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Abstract

Detecting people or other articulated objects and localizing their body parts
is a challenging computer vision problem as their movement is unpredictable
under circumstances of partial and full occlusions. In this paper, a framework
for human body parts tracking in video sequences using a self-adaptive clus-
ter background subtraction (CBS) scheme is proposed based on a Gaussian
mixture model (GMM) and foreground matching with rectangular pictorial
structures. The efficiency of the designed human body parts tracking frame-
work is illustrated over various real-world video sequences.

Keywords: human target tracking, background subtraction, optimisation,
genetic algorithm, pictorial structures

1. Introduction and Related Work

Detection and tracking are critical tasks of any modern day visual track-
ing system. The core of any detection algorithm requires finding a clear
distinction between the foreground and background regions. The literature
on detection models has been focused on two fundamental categories of back-
ground subtraction and foreground learning models. The effectiveness of a
reliable detection system relies on efficiently combining these background and
foreground models in such a way that the system is accurate, robust and in-
variant to the presence of clutter and camera motion. In order to motivate
the proposed model, a brief review of some of the important methods are
presented in the subsections below.
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1.1. Background Subtraction

The simplest mechanism for accomplishing detection is through building
a representation of the scene background and comparing the new frame with
this representation. This procedure is known as background subtraction (BS)
[1, 2, 3, 4, 5]. The various BS approaches differ in the ways of modeling
the background and their learning. In the last several years, a number of
different BS techniques have been proposed in the literature. These tech-
niques include: the basic BS technique, extended basic BS using average
or median of pixels from previous frames [6], pixel level Gaussian mixture
models (GMMs) models [7, 8], kernel density estimators (KDEs) [9, 10] and
mean-shift estimators [11].

Though these BS techniques satisfies the requirements of detection in some
applications, they are limited in different ways. These modeling schemes are
restricted especially in explicitly handling dynamic changes: gradual or sud-
den (e.g., moving clouds), camera motion (oscillations), background changes
during the detection process, including tree branches, sea waves, etc., and
changes in the background geometry such as parked cars [4]. These tech-
niques also require specifying appropriate thresholds and are highly sensitive
to the presence of clutter, movement of the camera etc.

Whilst building representations of the background of a scene helps the pro-
cess of target detection, a learning model representing the foreground regions,
e.g., the moving objects, is essential for efficient tracking. In the next sub-
section, a review of related approaches for foreground learning is presented.

1.2. Foreground Learning Models

Foreground modelling is concerned with forming ‘blobs’ around objects of
interest. An important class of methods is concerned with splitting complex
objects into separate simpler parts (rectangles for instance), modelling each
part and then connecting each part into a whole structure to form the ob-
ject. These methods called pictorial structures became quite popular and
have shown efficiency in many image and video processing applications.

Pictorial Structure Methods
Many foreground learning models are motivated by the pictorial structure
representation introduced in [12]. The procedure of pictorial structure match-
ing generally consists of two main phases of feature extraction and matching.
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In the first stage, discrete primitives, or features are detected. Features
such as colour in combination with the object size can be used [13]. In the
second stage, models are matched against those features using search tech-
niques, e.g., genetic algorithms (GA) [14]. According to the pictorial struc-
ture model proposed in [12], an object is modeled by a collection of parts
arranged in a deformable configuration. This representation allows encoding
different parts of the body with the local properties of the object whilst, the
deformable configuration characterises spring-like movements. The second
phase of matching these pictorial structures to an image is typically done
through minimising cost functions such as the Mahanalobis distance and en-
ergy for every part.

The pictorial structure representation is an appealing framework for fore-
ground modeling in view its simplicity and generality, but its application to
automatic detection has been limited due to the following reasons [15]:

• the model and its parameters are specific to different objects, and it is
often hard to give general guidelines how to choose them;

• the resulting energy minimisation problem is highly complex and re-
quires efficient techniques for real-time applicability;

• the matching process can contain a solution space with many outcomes
resulting in ambiguities.

Other methods using pictorial structures are [16, 12] and [17, 18, 19]. Re-
sults achieved using pictorial structures even without subtracting the back-
ground are achieved in [20, 21].

Appearance-Based and Template Matching Methods
The inherent disadvantages of the feature-based techniques lead to the de-
velopment of appearance-based methods (e.g., [22] and [23]) and template
matching methods [24]. Such approaches treat objects in images as entities
to be recognised, rather than having more abstract models based on features
or other primitives. The general idea behind this class of techniques is to use
a template and compare it with new images to determine whether or not the
target is present, generally by explicitly considering possible transformations
of the template.
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Part-based Methods
Different part-based methods have been proposed. These techniques generally
combine the appearance of the individual parts, spatial and geometrical con-
straints while matching. However, most of these part-based methods make
binary decisions about potential part locations [25, 26, 27, 28].

In [29] the problem of finding people in images using coarse part-based two-
dimensional models is considered. A two-stage process for pictorial people
detection is proposed. In the first stage, binary decisions about the pos-
sible locations for individual parts are made and subsequently search for
groups of parts that match the overall model. In the second level, a sequen-
tial importance sampling (particle filtering) mechanism is used to generate
increasingly larger configurations of parts. The method from [29] provides
efficient computation of the exact (discrete) posterior distribution for the
object configuration and then sampling from that posterior PDF is therefore
superior to other methodologies.

Deformable Matching Techniques
Silhouette-based deformable matching techniques have been proposed that
match binary images obtained from BS to single parts [30, 31]. Models of
pictorial structures have recently been used for tracking people by match-
ing models when the cost function relies on the Chamfer distance function
at each frame [18]. A great number of works on highly articulated object
tracking such as people employ predominantly motion information [32, 33]
and only performs incremental updates in the object configuration. These
approaches perform an match initially the model to the image, and then
tracking commences from that initial condition. Pictorial structures can be
used to solve this track initialisation problem, or as demonstrated in [18] can
be a tracking method on their own.

Some top-down random approaches are also proposed, based on Markov
Chain Monte Carlo methods [34] and particle filtering [35].

Matching Cost Functions
Choosing reliable and robust cost functions for matching problems is often
difficult and the reason is that this choice depends on the application area,
on the features employed and other statistical properties. Some of the com-
monly used cost functions are Mahalanobis distance [12], Euclidean distance
[36], Chamfer distance [37, 18] and energy minimisation using generalised
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distance transform [16]. In [38], a comparison of different cost functions for
stereo matching problems is presented. From their analysis, the authors have
concluded that the cost function relies on the chosen technique for matching
and that none of the cost functions could efficiently handle abrupt dynamic
changes. In a similar study, the authors of [39] compare six different cost
functions based on evaluations of gray value matching of 2D images in radio-
therapy. This study also confirms that the application of a particular cost
function largely depends on the target application and the features employed.

2. Our Approach: Combining CBS-GMM with Foreground Learn-
ing

The main idea behind our approach is to enhance the accuracy of the
BS technique by learning the appearance models for the moving objects (the
so-called foreground). The main contributions of the work are:

• To propose a novel cluster background subtraction model combined
with foreground matching for automatic detection of human body parts

• To extend the cluster background subtraction framework proposed us-
ing dipping threshold feedback technique for adaptive parameter esti-
mation.

• To model the evolutionary algorithm based body parts matching tech-
nique with a posterior based cost function for accurate measurement of
the matching error between the template and the target body parts.

• To compare the effectiveness of the proposed model against state-of-
the-art baseline systems

• To test the robustness of the detection framework on moving camera
sequences

A block diagram illustrating the novel CBS-GMM method and the evo-
lutionary pictorial matching scheme is presented in Figure 1.
The proposed automatic detection framework is composed of two phases. In
the first phase, the image is clustered into regions according to colour feature
and the CBS-GMM is performed. In the second stage, a pictorial structure
rectangular human body model is matched to the background subtracted
outputs of phase one using an evolutionary search strategy. The developed
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Figure 1: Block diagram of the body-part detection framework
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CBS involves clustering image frames from the video sequence and further
applies an adaptive Gaussian mixture model for reliable CBS. The CBS-
GMM technique automatically adapts the parameters of the GMM including
the detection threshold from the outputs of the previous processed frames (as
indicated by the block estimate cf ) in contrast to [7] where some parameters
of the pixel GMM are chosen heuristically.

The proposed CBS-GMM scheme is much faster and more accurate than
other BS techniques operating at pixel level which makes it suitable for real-
time applications. This is because, in the pixel-based methods, pixels belong-
ing to any particular region of an image have higher variability. This can lead
to wrong classification of certain pixels within the same region, whereas the
CBS reduces the pixel variability. Foreground learning is achieved by body-
part matching using two different cost functions for the pictorial structure
approach. The efficiency of the designed techniques is illustrated over various
real-world video sequences static and moving cameras. The robustness of the
proposed approach is proven as it reduces the clutter and achieves high level
of precision.

2.1. Update of the GMM Parameters at Cluster Level

The problem of cluster BS (CBS) involves a decision whether a cluster
of pixels belongs to the background (bG) or foreground (fG) object based on
the ratio of probability density functions:

p(bG|cik)

p(fG|cik)
=

p(cik|bG)p(bG)

p(cik|fG)p(fG)
, (1)

where, the vector cik = (ci1,k, . . . , c
i
ℓ,k) characterises the i-th cluster (0≤ i≤

q) at time instant k (and current image), containing ℓ number of pixels
such that [Im]k = [c1k, . . . , c

q
k] represents the whole image; p(bG|cik) is the

PDF of the background, subtracted based on colour feature (though this can
be generalised to other features such as texture, edges or combination) of
the cluster cik; p(fG|cik) is the PDF of the foreground on the same cluster
cik; p(cik|bG) refers to the PDF model of the background and p(cik|fG) is
the appearance model of the foreground object. In our CBS technique the
decision that any cluster belongs to a background is made if:

p(cik|bG) > threshold

(
=

p(cik|fG)p(fG)

p(bG)

)
. (2)
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Since the threshold is a scalar, the decision in (2) is made based on the
average of the distributions of all pixels within the cluster cik. Most of the
existing BS techniques such as [9, 7] take this decision at pixel level in con-
trast to the proposed here algorithm at cluster level. The appearance of the
foreground, characterised by p(cik|fG) is assumed uniform. The background
model represented as p(cik|bG) is estimated from a training set ℜ which is
a rolling collection of images over a specific update time T . The time T is
crucial since its update determines the model ability to adapt to illumination
changes and to handle appearances and disappearances of objects in a scene.
If the frame rate is known, the time period T can be adapted: T = N/fps,
e.g., as a ratio between the total number of frames of the video sequence,
N and the frame rate, fps, frames per second. At time instant k there is
ℜk =

{
cik, ..., c

i
k−T

}
.

Every cluster cik, (0 ≤ i ≤ q) at time instant k is generated using a colour
clustering mechanism of the nearest neighbour approach [40], although other
techniques can be used. The aim of the clustering process is to separate data
based on certain similarities. Clustering is carried out based on the hue,
saturation, value (HSV) colour model due to its inherent ability to cope with
illumination changes. A detailed algorithm describing the clustering proce-
dure can be found in [41].The results obtained from the clustering method
suggested in [41] can vary in accordance with the chosen features.

Figure 2: a) An image with clusters b) Clusters with their centres

A GMM, containing M components, is then used to represent the density
distribution

p̃(cik|ℜk, bG+ fG) =
M∑

m=1

π̃m,kN (cik; µ̃k, σ̃
2

m,kI), (3)
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both of the background and foreground where µ̃1,k, ..., µ̃M,k and σ̃2
1,k, ..., σ̃

2
M,k

are the estimates of the mean vectors and of the variances that describe
the Gaussian components; I is the identity matrix. The estimated mixing
weights π̃m sum up to one. Given the new cluster cik at time instant k, the
update equations for the cluster parameters can be calculated as follows:

π̃m,k+1 = π̃m,k +
1

Tk

(om,k − π̃m,k), (4)

µ̃m,k+1 = µ̃m,k + om,k

(
1

Tkπ̃m,k

)
δm,k, (5)

σ̃2

m,k+1 = σ̃2

m,k + om,k(
1

Tkπ̃m,k

)(δ′

m,kδm,k − σ2

m,k), (6)

where

om,k =






1, if the cluster centre is close to the mean
of the particular GMM component;

0, otherwise,
(7)

δm,k = cik − µ̃m,k,
′ denotes the transpose operation, and om,k refers to the

ownership of the new cluster and defines the closeness of this cluster to a
particular GMM component. The ownership of any new cluster is set to 1
for “close” components (with the largest π̃m,k), and the others are set to zero.
A cluster is close to a component if the Mahalanobis distance between the
component and the cluster centre is, e.g., less than 3. If there exist no “close”
components, a component is generated with π̃m+1,k = 1

Tk
, with an initial mean

µ̃0 and variance σ̃2
0. The model presents clustering of components and the

background is approximated with the B largest components,

p̃(cik|ℜk, bG) ∼
B∑

m=1

π̃m,kN (µ̃k, σ̃
2

mI), (8)

B = argmin
b

(
b∑

m=1

π̃m,k > (1− cf )), (9)

where b is a variable defining the number of considered clusters, cf is the
proportion of the data that belong to foreground objects without influencing
the background model.
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2.2. Dipping Detection Threshold

Most practical detection systems generally operate with the assumption
that the proportionality between the pixels belonging to the foreground to the
pixels from the background is assumed constant [7]. Therefore a fixed thresh-
old is used as the detection threshold. An alternative to this is to employ the
ratio of prior probabilities of the background and foreground regions based
on the information from the training set. This allows a two way communi-
cation and perhaps a more appropriate “feedback” mechanism that enables
the detection threshold to be decreased near where a target is expected to
be and elevated where it is unexpected. This ratio defining the percentage
of foreground and background pixels, i.e., the posterior probabilities can be
updated from the training set as follows:

cf =
p̃(cik|ℜk, fG)

p̃(cik|ℜk, bG)
. (10)

The cluster background subtraction presents a number of advantages as
against the pixel based method. In particular, the CBS-GMM algorithm can
explicitly handle dynamic changes of the background, e.g., gradual or sudden
(as in moving clouds); motion changes including camera oscillations and high
frequency background objects (tree branches, sea waves, etc.) and changes in
the background geometry (such as parked cars). The model can also reduce
clutter and can operate faster and accurately than the pixel based methods.

The CBS-GMM is able to clearly segment the moving human targets from
the background. However, in order to localise the human body parts, a model
based on pictorial structures is constructed and matched using an efficient
search mechanism. In the following section the pictorial structure model and
the evolutionary matching algorithm is described.

2.3. Pictorial Structure

The considered pictorial structure model for an object is given by a col-
lection of parts with connections between certain pairs of parts. More specif-
ically, for the human body, the parts can correspond to the head, torso, arms
and legs. The number of parts required to model well the object, depends
on the application and the level of accuracy required. For example, whilst
a 10 parts (head, torso, 4 arm parts and 4 leg parts) human body model
can provide more accurate results, the time complexity of matching the 10

10



parts body model with each current frame is quite high. Throughout this
paper, it is assumed that the human silhouette is represented by a model
of maximum of 10 rectangular regions of specific dimensions unless specified
otherwise. The simplest form of representing these parts as a structure is
using a form of an undirected graph G = (V;E), where V = (v1, v2, ..., v10)
is the set of 10 parts of the body and there is an edge between the connected
parts in the graph; E is the set comprising the connecting edges. In each
time instance a human body in any scene can be expressed in terms of a
configuration L of different parts containing spatio-orientation parameters
li, 1 ≤ i ≤ 10. Therefore, a 10 body part model will contain a configura-
tion vector L = [l1, l2, ..., l10]. The foreground modeling problem deals with
identifying an optimal configuration vector L that accurately matches the
pictorial structure template to human objects in a real-time video sequence.

The problem of matching a pictorial structure to an image can be defined
in terms of minimisation of a cost function. The cost of a particular config-
uration depends both on how well the parts match to the image data and
on how well the different parts relate to one another. According to [12], an
optimal configuration that accurately matches the parts of the human body
model to the image data is defined as

L∗ = argminL

(
10∑

i=1

mi(li) +
∑

fij(li, lj)

)
, (11)

where mi(li) measures the degree of mismatch of any part 1 ≤ i ≤ 10 at
configuration li and fij is a function of deformation relating one part i to an-
other part j. In [12, 16, 15], fij(li, lj) is defined as the weighted Mahalanobis
distance between the transformed locations.

In this paper, an evolutionary strategy of searching parts of a human body
on already background subtracted images is proposed. This procedure allows
simultaneous learning of model parameters while achieving efficient cost min-
imisation. A detailed description of the procedure is illustrated in Section 2.4.

2.4. Searching for Parts

Matching of the body parts to the image is performed using a stochastic
evolutionary algorithm [14]. The matching process is designed to determine
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the location and orientation of the body parts with specific constraints. These
constraints, for example, can involve finding hands of people around the re-
gion of the upper torso. The algorithm is instantiated with a configuration
vector L of the location and orientation parameters of the different body
parts that include the pixel displacement value in x and y directions of the
torso, together with the four parameters of transformation (a11, a12, a21, a22)
of every body parts ℘ of the human target τ encoded as the chromosome
(Tx, Ty, a

℘,τ
11 , a℘,τ12 , a℘,τ21 , a℘,τ22 ).

Note: A large population of possible solutions S = [L1, L2, L3, ...] if gen-
erated for every target τ within the bounds of the image dimensions and in
the neighbourhood of the segmented regions from the previous step. An iter-
ative procedure is then applied to obtain the optimal match of the pictorial
structure of each target to the image. The stages of the iterative process
include:

• Preprocessing stage: In the pre-processing stage, for all configurations
in the solution space, the spatial location of every other part of the
human body are estimated in relation to the spatial position (xt, yt) of
the torso that is obtained from the configuration vector. These pivot
points are the points that would attach the different human body parts
to the torso or the relevant neighbouring part (such as lower arm and
upper arm). The outcome of the preprocessing phase generates for
every body part, the corners’ positional coordinates of the rectangular
regions surrounding each part. The region btarget corresponding to the
body parts is then found from the target background subtracted image.

• Cost Estimation: In order to evaluate the fitness function on each
chromosome:

– The pictorial structure model corresponding to target τ is cen-
tred at the spatial location of the torso as extracted from the
chromosome using the translation parameters (Tx, Ty). Using this
location of the torso, all the pivot points corresponding to the
different body parts of the template are estimated.

– To each body part ℘ of target τ , the Affine Transform is applied
using the affine parameters (a℘,τ11 , a℘,τ12 , a℘,τ21 , a℘,τ22 ) using,
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[
x′

y′

]
=

[
a℘,τ11 a℘,τ12

a℘,τ21 a℘,τ22

] [
x
y

]
(12)

For each of these configurations, a cost function is further em-
ployed to determine the deviation of the target body part and the
template body parts.

– i) The cost function is the mean absolute difference (MAD) be-
tween the target template btarget and the body part template
btemplate and is computed in the following way

mi = |btemplate℘− btarget℘|, (13)

where ℘ refers to the different parts and btemplate℘ are rectangular
regions of specified dimensions. The absolute difference between
the template and the target is averaged across all pixels. It is
important to note that the number of targets and template regions
correspond to the number of considered body parts. The vector
cost function comprises the errors for every body part represented
as e = [m1, m2, ...].

– ii) As an alternative to the absolute difference error, the posterior
based error function illustrated in [42] is used. According to this
function, it is assumed that the vector D of pixels of the image, is
a nonlinear function of the configuration parameters, but a linear
function of the template, G, plus a zero-mean Gaussian noise.

D = AG+Noise. (14)

From this model, by assuming a uniform prior onA and a Jeffrey’s
prior on the variance of the Gaussian noise, the following error
function is derived.

e =
1∣∣G′

G
∣∣ × (D

′

D −D
′

G(G
′

G)−1G
′

D)−[
MN
2

+1] (15)

where D is a vector of pixels values of the template of size M ×N
and |.| means the absolute value.

– iii) Although the above criterion would be efficient in matching
the template to the target, it does not guarantee that the bound-
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aries of the pictorial structure template overlaps the target. The
error returned by the above functions would result in a minimised
value even in the case when the template is scaled smaller to lie to-
tally within the boundaries of the target. Therefore, in addition to
measuring the deviation of the target region from the template of
each body from the pictorial structure as above, the Hausdorff dis-
tance between the edge pixels of the body part template etemplate℘
and that of the target template etarget℘ is also computed. The
edges of the template and target are generated on the binary im-
age of the segmented target using a simple canny operator. The
Hausdorff distance between the two sets of edge pixels is defined
as:

H(etemplate℘, etarget℘) =

max(h(etemplate℘, etarget℘), h(etarget℘, etemplate℘)), (16)

where

h(etemplate℘, etarget℘) = maxa∈etemplate℘
minb∈etarget℘||a− b||.

– iv) Finally, an additional constraint if enforced on the pairwise
component fij of the objective function (11) between neighbour-
ing body parts i and j. The computation of the pairwise condition
automatically introduces a penalty on two body parts i and j as
a function of their extent of overlap with each other measured as
O(.). At this point it is critical to note that overlaps between body
parts can also be valid if in the case that the body parts are un-
dergoing partial or total occlusion. However, it is often very hard
to autonomously distinguish between truly occluded body parts
and a misfit of the search algorithm. In order to help distinguish
between the two, a cascading approach to fitting different num-
ber of body parts for each target in the image is proposed. This
cascading approach will be explained in detail in subsection 2.5.

• Population Regeneration: The estimation of the cost for every configu-
ration in S through (13) allows a better prediction of the best configu-
ration suited for the human body parts. However, obtaining a perfect
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match of the body model configuration, i.e, e = 0 is rather difficult
unless the solution space is assumed to be very large. In order to se-
quentially find a global solution, an evolutionary process can be used.
In this work, two forms of population regeneration are introduced, one
based on combining the goodness of low cost configurations and the
other based on local neighbourhood.

– Matching of the two configurations is performed by comparing the
costs and by generating two new configurations with one contain-
ing the location and orientation parameters of parts that returned
the lowest cost and the other containing the remainder of the pa-
rameters. The top performing candidates of the population are
selected into this procedure. A hybrid member of the population
is generated from the two candidate members by comparing the
error scores. The output member of the population will charac-
terise how well the two candidates match to each other.

– The second form of population regeneration involves discarding
configurations that have high values of cost and creating a new set
of configurations within a specified region around configurations
with low cost.

• Termination: The procedure is tested under three main stopping crite-
ria including the Zero Cost, Maximum Iterations and Number of Stall
Iterations. The zero cost condition is satisfied when a particular con-
figuration vector returns an absolute match with zero error. The maxi-
mum generations condition is set when the number of iterations exceeds
a predefined threshold. Stall generations refers to the consecutive it-
erations where the cost values remains unchanged. If the number of
the stall iteration exceeds a predefined threshold, then the procedure
terminates. If the event of the procedure is not satisfying any of the
above conditions, the iteration continues.

2.5. Cascaded Implementation

As mentioned earlier, one of the main aspects of our objective function
is to have the ability to distinguish between a true occlusion of body parts
against a mismatch of body parts by the search algorithm. This is mainly due
to the penalty factor introduced as a measure the pairwise constraint based
on an overlap function of the two considered body parts. The proposed GA
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based search algorithm is extended to work in an cascaded manner, first lo-
calizing a small but well optimised subset of body parts such as the head and
torso which are then used to initialize the subsequently matching containing
a increased set of other body parts. At the first level of the cascade, matching
is performed on the segmented binary image of the target obtained from the
background subtraction algorithm. However, in subsequently higher levels,
the matching of other body parts is performed on the gray-scale version of the
original image. The number of levels of the cascade is automatically deduced
as a function of the overlap between body parts. That is, the search mecha-
nism would terminate when it is able to adequately describe the segmented
target with the most optimum number of body parts without overlapping
regions. For example, when matching a human target, a minimum 2-parts
cascaded model is used at the lowest level of the cascade and incremented
subsequently to a maximum 10-body parts model for robust and accurate
matching. The effect of the cascaded implementation is studied in detail in
the following section 3.

3. Results and Analysis

3.1. Qualitative Analysis of Background Subtraction

3.1.1. Results on Static Camera Sequences

Experiments were conducted on a number of synthetic and real data sets
from the Carnegie Mellon University [43] and CAVIAR data sets [44]. Frames
from the two original video sequences used in the tests are shown in Figure 3
and Figure 7. A comparison of the outcome of the baseline algorithm (the
pixel-based GMM) [7, 10] and the results of the proposed CBS technique
is also presented on both sequences. Figures 4, 5, 6, 8, 9 and 10 illustrate
the BS results of the pixel-level technique compared against the proposed
cluster-level technique.

In Figure 11, recall-precision curves comparing the dipping and fixed
thresholds for detection are presented. The graph is plotted for a 153 frames
video sequence from the CMU data set [43]. It can clearly be observed that
the dipping threshold mechanism (10) produces a much higher recall to pre-
cision ratio in comparison with varying percentages of the foreground. The
dipping threshold mechanism is adaptive to different videos and thus is more
flexible and efficient as against the fixed threshold methods.
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Frame 1 Frame 2 Frame 3 Frame 4

Figure 3: Original sequence from the CMU data set

Frame 1 Frame 2 Frame 3 Frame 4

Figure 4: Results from the pixel-based GMM [7] on the CMU data set

Frame 1 Frame 2 Frame 3 Frame 4

Figure 5: Results from nonparametric kernel background subtraction [9, 10] on the CMU
data set

3.1.2. Results on Moving Camera Sequences

The proposed CBS technique was investigated on surveillance camera
video sequences (Figure 12 captured using a hand held camera). Figure 15
presents results from the proposed CBS, Figure 13 gives results with the pixel-
level GMM BS technique [7], and Figure 14 show results with the pixel-level
GMM BS technique developed in [10].

Some of the major implications that can be derived from the results are:
i) the pixel-level BS mechanism produces noisy/ cluttered BS as against the

17



Frame 1 Frame 2 Frame 3 Frame 4

Figure 6: Results from the proposed CBS with adaptive parameters on the CMU data set

Frame 37 Frame 48 Frame 59 Frame 70

Frame 81 Frame 92 Frame 103 Frame 114

Figure 7: Original sequence from the CAVIAR data set

cluster-level techniques; ii) the output of the CBS scheme clearly distin-
guishes the foreground from the background regions thus permitting further
processing of the output which is especially useful for tracking purposes;
iii) false detection in the proposed technique leads to over segmented fore-
ground regions and is attributed to the variation in dipping threshold; iv)
the self-adaptive procedure used by CBS helps coping with camera motions
whilst the pixel-level methods cannot handle moving cameras thereby not
distinguishing regions of foreground and background.
The video sequence from [18] consists of 109 frames captured at a frame
rate of 15 frames per second. From the results shown in Figure 16, it is
clear that the proposed CBS-SαS technique is capable of suppressing clut-
ter simultaneously handle camera displacements with small movements in
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Frame 37 Frame 48 Frame 59 Frame 70

Frame 81 Frame 92 Frame 103 Frame 114

Figure 8: Results from the pixel-based GMM [7] on CAVIAR data set

Frame 37 Frame 48 Frame 59 Frame 70

Frame 81 Frame 92 Frame 103 Frame 114

Figure 9: Results from nonparametric kernel BS [10] on CAVIAR data set
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Frame 37 Frame 48 Frame 59 Frame 70

Frame 81 Frame 92 Frame 103 Frame 114

Figure 10: Results from the proposed CBS with adaptive parameters on CAVIAR data
set
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Figure 11: Recall-precision curves comparing fixed and dipping thresholds

the background. This sensitivity of the SαS densities relies on exploiting
the heavier tails of the distribution to accommodate such variations in the
background. In addition of this, the model also displays higher robustness
to illumination changes. For more detailed review of the proposed CBS-SαS
technique kindly refer to [45]. In Figure 16, the edge silhouette of the target
is also isolated and presented. At level 1 of the proposed detection algorithm,
these silhouettes are used for matching the target to the pictorial model.
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Frame 21 Frame 25 Frame 32 Frame 47

Figure 12: Original sequence from a moving camera

Frame 21 Frame 25 Frame 32 Frame 47

Figure 13: Results from the pixel-based GMM [7] on the moving camera sequence

Frame 21 Frame 25 Frame 32 Frame 47

Figure 14: Results from nonparametric kernel BS [10] on the moving camera sequence

Frame 21 Frame 25 Frame 32 Frame 47

Figure 15: Results from the proposed cluster-based GMM with adaptive parameters on
the moving camera sequence
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(Original Sequence)

(Results from the CBS-SαS)

(Extracted target edges)
Figure 16: Results from the proposed CBS-SαS model on the moving camera sequence
along with extracted target silhouettes

3.2. Quantitative Analysis of Background Subtraction

The techniques are also evaluated using the quantitative measures recall
and precision of the objects compared with the hand-labeled ground truth
(TP: true positive (correct)) whilst accounting for the missed detections (FN:
false negative) and the false detections (FP: false positives) [46]. Recall and
precision measures quantify how well an algorithm matches the ground truth
[47]

Recall =
TP

TP + FN
, Precision =

TP

TP + FP
. (17)

Figure 17 shows that the proposed algorithm has higher level of precision
for the same values of recall. The precision values are directly related with
the number of correctly classified foreground pixels [46], and are inversely
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Figure 17: Recall-precision curves for the proposed model on CMU and CAVIAR data
sets

proportional to the misclassified foreground pixels. It is evident that com-
pared with the pixel-based GMM [7] the proposed CBS technique maximises
the proportion of correctly classified pixels and minimises the misclassifica-
tion.

Finally, a comparison between the time complexity of the pixel-based and
the proposed cluster-based methods is made. Time is measured as the CPU
runtime of different video sequences on an Intel i7 2.0-2.9GHz processor with
Matlab 2010(b) version. The computational time is shown in the last two
columns of Table 1. Column 2 indicates the number of frames analysed for
time complexity of each of the video sequences. The time complexity of the
proposed CBS mechanism is much lower in comparison with the pixel-level
BS. The main reason for this reduced computational time is due to the fact
that the CBS evaluates the parameters of a small number of clusters of the
image as against all individual image pixels in the pixel-based methods.

In [45], a more detailed quantitative comparison of the CBS-SαS tech-
nique has been reported. In summary, it has been proven that the proposed
CBS-SαS technique is capable to isolating targets by suppressing noise and
clutter enabling the detection process to remain more robust and reliable.

3.3. Pictorial Structure Based Foreground Modelling

Both qualitative and quantitative evaluation are performed on the pro-
posed pictorial structure based foreground modeling technique with GA search
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Sequence Frames Pixel Based (s) CBS (s)
CMU 1 202 141.3 112.6
CMU 2 257 178.5 136.4
CMU 3 153 139.1 89.8

CAVIAR 1 1055 512.2 312.1
CAVIAR 2 1135 678.9 439.6
Baseball 109 117.6 101.3

Table 1: Time complexity of pixel-based and CBS methods

method. The quality of matching is evaluated through visual inspection of
results on the video sequences. The results of the qualitative evaluation is
presented on some sample frames from both static camera sequence and on
moving camera sequence. The matching process of the pictorial structure
using the GA search for these experiments has been carried out on the back-
ground subtracted image for the level 1 of the cascade and on the gray scale of
the original image for subsequent levels using the original objective function
with combined posterior, edge error and overlap based pairwise constraint.
For each image frame, the search technique is initialised with 500 object
configurations around the neighbourhood of the center of mass of the seg-
mented target and limit the maximum number of search iterations to 1000.
The run time recorded for detecting these single human target parts on the
video sequence was estimated to be around 68 seconds on an Intel Core i7
2.0-2.9GHz processor with Matlab 2010(b) version. Traditional approaches
to human parts detection involve training and typically take several minutes.
The time complexity of the proposed approach is low considering that it is
an unoptimised code running in Matlab and can be adapted so that it is
suitable for real-time applications.

The proposed automatic detection framework is compared with the baseline
model proposed in [18] over the baseball sequence (moving camera with scale
variations) shown in Figure 18. The model proposed in [18] relies on prior
semantic knowledge and learns the appearance of objects to detect them.
Here, no semantic knowledge is used in the CBS-GMM and foreground mod-
eling technique.

Figure 19 illustrates the classification of body parts as obtained using
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Figure 18: Original baseball sequence containing a total of 200 frames

Figure 19: Results from the foreground modeling of human body parts using the algorithm
proposed in [18].

Figure 20: Results from the foreground modeling of human body parts using the proposed
automatic detection framework without edge constraint and overlap penalty

Figure 21: Results from the foreground modeling of human body parts using the proposed
automatic detection framework with edge and overlap constraints
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Video Error (pixels) Time (s)
CMU 1 8.2 61.23
CMU 2 6.4 63.64
CMU 3 7.1 69.52

CAVIAR 1 5.2 75.49
CAVIAR 2 4.7 71.97

Table 2: Tabular description of the chosen video clips and the error in localisation (pixels)
with time complexity (msec)

the technique proposed in [18] and compare it with our technique. Fore-
ground modeling is performed on the cluster background subtracted frames
and thus showing the connection between the CBS and foreground learn-
ing. It is evident from Figure 20 that the proposed automatic detection
framework based on CBS and evolutionary matching (without affine match-
ing) produces comparable matching results even without the use of edge and
overlap constraints. In Figure 21 the results of the proposed algorithm us-
ing the Hausdorff distance based edge error and the pairwise penalty using
overlap constraints is presented. It can also be noticed that the number of
body parts chosen to match to a particular frame is different from other
frames. This is the result of the effect of the cascaded implementation of the
search process. These results of detection are good for majority of the image
frames. The only limitation of the system noticed so far is that the detection
of body parts at the second level (for example, lower arms, leg parts below
the knee, etc.) rely on the proper detection of their parent body parts. This
dependence is inherited from the pictorial structure model.

The error between the locations of the matched body parts and their man-
ually labelled ground-truth on 6 different video sequences is also measured
and these results are tabulated in Table 2.

In addition, a performance curve is generated where the performance is
measured as the percentage of correctly detected parts (PCP) against the L2
norm distance from the ground-truth.

The proposed algorithm performs comparably better than other tech-
niques, some results from other techniques can be found in [48]. Although
our results cannot be directly compared to the results of other methods in
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Figure 22: Percentage of correctly detected parts on the baseball sequence comparing the
fixed and cascading models of the proposed framework

Video Head Torso U.Arms L.Arms U.Legs L.Legs
CMU 1 83.24 100 98.72 94.87 97.62 91.26
CMU 2 88.72 100 96.46 88.64 90.08 86.65
CMU 3 91.16 100 97.47 92.98 91.86 86.56

CAVIAR 1 75.62 98.14 87.62 81.46 88.92 80.45
CAVIAR 2 80.04 96.28 82.36 76.65 81.57 78.98
Baseball 89.90 100 98.64 90.96 96.37 95.23
Pet Walk 81.98 99.6 93.59 87.66 91.05 87.82

Table 3: Tabular description of the chosen video clips (short clips from original sequence)
and the percent of correctly detected different body parts

[48] because our experiments are carried out on different sequences, atleast
numerically the proposed strategy outperforms the other methods. It is
clearly evident that the proposed cascaded implementation has a significant
contribution to the success of the proposed framework in comparison to a
fixed 10-parts body model matching. With the cascaded model it has been
possible in some short sequences to nearly achieve 100% correctly detected
body parts at around 0.35 L2 distance from the ground-truth. A detailed de-
scription of the proposed cascaded model performance on various sequences
for all the localized body parts is listed in the Table 3.

Finally in this section, the overall performance of the proposed strat-
egy is compared with the quantitative results of [18] over the baseball se-
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quence (moving camera with scale variations) using the metric of percentage
of frames that the respective body parts were correctly classified. The pro-
posed system has localised the torso of the target in the baseline sequence
100% and the head in 89.90% of the frames in comparison to 98.4% torso
detection without the head in the case of [18]. In addition, our model local-
izes the arms at 94.8% (averages between upper and lower arms) and legs at
95.8%. [18] presents 93.75% frames where arms have been correctly detected
and 95.3% of frames where the legs have been correctly detected. Although
that the percentage of frames comparing the models is nearly comparable
for the detection of arms and legs, the failure rate in the proposed model is
primarily due to low rates of the lower limbs (both arms and legs) which is
due to inaccurate localisation of the corresponding upper limbs.

3.4. Effect of the Cascaded Implementation

One of the important considerations in understanding the capabilities of
the cascaded model is to being by understanding the connection between the
background subtraction process to the foreground matching stage. As it has
been mentioned earlier, the output of the background subtracted procedure
is the extracted silhouette of the target. At level 1 of the cascading model the
matching of the pictorial structure happens on this background subtracted
output thus allowing the prediction of the most useful subset of body parts
as shown in Figure 23. At this stage no emphasis on the colour components
of the body parts is taken. However, in the subsequently higher levels, both
colour and edge constraints are simultaneously engaged to match the larger
set of secondary body parts to the original image. In this way we are able to
achieve much higher accuracy of body parts matching.

It is important to note that the cascaded model is not mandatory to the
functioning of the proposed framework. It is quite possible to match with
the proposed model a fixed number of body parts model to the target using
the GA search scheme without having to begin with a subset of most salient
body parts and consequently adding lesser salient body parts at higher lev-
els. However, as the results in Figure 22 suggested, the use of the cascaded
implementation significantly improves the performance of detection. In ei-
ther case, the initialisation of the body parts pictorial model begins with
matching the model to the background subtracted image and subsequently
considering other features such as color and texture.
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a b c

Figure 23: Cascaded implementation of the proposed framework and the link of back-
ground subtraction and foreground matching. a) illustrates the matching process at level
1 on the background subtracted silhouette, b) is the output at level 2 of the cascade when
higher number of lesser salient body parts are added and finally, c) shows the matching of
all body parts at level 3.

The usefulness of the proposed cascading implementation can be highlighted
on several video sequences. A quantitative evaluation of this has partly been
represented in our previous results as in Figure 25. In addition to that, some
sample frames from the original sequence and their corresponding matched
parts are also presented in Figure 21.

3.5. Effect of System Parameters on Performance

As mentioned earlier, detailed quantitative evaluation of the proposed
method is conducted by measuring the effect of different system parameters
on the performance. In our first experiments, the importance of initialisa-
tion of the solution space on the time complexity of the proposed search
algorithm is tested. The solution space of the GA search mechanism can
be initialised either a) randomly from within the dimensions of the image
or b) in the neighbourhood of the center of mass of each segmented target
from the background subtracted image or c) from the localisations of the
previous frame (if used on a video sequence). The time complexity of the
proposed matching framework when initialised with a random population
was estimated to be 112.4s in comparison to 70.3s when the population was
initialised around the neighbourhood of the target and 30.1s when the pop-
ulation was initialised from the estimates of the previous frame.

In our next experiment, the importance of the pairwise constraint on the ac-
curacy of the target detection process is demonstrated. The error is measured
as the mean difference between all the localised body parts and its manually
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Figure 24: Effect of overlap function based pairwise constraint

labeled counterpart against different number of frames from sample chosen
video sequences containing 300 frames. The results presented in Figure 24a
and Figure 24b are in the form of a cumulative error distribution. The results
indicate that the use of the pairwise constraint (blue curve) shows a signif-
icant improvement (greater percentage of frames producing lesser error) as
against the objective used without the pairwise constraint (red curve). The
pairwise constraint not alone helps in improving the accuracy of the model
but also ensures that only the optimal number of body parts are always cho-
sen to represent the human target. In the case otherwise as shown by the red
curve in Figure 25, the model always uses a fixed number of 10 body parts,
some of which overlap with others or even sometimes not localised properly.
To support this claim, the curve demonstrating the number of body parts
obtained whilst the pairwise constraint was used on the baseball sequence
containing the first 98 frames as indicated by the blue curve in Figure 25 is
presented.

In the next group of experiments, the impact of the two error functions
employed during matching of templates to targets: the MAD cost function
(13) versus the probabilistic cost function (15) both without the use of the
Hausdorff distance between the edges are compared. Again for these exper-
iments, as in the previous case the error metric used is the difference of the
localised target body parts and the manually labeled counter-part. The plots
in Figure 26a shows the spatial error difference (in pixels) between the two
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Figure 25: Effect of overlap function based pairwise constraint on the number of body
parts chosen to represent the target

cost functions across a sample video sequence consisting of 75 frames. It is
clear that the spatial error between the cost measures is significant. The
same comparison between the two error functions is repeated but now with
the use of the error between edges of the template and target. This is pre-
sented in Figure 26b. These results also conforms to our earlier estimates
of the difference. However, in general the probabilistic cost function yields
better results in terms of accuracy than the MAD function. It is also critical
to note from these graphs, the high impact of the edge based criteria on the
matching accuracy. It is obvious that the edge criteria not alone improves
the qualitative accuracy of the matching process but also play an important
role in advancing the quantitative performance of the model.

The evolutionary algorithm provides an efficient search mechanism for
matching different parts of the human body and provides also global op-
timisation. This advantage of the evolutionary algorithm helps the model
achieving efficient solutions in human body parts detection for movements
with a high degree of freedom. To illustrate this claim further, an exper-
iment comparing the evolutionary strategy to popular stochastic methods
(in the form of a generic particle filter) is performed. In this experiment, 1
in every 10 frames of the baseball sequence are selected and the matching
process is repeated using both the proposed GA based search technique and
the generic particle filter (GPF). The GPF technique is initialised using the
pictorial structure model of [16, 15]. The results presented in the Figure 27
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Figure 26: Difference error between the cost functions (13) and (15)
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Figure 27: GA search compared to a Generic Particle Filter on the Pet Walk sequence

compares the error between the predicted locations of the body parts and
their corresponding manually labelled ground truth data.

It is evident that the proposed GA search mechanism is capable of lo-
calizing the body parts of the target better than other stochastic methods.
In addition, it has also been found that the error difference of matching the
torso and the head regions of the target of both algorithms (GA and GPF)
are nearly the same. This behaviour is fairly easy to explain as the motion
of the head and torso regions are fairly predictable and less randomised than
the regions of the arms and legs. The main reason for the superior perfor-
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mance of the GA search scheme is from the evolutionary nature of the GA
search that allows the algorithm to unconditionally cope with randomized
movements of the body parts at higher degrees of freedom. However, most
stochastic models relies heavily on constant velocity movement to the differ-
ent body parts. Although the GA search scheme has been found to be more
accurate than other methods, it computational complexity of on an average
20% higher than the GPF methods.

Overall, the model has also been proven to be robust against the presence
of clutter and occlusion without the use of additional heuristics. However,
sometimes the pose estimation error is increased due to the nature of evo-
lution of the population and the deformation model. Current research is
focussed on refining the results with a different matching criterion and dif-
ferent evolutionary models.

4. Conclusions

In this paper, a technique for automatic people detection based on a clus-
ter background subtraction using a GMM and an evolutionary algorithm
with pictorial structure matching is proposed. First, each video frame is
clustered in regions according to certain features such as colour. Next, the
parameters of the GMM are calculated for each cluster centre. Operating at
cluster level, the CBS technique is less dependent on variations of separate
pixel intensities and noises compared with pixel level BS. As a result the
CBS technique has shown to be more robust to intensity variations and is
superior than pixel BS methods in terms of better accuracy, robustness to
clutter and reduced computational complexity.

Additionally, a foreground modeling scheme for learning the appearance of
human body parts is developed and linked with the CBS. This technique
combines a rectangular pictorial structure representation with evolutionary
learning for matching the different body parts over the CBS frames. Effi-
cient and quick body part matching can be accomplished with the proposed
mechanism. Robust automatic human detection is demonstrated and results
over real video sequences from static and moving video cameras.
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