Lancaster EPrints

Spatial patterns reveal negative density dependence and habitat associations in tropical trees

Bagchi, Robert and Henrys, Peter A. and Brown, Patrick E. and Burslem, David F. R. P. and Diggle, Peter J. and Gunatilleke, C. V. Savitri and Gunatilleke, I. A. U. Nimal and Kassim, Abdul Rahman and Law, Richard and Noor, Supardi and Valencia, Renato L. (2011) Spatial patterns reveal negative density dependence and habitat associations in tropical trees. Ecology, 92 (9). pp. 1723-1729. ISSN 0012-9658

Full text not available from this repository.

Abstract

Understanding how plant species coexist in tropical rainforests is one of the biggest challenges in community ecology. One prominent hypothesis suggests that rare species are at an advantage because trees have lower survival in areas of high conspecific density due to increased attack by natural enemies, a process known as negative density dependence (NDD). A consensus is emerging that NDD is important for plant-species coexistence in tropical forests. Most evidence comes from short-term studies, but testing the prediction that NDD decreases the spatial aggregation of tree populations provides a long-term perspective. While spatial distributions have provided only weak evidence for NDD so far, the opposing effects of environmental heterogeneity might have confounded previous analyses. Here we use a novel statistical technique to control for environmental heterogeneity while testing whether spatial aggregation decreases with tree size in four tropical forests. We provide evidence for NDD in 22% of the 139 tree species analyzed and show that environmental heterogeneity can obscure the spatial signal of NDD. Environmental heterogeneity contributed to aggregation in 84% of species. We conclude that both biotic interactions and environmental heterogeneity play crucial roles in shaping tree dynamics in tropical forests.

Item Type: Article
Journal or Publication Title: Ecology
Uncontrolled Keywords: environmental heterogeneity ; inhomogeneous K function ; Janzen-Connell hypothesis ; negative density dependence ; species coexistence ; tropical rain forest ; RAIN-FOREST ; SPECIES COEXISTENCE ; POINT-PROCESSES ; SOIL NUTRIENTS ; DIVERSITY ; RECRUITMENT ; DISTRIBUTIONS ; POPULATIONS ; MORTALITY ; INFERENCE
Subjects: UNSPECIFIED
Departments: Faculty of Science and Technology > Mathematics and Statistics
Faculty of Health and Medicine > Medicine
ID Code: 51903
Deposited By: ep_importer_pure
Deposited On: 08 Dec 2011 13:27
Refereed?: Yes
Published?: Published
Last Modified: 09 Apr 2014 22:55
Identification Number:
URI: http://eprints.lancs.ac.uk/id/eprint/51903

Actions (login required)

View Item