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1. Introduction

In this paper we provide a model of intertemporal hedging consistent with selective hedg-

ing, a widespread practice corroborated by recent empirical studies. Our findings indicate

that the optimal hedge is a value hedge. A number of existing empirical findings can be ex-

plained through the idea of value hedge. In addition, we advance a number of new untested

empirical predictions regarding hedging policies (see Section 6).

Contrary to textbook recommendations our results suggest that the firm should hedge

selectively, decreasing the hedge when times are bad. We also indicate how to adapt our

methodology to general non-linear income streams.

Our paper contributes to the existing literature on hedging by considering an intertem-

poral setup. Intertemporal links generate implications which are absent from prevalent

models, focussing on hedging a single position with some fixed maturity T instead.1 These

simplifying assumptions (single cash flow, single maturity) are typically the cost to pay in

order for the hedging problem to be mappable onto the standard portfolio choice framework

of Merton (1971). However, while the Merton (1971) framework provides a good starting

point, optimal hedging problems differ from investment problems. Essentially, hedging with

forwards does not involve investing any funds but taking a position in a zero current value,

zero sum game.

Other papers have also looked at intertemporal setups, where there is a series of forth-

coming cash flows to be hedged. In a discrete-time framework, Neuberger (1999) examines

hedging long-term commodity supply commitment with multiple short-term futures con-

1In Stulz (1984) and Ho (1984) a single period forward hedge is considered. Adler and Detemple (1988b)
demonstrate the equivalence between the approach of Ho (1984) and that of Stulz (1984). Svensson and
Werner (1993) assume risk aversion and provide an explanation of corporate decisions in an international
context. Adler and Detemple (1988a) provide properties of optimal hedging decisions in the expected utility-
maximizing sense. Duffi e and Jackson (1990) and Duffi e and Richardson (1991) provide single-period futures
hedging solutions for several special cases including mean-variance end exponential criteria. Lioui and Poncet
(1996) and (2001b) examine the effect of non-negativity constraint on wealth as well as impact of stochastic
interest rates; Lioui and Poncet (2003) study general equilibrium pricing of nonredundant forward contracts.
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tracts. Duffi e and Stanton (1992) price continuously resettled contingent claims, which bear

some similarities with continuous-time instantaneous forward contracts used here, as the

current market value of such claims is always zero.

Smith and Stulz (1985) classify rationales for hedging into two categories: costs and risk

aversion. If there are costs such as taxes, liquidity costs or bankruptcy costs, it is possible

to assume that managers are risk-neutral. Stabilization of cash flows via hedging reduces

expected costs and thus motivates hedging. Mathematically, costs “concavify”the objective

function. In that case individual preferences are not necessary to obtain hedging behavior.

Nevertheless, Smith and Stulz (1985) devote entire section IV in their paper to hedging

motivated by risk aversion of managers. Risk averse managers supply “specialized resources”

and must be rewarded for bearing nondiversifiable risk. Consequently, compensation con-

tracts must be designed, Smith and Stulz (1985) argue, so that the value of the firm increases

when expected utility increases. Mathematically, manager maximizes an objective function

(expected utility) which is already concave. In that case individual preferences result directly

in hedging behavior.

In this paper we subscribe to hedging rationale dictated by risk aversion of managers.

It is possible to add costs to our objective function (via the budget constraint) so that the

firm’s hedging policy is also motivated by reduction of these costs, including the special

case where the manager is risk-neutral. This, however, should not change our selective

hedging result because our optimal hedging policy is independent of the utility function of

the shareholder. For illustration purposes, our general solution is specialized to the case of

CRRA utility, non-linear income stream and mean-reverting risk modelled by an Ornstein-

Uhlenbeck process.

The optimal hedging policy we obtain is consistent with empirical evidence of managerial

practice known as selective hedging. Adam and Fernando (2006) document considerable evi-

dence of selective hedging in gold mining industry. Similarly, Brown, Crabb and Haushalter
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(2006) confirm that in gold mining industry managers decrease hedge positions when prices

move against the firm. Both these papers also acknowledge that in gold mining industry

timing commodity markets by hedging selectively generates economic gains which are rela-

tively small. Meredith (2006) provides evidence that firms selectively hedge oil prices, which

challenges traditional theories of hedging. Faulkender (2005) indicates that firms speculate

and try to time the market rather than hedge when selecting the interest rate exposure

of their new debt issuances. Fabling and Grimes (2008) measure currency hedging among

New Zealand exporters. They find strong evidence of selective hedging, particularly for Aus-

tralian Dollar and, to lower degree, for US Dollar exposures. Fauver and Naranjo (2010) find

that poorer corporate governance and overall firm monitoring are associated with greater

selective use of derivatives by managers.

Some empirical results document similarities between selective hedging and speculation.

Speculation, however, is not “evil.” Speculators incorporate new information into prices.

They can do this by taking a risk they do not have but also by keeping a risk or keeping

part of a risk they do have. Selective hedging is taking a view and shifting risk partially,

keeping part of it.

Stulz (1996) (in addition to summarizing motives for hedging based on cost reduction)

defends the practice of taking views by corporate managers. In particular, he argues that

selective hedging will not violate the effi cient market hypothesis. More importantly, he links

position-taking to comparative advantage managers have in accessing information that is not

publicly available. In a specific product market managers will have comparative advantage

in predicting price levels of related inputs. In line with Stulz (1996) the simple static model

of Shi (2011) confirms that by taking advantage of collected information a CEO does not

need to fully hedge. By contrast, our approach uses a dynamic framework and does not

require assuming any information asymmetry. We use an intertemporal continuous time

setup, which is suffi ciently rich to capture enough many future states of the economy. Our
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value-based, selective hedging couldn’t be captured within a static, 2-period model. In such

a model the terminal state of the economy containing the outcome to be hedged is typically

converse to the current situation of the firm.

Finally, Stulz (1996) relates selective hedging to designing appropriate incentive compen-

sation structure for managers. This is a similar problem to inducing a risk-averse manager

to implement appropriate hedging policy, as already pointed out in Smith and Stulz (1985).

Empirically, it has been acknowledged e.g. in Tufano (1996) that where managers have signif-

icant fraction of their own wealth tied up in the company, the larger the percentage fraction

of exposure is hedged.

Interpreted from a different angle our model also fits into the ongoing discussion of the

real estate crisis (see Section 7). Risks associated with price declines in the real estate

sector can, to a large extent, be hedged away via trading in derivatives written on a house

price index of the location. Such contracts already exist. Chicago Mercantile Exchange, for

example, offers real estate options and futures.

The paper is organized as follows. In the next Section we introduce instantaneous forward

contracts. In Section 3 we tackle the question of controlling long term risk with short-

term instruments. General solution for optimal hedging policy is obtained and interpreted

in Section 4. Section 5 provides an illustrative example of value hedge, specializing the

model to CRRA utility, Ornstein-Uhlenbeck process and quadratic endowment. In Section

6 we provide comparative statics and discuss some new empirical implications. Section 7

concludes.

2. Intertemporal risk and instantaneous forwards

An observable risk x is faced by the firm. There are many examples of such risks. For

example, x could measure exchange rate risk or weather risk associated with random changes

of the temperature. In the case x is the temperature, it is easily observable and measurable
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in degrees. In this case possible values of x could also be negative, unlike rates or stock

prices. Furthermore, likewise exchange rates, temperatures typically oscillate around some

average value x̄ (see Section 5). In general, however, the drift and diffusion coeffi cients of x

are random.

Assumption 1. Observable risk x follows an Itô process

dxt = µ (t, Yt) dt+ σ (t, Yt) dzt (1)

with initial value x0 ∈ <, where µ (t, Yt) and σ (t, Yt) (in the sequel referred to as µt and σt)
are measurable and adapted functions of time t and state variables Yt and {zt} is a standard
Brownian motion under the original probability measure P .

We also assume that effi cient market where the firm operates as price taker is populated

by hedgers, investors, arbitrageurs and speculators. In particular, speculators incorporate

new information into prices while arbitrageurs make pricing fair. More importantly, we

assume that instantaneous forward contracts on x are traded in this economy. Although

x is not traded, risks associated with x can be transferred using these forwards. As the

firm is being offered them, these contracts complete the market. We borrow the idea of

very short-term forward contracts from Breeden (1984). The structure and purpose of our

framework is, however, diametrical to Breeden’s intertemporal CAPM (ICAPM).2 We use a

slenderized setup to focus on manager’s decisions in a firm subject to exogenous uncertainty.

Instantaneous contracts allow studying hedging long term commitments with instruments

of “very short”maturity. In discrete time setting a similar framework has been used by

Neuberger (1999).

With a non-tradeable good the usual cost of carry arbitrage is not possible. Consequently,

the usual no-arbitrage relationship between the current level of xt and its (t+ ∆t)-maturity

forward price Kt+∆t
t will not hold, i.e. Kt+∆t

t 6= xte
r∆t, where r > 0 is the riskless interest

rate. This is because once the arbitrage-free forward price Kt+∆t
t has been agreed, the

2For extensions of ICAPM see e.g. Lioui and Poncet (2001a) who, unlike Breeden, use long-term forwards.
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seller of the forward contract must borrow the amount Kt+∆t
t e−r∆t and immediately buy the

underlying at the prevailing “spot price”xt, so as to be prepared for delivery to occur at

time t + ∆t. This, however, is not possible because xt is not traded.3 ,4 Therefore, we base

our model on the following assumption:

Assumption 2. In the long run there is no risk premium associated with trading forward
contracts on x.

Our assumption5 dictates that the equilibrium forward price Kt+∆t
t is given by the ex-

pected future spot price, conditional on the information available at time t

Kt+∆t
t = E [xt+∆t| Ft]

Consequently, for x following an Itô process as in (1) we have

Kt+∆t
t = xt +

∫ t+∆t

t

µs ds (2)

The firm chooses to pay a dividend flow ct per unit of time and it’s wealth at time t will

be denoted Wt. The net cash flow, e, is subject to variations of x i.e. et = e (xt), where

e (·) is some known function. The firm decides to take a position in ft short term forwards

written on x to hedge that risk. Therefore, provided that ∆t is small, the budget constraint

can be informally written as

Wt+∆t ≈ Wt + (Wtr + et − ct) ∆t+ ftVt+∆t (3)

where Vt+∆t = xt+∆t − Kt+∆t
t is the payoff of a long forward or, equivalently, the value of

the forward at t + ∆t. To interpret (3) suppose momentarily that et is increasing in xt. If

3For simplicity we implicitly assumed here that x has been directly expressed in some monetary unit. If
x were directly tradable, then there would exist a mapping x 7→ f (x) such that f (x) would give the current
price of such contract. The corresponding forward price would be Kt+∆t

t = f (xt) e
r∆t.

4See Geltner and Fisher (2007) who deal with analogous pricing issue in the context of forwards written
on non-tradable real estate index, where arbitrage cannot actually be executed.

5Compare to case 5 in Duffi e and Jackson (1990).
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ft < 0, as we would expect, short position was taken i.e. the hedge will (partially) offset the

loss on et due to unexpected fall in xt. Using (2), the (t+ ∆t)-value of the forward written

at time t can be expressed as

Vt+∆t =

∫ t+∆t

t

σs dzs

As Vt = 0, we have
∫ t+∆t

t
dVs = Vt+∆t and thus, by letting ∆t ↓ 0, we obtain

dVt = σt dzt

This stochastic differential equation originates from the equation (1) satisfied by x. There is

no drift as, by Assumption 2, there is no risk premium associated with instantaneous forward

contracts. This means that there is no increasing or decreasing trend. Consequently, there

is no incentive to buy and hold forward contracts. Assumption 2 can be easily relaxed, for

example by using

dVt = ηt dt+ σt dzt

where ηt is the drift.

3. Optimal intertemporal hedging

Intertemporal hedging of risk x can now be formulated as an infinite horizon stochastic

optimal control problem over time horizon [0,+∞)

sup
{c,f}

E
[∫ ∞

0

e−ρs u(cs)ds

]
(4)

s.t. dWt = (rWt + e (xt)− ct) dt+ ftdVt

dxt = µtdt+ σtdzt

dVt = σtdzt

(5)

Risk averse agent maximizes the expected utility of the future dividend flow, discounted at

the impatience rate ρ > 0. The instantaneous utility function u (c) : [0,∞) → (−∞,∞) is
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twice continuously differentiable, increasing, strictly concave in c and admits the limiting

values limc→0 u
′ (c) =∞ and limc→∞ u

′ (c) = 0. The agent acts in the interest of shareholders

and we abstract from agency problems.

The wealth Wt can be interpreted as current level of available liquidities and acts as a

state variable. The state of the system is progressively revealed through time t ∈ [0,+∞)

with arrival of relevant information. At t = 0 the initial wealth is W0 while the current risk

level is x0. Our goal is to compute the optimal dividend and hedging policy {c∗t , f ∗t }. In

other words, we seek how the “local”hedge, f ∗t , implemented with instantaneous forward

contracts, can be used to hedge a long-term risk induced by x.

It is well known that the value function

J = J(t, xt,Wt) = max
{ct, ft}

E
[∫ ∞

t

e−ρs u(cs)ds

∣∣∣∣Ft]
has the form J(t, x,W ) = e−ρtI (x,W ) where I = I (xt,Wt) is the solution to the stationary

Hamilton-Jacobi-Bellman equation

− ρI + max
{c, f}

H (c, f) = 0 (6)

where H is the Hamiltonian to be maximized

H (c, f) = u(c) + µIx + (rW + e− c) IW +
σ2

2

(
Ixx + 2fIxW + f 2IWW

)
and subscripts denote partial differentiation. First order conditions, H′c = 0 and H′f = 0,

provided that IWW < 0, give the optimal policy

c∗ = I (IW ) f ∗ = − IxW
IWW

(7)

where I (·) shall denote the continuous, strictly decreasing inverse of marginal utility u′ (·).6 ,7

6Note that I (·) maps (0,∞) to itself and satisfies I (0+) =∞ and I (∞) = 0.
7If there is a speculative drift η present in the payoff of a long forward, the optimal hedge policy should

adjust for its presence by adding −ηIw
(
σ2Iww

)−1
to f∗.
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Second order conditions require H′′cc|c=c∗ = u′′(c∗) < 0 and

H′′ccH′′ff −
(
H′′fc

)2
∣∣∣
c=c∗

= σ2u′′(c∗)IWW > 0

which is guaranteed by IWW < 0. The Hamilton-Jacobi-Bellman equation (6) becomes

− ρI + U (IW ) + µIx + (rW + e) IW +
σ2

2

(
Ixx −

I2
xW

IWW

)
= 0 (8)

where

U (IW ) = u (I (IW ))− I (IW ) IW

Such nonlinear second order, second degree partial differential equation is in general diffi cult

to solve analytically. The first nonlinear term, U (IW ), reflects the concavity of the utility

function. The second nonlinear term, I2
xW/IWW , impacts the intertemporal behaviour and

thus the way the risk is hedged.

4. Solution

It turns out that an exact transformation method will melt (8) into a second order linear

partial differential equation of parabolic type. The latter has an analytic solution. Moreover

it appears to be amenable to interpretations in terms of money flows, which is not the case

of (8). The transformation interchanges the roles of independent and dependent variables.

It belongs to the family of hodograph transformations which are well known e.g. in fluid

dynamics (see Zwillinger (1989)).

First observe that the knowledge of IW function is suffi cient to establish the optimal

hedging f ∗ by further differentiation. Let y = IW (x,W ). A formal inversion of IW gives

W = I−1
W (y, x). Therefore, steps involve finding I−1

W first, then inverting it in order to

compute the optimal hedging f ∗.8 For notational simplicity let Ψ denote I−1
W function i.e.

8See also Chow (1993) for a general method for optimal control without solving the Bellman equation.
Our method is similar in the sense that solving for IW – and not for the value function I itself – is
necessary to establish the optimal policy.
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∀x, y Ψ(y, x) = I−1
W (y, x). The transformation condition is therefore

W = Ψ (IW (x,W ), x) (9)

Provided that Ψy 6= 0,9 the hodograph transformation is

IWW =
1

Ψy

IWWW = −Ψyy

Ψ3
y

IxW = −Ψx

Ψy

IxxW =
2Ψx Ψy Ψyx −Ψ2

y Ψxx −Ψ2
xΨyy

Ψ3
y

IxWW =
Ψx Ψyy −Ψy Ψyx

Ψ3
y

(10)

The Hamilton-Jacobi-Bellman equation (8) transforms to

(ρ− r) yΨy + µΨx +
σ2

2
Ψxx = rΨ + e (x)− I (y) (11)

In general ρ 6= r and a term proportional to Ψy appears in (11). So far we have been silent

about which boundary conditions to impose. The natural choice for our problem is to specify

what happens for t = 0 and t = ∞ rather than impose stationary restrictions on marginal

utility of wealth, y = IW , in equation (11). A careful inspection of (11) reveals that, given

dynamics followed by x, the corresponding dynamics for y is dy = (ρ− r) ydt, which has for

solution

y = y0e
(ρ−r)t (12)

where y0 is a constant, equal to the marginal utility of initial wealth W0, to be determined

from boundary condition at t = 0. Formally, (12) acts as a change of variables, {y, x} →

{t, x}, transforming (11) back into it’s time-dependent version

Ψt + µΨx +
σ2

2
Ψxx = rΨ + e (x)− I

(
y0e

(ρ−r)t) (13)

where now Ψ = Ψ (t, x). We thus obtain a linear differential equation, which is easy to

9The case Ψy = 0 would correspond to the situation in which the wealth W would not change when the
marginal utility of wealth, IW , changes.
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interpret and solve. First recall that, by assumption, Ψ = W i.e. the unknown function Ψ

represents the level of wealth. Therefore, the left hand side of (13) describes the variation of

wealth W with respect to the change in underlying variables {t, x}. Less formally, it can be

interpreted as the expected instantaneous increase of wealth per unit of time. By abusing

notation, we could be tempted re-writing (13) into the easily interpretable equation

E[dW ]

dt
= rW + e− c∗

The expected variation of wealth must therefore be equal to the sum of three components:

1. Capital appreciation at the riskless interest rate r;

2. Contribution of the incoming earnings flow e;

3. Outgoing optimal dividend payment flow c∗.

Hence, what remains of capital appreciation rW and the entering flow e after dividends

c∗ have been paid, is going to increase the wealth W . If at some point the dividend flow c∗

exceeds the entering flow rW + e, the overall contribution will be negative, thus lowering

the accumulated wealth W .

In the particular case of equality between the rate of intertemporal impatience ρ and

the interest rate r, Ψy would not be present on the left hand side of (13), thus indicating

that the level of marginal utility, y, remains constant, i.e. y = y0 by virtue of (12). In such

case the dividend payment c∗, a function of y only, is also constant in time. Finally, we can

check for the agreement of measure units: the entering and outgoing flows e and c∗, as well

as capitalization contribution rW , are all expressed in the same monetary unit per unit of

time.

By the Feynman-Kac theorem (see Karatzas and Shreve (1988)), the unique solution to

the PDE (13) with appropriate boundary condition imposed at T i.e. Ψ (T, x) = W (xT )

12



admits the stochastic representation

Ψ (t, xt) = E
[
e−r(T−t)

{
W (xT ) +

∫ T

t

er(T−s) [I (ys)− e (xs)] ds

}∣∣∣∣Ft]
In the context of our infinite horizon problem we impose the following transversality condi-

tion

lim
T→∞

E
[
e−r(T−t)W (xT )

∣∣Ft] = 0 P -a.s.

i.e. taking into account discounting, it is expected that the wealth will not “cumulate”at

the terminal “instant”T = ∞. Therefore, the unique solution to our problem, given xt, is

given by

Ψ (t, xt) = E
[∫ ∞

t

e−r(s−t)
[
I
(
y0e

(ρ−r)s)− e (xs)
]
ds

∣∣∣∣Ft] (14)

where the constant y0 can be determined from the initial condition

Ψ (0, x0) = W0 (15)

Once the function Ψ = Ψ (t, xt) and the constant y0 are computed, the optimal hedging and

dividend policy {c∗, f ∗} obtains from the first order condition (7). Using (10) and (12) we

obtain

c∗ = I
(
y0e

(ρ−r)t) (16)

f ∗ = Ψx (17)

The optimal dividend policy c∗ is thus a deterministic function of time, while the optimal

position in short-term forward contracts reflects the exposure of wealth Ψ to changes in risk

x, as measured by the partial derivative of Ψ w.r.t. x.

We thus obtained a value hedge. To see this notice that the wealth function Ψ, as given

by (14), expresses current wealth as the difference between expected, discounted future pay-

ments minus expected, discounted future earnings. Inspection of (14) reveals that cumulated
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expected dividend payments do not depend on xt. Therefore we must have

f ∗ = − ∂

∂xt
E
[∫ ∞

t

e−r(s−t)e (xs) ds

∣∣∣∣Ft] (18)

The value of all future earnings is taken into account. This “construction”provides a

way to understand why f ∗ is not just a local hedge of current earnings flow e (xt). Optimal

hedging policy f ∗ provides a way to ensure that the total exposure (and not just local

exposure of current earnings) is intertemporal and optimally managed by the firm in order

to maximize shareholder’s satisfaction from dividend stream they expect to receive.

Moreover, and most importantly, the value hedge appears to be independent of risk pref-

erences, as neither u (·) nor the inverse of it’s derivative I (·) enter the expression (18). This

feature is reminiscent of the fact that there is no speculative motive associated with hold-

ing instantaneous forwards. The consumption decision (16) is thus separated from hedging

decision (18).

Finally, we note that all results in this section can be obtained and verified using mar-

tingale approach of Cox and Huang (1989).10 The alternative is then to transform (4) and

(5) into a static optimization problem, involving (4) and the static budget constraint (15).

Obtaining y0 amounts then to solving for the Lagrange multiplier associated with (15). The

martingale method yields the solution (14) and optimal hedging (16) and (17). The linear

differential equation (13) results as an intermediate “by-product”through an application of

the Feynman-Kac theorem.

5. An illustrative example

Consider the following example. A business is exposed to a mean-reverting risk x. Within

the neighborhood of the mean (set by x̄) the net income is assumed to increase with the

risk level x. To further specify this feature we assume that the net earnings of this firm

10A more rigorous proof is available from authors upon request.
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can be approximated by a quadratic function e (x) = x2. The risk variable x follows a

mean-reverting pattern described by the Ornstein-Uhlenbeck process

dxt = α (x̄− xt) dt+ σ dzt

with initial value x0 ∈ <, mean-reverting value x̄ ∈ <, force of reversion α > 0 and volatility

σ > 0 equal to some given constants. For CRRA utility u (c) = cγ/γ with γ < 1, γ 6= 0 the

inverse of u′ (c) = cγ−1 is I (y) = y1/(γ−1).

Our specification can be refined, for example, to a firm exposed to interest rate or

exchange rate risk, to a realtor exposed to house price risk or to a food retail business

exposed to temperature risk. In particular, parameters (e.g. α, σ and x̄) can be adjusted so

that the risk variable has very low probability (or, on the contrary, is allowed) to become

negative (e.g. temperature). The quadratic cash flow structure is the simplest non-trivial,

non-linear convex structure. It often has a meaningful interpretation. For the temperature

risk example, profits can increase at both cold weather and hot weather extremes (e.g. firm

sells more cold drinks and ice cream in summer while “solid”food sales may increase during

winter months etc.).11

In our setup from Section 3, provided that the risk aversion is strong enough i.e. γ < ρ
r
,

the wealth function (14) turns out to be

Ψ (t, xt) =
γ − 1

rγ − ρy
1/(γ−1)
0 exp

{
ρ− r
γ − 1

t

}
− E (xt) (19)

where E (xt) is the value of the expected endowment at time t, given by

E (x) =
1

2α + r
(x− x̄)2 +

2x̄

α + r
(x− x̄) +

1

r

(
x̄2 +

σ2

2α + r

)
(20)

We notice that Ψ (t, x) is separable in t and x. Moreover, endowment E (x) turns out to be

11For background information on pricing weather derivatives see Geman (1999). Our example provides
an answer to the question of how to optimally use such forward contracts.
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a quadratic function of the distance from the mean level x− x̄.

Computation of E involves the second conditional central moment of x. In our example

this computation is particularly straightforward as the assumed non-linear cash flow struc-

ture is one of the simplest possible i.e. quadratic. This required intermediate component can

thus be computed using conditional mean and variance of an Ornstein-Uhlenbeck process

E
[
x2
s

∣∣Ft] = var (xs| Ft) + (E [xs| Ft])2

=
σ2

2α

(
1− e−2α(s−t))+

[
x̄+ (xt − x̄) e−α(s−t)]2

For cash flow shapes which can be approximated by a polynomial expression in x, the an-

alytic solution method will yield closed-form expressions, similar to (19). Consider a “cubic”

flow: e(x) = a0 + a1x+ a2x
2 + a3x

3, where ai are some constants. In this case calculation of

the expectation in (14) would require using the third conditional moment E [x3
s| Ft], which

can be easily obtained from the characteristic function of the normal distribution.

This suggests that our method will apply to almost any shape of cash flow function e (·),

provided that the latter can be suitably approximated by a polynomial. For a polynomial

of degree n, the procedure would require extracting from the characteristic function and

including in expectation calculations all central moments up to degree n.

From initial conditions {x0,W0}, the constant y0 can be obtained explicitly from (15)

and (19) as

y0 =

{
rγ − ρ
γ − 1

[W0 + E (x0)]

}γ−1

which completes the computation of the wealth function. The optimal dividend policy is

given by

c∗t =
[
y0e

(ρ−r)t] 1
γ−1 (21)

and is decreasing (increasing) in time if propensity to consume is strong ρ > r (weak ρ < r).
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The optimal hedging turns out to be

f ∗t = −E ′ (xt) = −
[

2x̄

α + r
+

2

2α + r
(xt − x̄)

]
(22)

Clearly, f ∗t is not equal to the local exposure e
′ (xt) = 2xt. Moreover, the last term contains

the distance xt − x̄ separating the current level xt from the parity level x̄. In fact we can

distinguish two components:

1. Perpetual component, − 2x̄
α+r
, linked to the parity level x̄. This component is con-

stant and always negative (forward sale).

2. Instantaneous component, − 2
2α+r

(xt − x̄), the sign of which depends on the dis-

tance of xt from the parity level x̄.

The presence of the second, instantaneous component suggests the following interpreta-

tion:

• If the situation is favorable i.e. xt is above the parity level x̄, an additional forward

sale is recommended in order to lock in profits;

• If the situation is bad i.e. xt is below the parity level x̄, the manager should decrease

the hedge and wait until the level of x rises.

In a sense, the manager is effectively taking the other side of the trade in bad times, selec-

tively decreasing the hedge. Conversely, in good times we know times will not remain good.

Because of mean-reversion economic conditions are expected to worsen and the manager

should therefore enhance the hedge.

The expected endowment E (x) is a parabola which attains a minimum at x− < 0 (pro-

vided that x̄ > 0), such that

x− = − α

α + r
x̄
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Optimal hedging policy f ∗t as expressed by (22) is therefore negative for xt > x−. “Typical”

situations in our example occur when xt is located towards it’s mean level x̄ > 0 i.e. xt

has value in the area where the probability density of the Ornstein-Uhlenbeck process is

maximal. So whenever a “typical” situation occurs (and “typical” situations will happen

most of the time in our example) the optimal hedge f ∗t is a short position (forward sale)

in instantaneous forward contracts, as expected. In “extreme” situations the hedge can

become positive (forward purchase) i.e. f ∗t > 0 which is akin to speculation. This occurs for

extremely low values of the state variable x, when xt < x−.

Note also that the minimum expected endowment is always positive i.e.

E (x−) =
1

r

[(
αx̄

r + α

)2

+
σ2

2α + r

]
> 0 (23)

A particular feature of the Ornstein-Uhlenbeck process is that its conditional variance does

not depend on the current level of xt. As a consequence, and somewhat perversely, the

volatility σ will not appear in the expression (22) for optimal hedging f ∗.12 To see why this

will occur, observe that the volatility σ enters only the constant term in the expression (20)

giving E (x). However, increased volatility σ will be beneficial to the agent through a sort

of “convexity effect,”rising the level of minimum expected endowment (23).

6. Comparative statics and new empirical implications

Our example suggests that corporations should hedge in good times to lock in profits and

not to hedge in bad times but wait for profits to re-emerge. If in our example we assumed

e.g. a geometric Brownian motion with positive drift, we could still see this result. However,

under such regime profits would always be expected to increase on average. In a sense, we

would always be in bad times. That is, the result would be to decrease the hedge and wait

12It is easy to show that this would not be the case if we employed the familiar geometric Brownian
motion in place of Ornstein-Uhlenbeck process, i.e. the volatility parameter σ would appear in the analogue
of expression (22) giving the optimal hedging f∗. We leave this verification as an exercise for the reader.
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for a portion of profits to emerge later, because of exponential increasing trend. A mean-

reverting process illustrates our point much better. Our model then yields recommendations

not only for “bad times”but also for “good times.”

We collect the set of new testable implications which can be derived from our framework

in Tables below. Empirical examination of these implications may provide new insights into

the nature and motives of hedging.

Topics New Testable Implications

1. What is hedged?

Long term vs short term.

Managers acting optimally will use available short term

instruments to hedge all expected future cash flows

(long term, value hedge), not just the short term exposure.

2. Industry sector.
Selective hedging should be more prevalent in industries

where managers are exposed to convex cash flow structures.

3. Risk aversion.
Level of value hedge independent of risk preferences

of the manager.

For the mean reverting case specification from the previous section it is helpful to derive

some comparative statics results. These yield some more new empirical implications.

Result 1. Sensitivity of the optimal hedge (22) to changes in parity level x̄ is given by

∂f ∗t
∂x̄

= 2

(
1

2α + r
− 1

α + r

)
< 0 .

Therefore, when the parity level increases ∆x̄ > 0 and f ∗t < 0 we should expect f ∗t to become

larger in absolute value (more negative) i.e. the value hedge to increase. Furthermore, this

sensitivity is a constant independent of the parity level x̄ and risk level xt.

Result 2. Sensitivity of the optimal hedge (22) to changes in the force of mean reversion

α is given by
∂f ∗t
∂α

=
4(xt − x̄)

(2α + r)2
+

2x̄

(α + r)2
. (24)
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This expression is positive for higher levels of the risk level xt but becomes negative for

xt <
x̄ (r2 − 2α2)

2(α + r)2
.

This suggests that when the force of mean reversion α increases ∆α > 0 and f ∗t < 0 we

should expect f ∗t to increase and become closer to zero i.e. the value hedge to decrease

in good times. Conversely, when the force of mean reversion α increases in extreme bad

times where the firm “speculates”(f ∗t > 0), the firm should increase the hedge i.e. reduce

“speculation”closer to zero or make f ∗t negative (start hedging) in anticipation of stronger

prospects to return to normal sooner.

Result 3. Sensitivity of the optimal hedge (22) to changes in the level of interest r is

given by
∂f ∗t
∂r

=
2(xt − x̄)

(2α + r)2
+

2x̄

(α + r)2
.

This expression is structurally resembling the sensitivity to changes in the force of mean

reversion α (compare to equation (24)). However, it is numerically different and becomes

negative when

xt < −
x̄α (2r + 3α)

(α + r)2
.

This suggests that we should expect the value hedge to decrease in good times as a response

to the interest rate rising ∆r > 0. Conversely, in (extreme) bad times the firm should

(reduce “speculation”) start/increase hedging if interest rates rise. This is consistent with

observation that in our intertemporal setup hedging is a “device”which allows to lock in
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profits.

Industry sectors where the risk dimension exhibits mean-reversion

Topics New Testable Implications

1. Volatility. Selective hedging independent of volatility.

2. State of the economy.

Speculation.

In economic downturn optimal hedging akin to speculation,

hedging decreases (exposure increases) in anticipation

of the economy returning to normal later.

3. Parity level x̄. Hedging increases when the long-term parity level increases.

4. Force of mean reversion α

In good times hedging decreases in response of decline to

normal expected sooner; In bad times hedging increases

(replacing “speculation”) if improvements closer on horizon.

5. Level of interest rates r
Decrease of hedging in good times & increase of hedging

in bad times following an interest rate increase.

Furthermore, another implication which can be tested is whether the payout policy in value

hedging regimes is (or is not) dependent on the risk aversion of the manager. Our model

suggests that the optimal payout policy is dependent in exponential fashion on the risk

aversion parameter (γ in equation (21)), while the optimal hedging is not dependent on risk

preferences (no γ in equation (22)).

7. Concluding remarks

We established the optimal hedging strategy for instantaneous forward contracts to hedge

a continuum of exposures. The optimal control appears to be a value hedge involving total

current value of future earnings. Our results hold for general risk preferences as well as risk

process and endowment flow specification. More importantly, hedging decision is indepen-

dent of risk preferences of the firm or agent. Moreover, hedging and dividend (consumption)
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decisions separate.

We suggest a method to easily specialize our general result to any cash flow profile. In the

example provided, we study mean-reverting risk following an Ornstein-Uhlenbeck process,

coupled with quadratic cash flow profile. Extensions and practical implementations of our

result to such tractable situations as other Gaussian processes or richer cash flow structures

are straightforward.

More importantly, our special case suggests that the usual textbook recommendation

to fully hedge any cash flow to come will fail in our setup. Optimal policy is not static

and hedging should be either increased or decreased according to whether the current state

of nature is in “good” or “bad” zone, respectively. In other words, firms should hedge

selectively.

An interesting issue is whether every firm that follows this advice would make money from

its hedging policy? In our setup hedging will decrease variability of hedged cash flows (and

improve utility) while not increasing the money flow on average, because every transaction

in the forward market is, by construction, a zero sum game. However, our findings are

consistent with recommendations to avoid loss given in Working (1962). The advice is to

hedge when prices are expected to decline.

In our model we assume a properly incentivized risk-averse manager. However, another

possibility is to interpret our setup as an individual’s problem. An investor might be exposed

to some non-tradable risks. A realtor’s income, for example, may depend on the level of

house price. The realtor could hedge exposure using housing derivatives.

Finally, our optimal hedging policy provides many new empirical implications and is

consistent with existing empirical evidence. In particular, value hedging approach provides

justification for selective hedging, a widespread practice documented in several recent em-

pirical studies.
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