstract

We present a novel framework for identifying and tracking dominant agents in groups. Our proposed approach relies on a causality detection scheme that is capable of ranking agents with respect to their contribution in shaping the system’s collective behaviour based exclusively on the agents’ observed trajectories. Further, the reasoning paradigm is made robust to multiple emissions and clutter by employing a class of recently introduced Markov chain Monte Carlo-based group tracking methods. Examples are provided that demonstrate the strong potential of the proposed scheme in identifying actual leaders in swarms of interacting agents and moving crowds.

Item Type: Contribution in Book/Report/Proceedings
Uncontrolled Keywords: MCMC ; tracking ; crowd behaviour ; particle filtering ; causality
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Departments: Faculty of Science and Technology > School of Computing & Communications
ID Code: 52392
Deposited By: ep_importer_pure
Deposited On: 24 Jan 2012 10:21
Refereed?: No
Published?: Published
Last Modified: 10 Apr 2014 01:04
Identification Number:
URI: http://eprints.lancs.ac.uk/id/eprint/52392

Actions (login required)

View Item