Lancaster EPrints

The aerodynamic behaviour of volcanic aggregates

Lane, Stephen and Gilbert, Jennifer and HILTON, M (1993) The aerodynamic behaviour of volcanic aggregates. Bulletin of Volcanology, 55 (7). pp. 481-488. ISSN 1432-0819

Full text not available from this repository.

Abstract

A large proportion of solid material transported within the atmosphere during volcanic eruptions consists of particles less than 500 mum in diameter. The majority of these particles become incorporated into a wide range of aggregate types, the aerodynamic behaviour of which has not been determined by either direct observation or in the laboratory. In the absence of such data, theoretical models of fallout from volcanic plumes make necessarily crude assumptions about aggregate densities and fall velocities. Larger volcanic ejecta often consists of pumice of lower than bulk density. Experimental data are presented for the fall velocities of porous aggregates and single particles, determined in systems analogous to that of ejecta falling from a volcanic plume. It is demonstrated that the fall of aggregates may be modelled in identical fashion to single particles by using a reduced aggregate density dependent on the porosity, and a size corresponding to an enclosing sphere. Particles incorporated into aggregates attain a substantially higher fall velocity than single particles. This is due to the larger physical dimensions of the aggregate, which overcomes the effect of lower aggregate density. Additionally, the internal porosity of the aggregate allows some flow of fluid through the aggregate and this results in a small increase in fall velocity. The increase in fall velocity of particles incorporated into aggregates, rather than falling individually, results in the enhanced removal of fine material from volcanic plumes.

Item Type: Article
Journal or Publication Title: Bulletin of Volcanology
Uncontrolled Keywords: aggregates ; fall velocity ; volcanic plumes ; porosity
Subjects: UNSPECIFIED
Departments: Faculty of Science and Technology > Lancaster Environment Centre
ID Code: 51719
Deposited By: ep_importer_pure
Deposited On: 01 Dec 2011 16:30
Refereed?: Yes
Published?: Published
Last Modified: 12 Dec 2012 09:34
Identification Number:
URI: http://eprints.lancs.ac.uk/id/eprint/51719

Actions (login required)

View Item