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[1] Many details about the flow of water in soils in a hillslope are unknowable given
current technologies. One way of learning about the bulk effects of water velocity
distributions on hillslopes is through the use of tracers. However, this paper will
demonstrate that the interpretation of tracer information needs to become more
sophisticated. The paper reviews, and complements with mathematical arguments and
specific examples, theory and practice of the distribution(s) of the times water particles
injected through rainfall spend traveling through a catchment up to a control section (i.e.,
“catchment” travel times). The relevance of the work is perceived to lie in the importance
of the characterization of travel time distributions as fundamental descriptors of catchment
water storage, flow pathway heterogeneity, sources of water in a catchment, and the
chemistry of water flows through the control section. The paper aims to correct some
common misconceptions used in analyses of travel time distributions. In particular,
it stresses the conceptual and practical differences between the travel time distribution
conditional on a given injection time (needed for rainfall‐runoff transformations) and that
conditional on a given sampling time at the outlet (as provided by isotopic dating
techniques or tracer measurements), jointly with the differences of both with the residence
time distributions of water particles in storage within the catchment at any time. These
differences are defined precisely here, either through the results of different models or
theoretically by using an extension of a classic theorem of dynamic controls. Specifically,
we address different model results to highlight the features of travel times seen from
different assumptions, in this case, exact solutions to a lumped model and numerical
solutions of the 3‐D flow and transport equations in variably saturated, physically
heterogeneous catchment domains. Our results stress the individual characters of the
relevant distributions and their general nonstationarity yielding their legitimate interchange
only in very particular conditions rarely achieved in the field. We also briefly discuss the
impact of oversimple assumptions commonly used in analyses of tracer data.
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1. Introduction

[2] It has long been the case that hydrologists have been
content with the analysis and prediction of hydrographs.
This is (still) a challenging problem given the limited infor-
mation content of hydrological measurements. However, the
hydrograph does not provide a full picture of the hydro-
logical response of catchments. A full hydrological theory of
catchment response needs to be able to treat the analysis and

prediction of travel time distributions and residence time
distributions in both unsaturated and saturated zones (and
surface runoff) in understanding variations in water quality
from point and diffuse sources [e.g.,McDonnell et al., 2010;
Beven, 2010]. This raises, however, an interesting issue.
Travel and residence times on hillslopes will be strongly
controlled by water flow processes in the soil and regolith.
The details of those processes, including the heterogeneities
of soil properties, preferential flow pathways and bypassing,
details of root extraction etc., are essentially unknowable
using current measurement techniques, including modern
geophysics. Such details, however, my be important in the
response of the hillslopes [see, e.g., Beven, 2006, 2010].
One way of learning about the bulk effects of such com-
plexity at the hillslope and catchment scales is the inter-
pretation of tracer observations to provide information about
Lagrangian velocity distributions. This information differs
from that given by the hydrograph response because of the
differences between the mechanisms controlling wave
celerities and water velocities. This paper will demonstrate
that the interpretation of tracer information needs to become
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more sophisticated and, in particular, to consider more
explicitly the variation in time of travel and residence time
distributions, precisely defined in what follows.
[3] There are dynamic models that deal with both flow

and transport that have been developed primarily within the
groundwater field. Such models can be purchased with
complete graphical interfaces and, as well as flow and
transport calculations, and be linked to chemical reaction
codes. The theory on which such models are based is,
however, restrictive. It (mostly) assumes that flow is
Darcian and dispersion is Fickian and requires spatial dis-
tributions of flow and transport parameters to be specified.
Experiments and theory suggest that those parameters are
both place and scale dependent [e.g., Dagan, 1989]. The
patterns of effective parameter values are not easy to either
specify a priori or infer by calibration. In addition, the
problem of groundwater transport has often been simplified,
for convenience in obtaining analytical solutions, to trans-
port and dispersion in steady flows in appropriately defined
stream tubes [e.g., Destouni and Cvetkovic, 1991; Cvetkovic
and Dagan, 1994; Destouni and Graham, 1995; Gupta and
Cvetkovic, 2000, 2002; Lindgren et al., 2004, 2007; Botter
et al., 2005; Darracq et al., 2010]. While applicable to
regional groundwater systems, this approach is not well
suited to the type of catchment hillslopes with relatively
shallow flow pathways that is of interest here where the flow
system may include transient saturation, macropores and
other types of small‐scale preferential flows [Beven and
Germann, 1982; Hooper et al., 1990; Peters and Ratcliffe,
1998; Burns et al., 1998, 2001; Freer et al., 2002; Seibert
et al., 2003].
[4] An alternative strategy, that does not require speci-

fying spatial distributions of parameters has been to work
directly at the catchment scale, taking advantage of tracer
information to try and identify travel time distributions
directly from observed concentration series of inputs and
outputs. Such tracer information has had a revolutionary
effect on the understanding of hydrological processes,
especially since the papers of Crouzet et al. [1970] and
Dinçer et al. [1970]. Later, Sklash and Farvolden [1979]
showed how the interpretation of tracer concentrations
implied a large contribution of preevent or “old” water to the
hydrograph and, in some storms, even to surface runoff.
Both artificial tracers (generally at small scales) and envi-
ronmental tracers have been used. The problem then has
been to identify a suitable set of assumptions about travel
time distributions that were consistent with the observational
data [e.g., Dinçer and Davis, 1984; Lindstrom and Rodhe,
1986; Rodhe et al., 1996; McGuire and McDonnell, 2006;
McGuire et al., 2007; Botter et al., 2008, 2009; Soulsby et al.,
2009, 2010; Tetzlaff et al., 2008, 2009; van der Velde et al.,
2010].
[5] A primary assumption, commonly made, concerns the

time invariance of the travel time distribution implying that
the fraction of water particles entering the catchment at time
ti as rainfall and exiting through the control surface (CS) as
discharge at time t strictly depends on the delay t = t − ti.
The ensuing simple identification of the travel time distri-
bution as a linear transfer function between inputs and
outputs has problems. In particular, the assumption of time‐
invariant transfer functions will not be valid when catchment
storage is changing (see, e.g., the rigorous demonstration by
Niemi [1977]) and/or when advection fields are in unsteady

conditions and thus expected fluxes and travel times will
change significantly and nonlinearly with wetting and dry-
ing. This limitation has been recognized by a number of
authors in the past [e.g., Zuber, 1986; Lindstrom and Rodhe,
1986], but the method is still being applied widely without a
proper recognition of the effects that it can have on the
inferred travel time distributions [e.g., Kirchner et al.,
2010]. Moreover, when transport of reactive tracers is
studied to infer travel time distributions, mass exchanges
between fixed and mobile phases [e.g., Rinaldo and Marani,
1987; Rinaldo et al., 1989] or the effects of tracer “half‐life”
[see, e.g., Stewart et al., 2010; McDonnell et al., 2010] are
unavoidable sources of time‐variant behavior. Thus analysis
of travel time distributions at the catchment scale has many
attractions, but there has been little work reported in the
literature that has attempted to assess the practical effects of
the time invariance assumption (but see Botter et al. [2010]
and van der Velde et al. [2010]).
[6] In this paper we will review and complement the

recent progress that has been made toward a unifying theory
of flow and transport in shallow pathways at the catchment
scale. This involves: issues of the time variance of flow and
transport in inferring travel time and residence time dis-
tributions; the differences between celerities and velocities
in controlling the hydrograph and tracer responses; and the
contributions of old water to the hydrograph. We will show
how certain traditional assumptions are not tenable except
under special restrictive conditions. We will also briefly
consider what observational data are required to be able to
differentiate between models of flow and tracer response at
the catchment scale. Specifically, section 2 provides precise
definitions of travel and residence time distributions, and
conditions for their equivalence, with a view to the transport
features implied. It also derives rigorous linkages among the
various quantities, including the relation between residence
and travel time distributions and basic hydrological quanti-
ties that can be computed or measured. Section 3 highlights
key differences, emerging from the dependence of the out-
put fluxes from the sequence of states experienced by the
system, obtained from the exact solution to a minimalist
model. Section 4 examines the outcomes of very detailed
numerical modeling that limit the number of assumptions to
a minimum and integrate flow and transport in heteroge-
neous catchments from first principles. From comparing
these results with exact solutions to oversimplified schemes,
we illustrate the validity and limitations of the results pro-
posed. Section 5 discusses the identification of variant
catchment travel time distributions. A set of conclusions
then closes the paper.

2. Catchment Residence and Travel Time
Distributions

[7] Water flow in soils (and within other natural forma-
tions) is seen as a transport process where water particles
injected through rainfall are stored and move within the
catchment control volume toward different exit surfaces, in
particular (Figure 1), (1) a compliance (or control) surface
(CS), acting as an absorbing barrier where runoff Q is
released to a receiving water body (or collecting channel),
and (2) the surface area A of the catchment, where evapo-
transpiration, ET, usually abstracts significant amounts of
water that is not then available for runoff production. We
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neglect for simplicity losses to deeper horizons, pumping or
water pathways that bypass the catchment closure CS, but
note that they could be treated in the same framework.
[8] Water particles are advected by a hydrologic flow

field V(x, t) of water flow through the soil (with x a coor-
dinate vector of Cartesian components x1, x2, x3; t is time),
generally assumed to be unsteady at catchment scales.
Indeed, hillslope saturated zone dynamics, especially those
involved in age partitioning (but also groundwater ridging,
saturation overland flow and various throughflow pro-
cesses), prove markedly unsteady [e.g., Beven, 2001; Fiori
and Russo, 2008]. A Lagrangian representation of flow is
based on the trajectories x = X(t, a)(a 2 A being the
injection point with X = a for t = 0) of marked fluid parti-
cles. They satisfy the kinematic equations: dX/dt = V(X, t ).
The functions tEX(xE, a) defining the exit time of a tagged
fluid particle (i.e., injected at x = a at t = 0) to any exit
boundary of the control volume (that is, at an exit point of
coordinate xE belonging to any exit surface) are solutions of
the equation xE − X(tEX, a) = 0 [Cvetkovic and Dagan,
1994]. Note that if an arbitrary injection time t = ti were
chosen the proper notation for exit times would become
tEX(xE, a, ti).
[9] Non–point source areas are defined by a collection of

spatially distributed tagging sites a and by a sequence of
input fluxes J(a, ti). The latter is usually simply assumed to
be a function of time alone, J(ti). This assumption is realistic
if the correlation scale of precipitation fluctuations in space
is larger than the catchment size (e.g., the square root of the
area). Note that spatially constant rainfall J does not imply
spatially constant evapotranspiration ET for its variability
may stem from uneven vegetation cover and water table
depths. Because typically in hydrologic contexts X is a
random field [e.g., Dagan, 1989], exit times are viewed as
random variables characterized by probability distributions.
[10] Here, we differentiate exit times with respect to the

type of exit surface. In particular, we define the travel time
tT = tEX(xCS, a, ti) as the travel time to any point xCS of the
control surface CS where runoff Q leaves the catchment
control volume (i.e., tT is defined as time elapsed between
the injection of the particle and its passage through the
control section as Q). Analogously, tET is the time elapsed

between injection and release in the atmosphere as ET(t).
The exit time tEX of each particle thus equals either tT or tET.
[11] In what follows we employ the following definitions

and notation:
[12] 1. We define pT(tT, ti) to be the probability density

function of the travel times tT conditional on a given
injection time ti, i.e., the normalized count of the travel times
to CS of the relative fraction of particles injected at ti any-
where at the injection surface A.
[13] 2. We define as p′T (tT, t) the travel time distribution

conditional on the exit time t [Niemi, 1977]. This function is
defined by tracking each travel time for all particles that exit
at a given time t, properly normalized, and is related to the
so‐called inverse travel time distribution [van der Velde
et al., 2010]. Note that generally pT and p′T are different
unless for very special circumstances which we shall con-
sider below.
[14] 3. We further define as pRT(tR, t) the probability

distribution of residence times tR of the water particles
stored within the control volume V at time t (the time spent
in the transport volume by each particle injected at ti when
gauged within V at t is tR = t − ti). Thus the relative fraction
of particles injected at ti that have not exited V has residence
time tR = t − ti, and one computes all such fractions for any
relevant injection time from −∞ to t (obviously particles
injected at t = ti hold null residence time, or tRT = 0).
[15] Normalized rainfall fluxes define the probability dis-

tribution of injection times ti. Likewise, exit times through
evapotranspiration tET (and their pdf pET) are defined by
analogy with the cases described above.
[16] A large body of literature suggests that travel

and residence time distributions integrate complexities and
uncertainties associated with hillslope and catchment
transport, and are naturally suited to comparison with
observational data that record outgoing fluxes from/to the
various compartmental control surfaces and should thus be
seen as robust descriptors of complex hydrologic transport
phenomena [e.g., Dagan, 1989; Destouni and Cvetkovic,
1991; Rodriguez‐Iturbe and Rinaldo, 1997; McDonnell,
1990; Beven, 2001; McGuire and McDonnell, 2006;
Tetzlaff et al., 2008; Beven, 2010; Soulsby et al., 2010]. The
key point here, however, is that in the general case the
probability functions pT and p′T do not coincide. Signifi-
cantly, Niemi’s [1977] theorem (suitably extended) allows to
recover one given the other. In fact, if �(ti) is the fraction of
the rainfall flux J(ti) that ends up as runoff Q (Appendix A),
by continuity the following general relation holds:

p′T t � ti; tð ÞQ tð Þ ¼ J tið Þ� tið ÞpT t � ti; tið Þ ð1Þ

whose physical meaning consists of equating the fraction of
particles that enters V at ti and exits at t as Q (left‐hand side)
to the relative fraction of rainfall entered at ti that exits as Q
at time t (right‐hand side). One may show that only in quite
restrictive cases will these be the same. These imply
(1) steady state advective velocity fields determining travel
times t, i.e., V(x, t) ∼ V(x), and (2) the linearity in the
partition between rainfall and runoff/evapotranspiration.
Only then will the two distributions collapse into a single
curve becoming invariant pT (t − ti, ti) ≈ pT (t − ti) = p′T (t − ti).
It then follows from Taylor’s [1921] theorem, if no water
particle is lost (ET = 0, � = 1), that the stored volume at t is
proportional to the probability of travel time being larger

Figure 1. Sketch of the catchment control volume V.
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than t and that the normalized flux Q at the outlet (CS) in
response to a pulse (the IUH) is the probability density
function of travel times to the CS [see, e.g., Rinaldo and
Rodriguez‐Iturbe, 1996; Rinaldo et al., 2006a, 2006b].
This has been the basis for the classic engineering hydrology
concept employing the isochrones of travel times for
effective rainfall to define the catchment response [e.g.,
Beven, 2001; Brutsaert, 2005], and also for the geomorpho-
logical theory of the hydrologic response that sees the overall
catchment travel time distributions as nested convolutions
of statistically independent travel time distributions along
sequentially connected, and objectively identified, geomor-
phic states whether channeled or unchanneled [Rodriguez‐
Iturbe and Valdes, 1979]. This allows one to find exactly
the moments of catchment travel time distributions under
arbitrary geomorphic complexity [Rinaldo et al., 1991], but
only under this special case of invariant conditions. Note
also that in the nonstationary case the IUH for the hydro-
graph response will not be equal to p′T (t − ti, t) because of
the difference between celerities that control the hydrograph
response and velocities that control the transport process. In
general, celerities will be faster than pore water velocities
in soils [e.g., Beven, 2001, p. 141] and streamflow velocities
in open channels [Rinaldo et al., 1991].
[17] Figures 2 and 3 illustrate the physical meaning of

pT(tT, ti), the pdf of the travel times conditional on a given

injection time ti, and its counterpart, p′T (tT, t), with the pdf of
travel times conditional on the exit (or sampling) times t,
respectively. The former distribution of pT(tT, ti) (Figure 2)
is described by tracking the travel times to the control sur-
face of the relative fraction of particles injected at ti any-
where at the injection surface. The latter (p′T (tT, t)) is
determined by tracking the travel times for all particles that
exit the catchment at a given time t. This paper aims, in
particular, to provide quantitative evidence of the significant
differences that should be expected between pT and p′T
except in very special cases. This differences are important,
both theoretically and practically, as the former is needed for
rainfall‐runoff transformations whereas the latter is what is
actually measured by sampling concentrations at the catch-
ment outlet. Note that in the particular case of a well‐mixed
reservoir, the distributions p′T (tT, t) and pRT(tR, t) coincide
(Appendix A), as the particles exiting the control volume at
time t are randomly sampled among all particles within V.
We assume this case for our examples.
[18] In most cases relevant to field conditions, travel time,

exit time and residence time distributions will depend on the
temporal patterns of storage and partitioning between dis-
charge and evapotranspiration losses which in turn control
the remobilization of old water induced by each rainfall
event [e.g., Botter et al., 2010]. This suggests that the
analyses of environmental tracer data determining catch-

Figure 2. An illustration of the physical meaning of pT(t − ti, ti). (top) An arbitrary sequence of rainfall
fluxes J(ti) is shown. (bottom) The discharge time series Q(t) may be expressed as a convolution between
the rainfall input and a set of time‐variant exit time pdfs, pT(t − ti, ti), once remobilization of old water is
allowed. The temporal evolution of the contributions to Q due to water belonging to each of the four input
pulses reported in the top plot are represented by the shaded areas (which are coded by the same color of
the corresponding input). Note that the white area in the bottom plot represents water volumes whose exit
time is larger than t − t1.

RINALDO ET AL.: CATCHMENT TRAVEL TIMES W07537W07537

4 of 13



ment travel time distributions by assuming stationarity of
the transfer function between input and output time series
need be reexamined [e.g., Kirchner et al., 2010]. With the
above positions, we can generally characterize catchment
transport phenomena. For simplicity, we shall examine here
the case of the transport of passive scalars advected by the
velocity field and undergoing no reactions between fixed
and mobile phases (for treatment of more complex cases
involving chemical, physical or biological reactions the
reader is referred, e.g., to Ozyurt and Bayari [2005], Botter
et al. [2010], and van der Velde et al. [2010]). Passive
scalars are injected onto the catchment through rainfall with
concentration Cin(t), and are measured as flux concentra-
tions at the control surface (as Cout(t)). In the above
framework the input‐output concentration relation is

Cout tð Þ ¼
Z t

�∞
Cin �ð Þp′T t � �; tð Þd� ð2Þ

where p′T is the proper transfer function. Note that invariant
versions of equation (2) have been questionably used to
interpret tracer field data [e.g., Kirchner et al., 2010]. If a
pulse of mass M in t = 0 (lasting a conventionally short time
Dt) endowed with concentration C0 is uniformly applied
through a spatially uniform rainfall J(0), one has the inter-
esting result:

Cout tð Þ ¼ C0 Dt p′T t; tð Þ ¼ M

J 0ð Þ p′T t; tð Þ ð3Þ

leading to the observation that the exit concentration sam-
ples the subset of values p′T(t, t) at increasing times. This
subset had been termed the weight function [Maloszewski
and Zuber, 1982].

[19] From equations (1) and (3) one obtains that the
outflowing solute mass flux QM(t) [M/T] is given by

QM tð Þ ¼ Cout tð ÞQ tð Þ ¼ M� 0ð ÞpT t; 0ð Þ ð4Þ

with usual symbols’ notation. Note that for an arbitrary
injection of M at time t = ti one would have had QM(t) =
M �(ti) pT(t − ti, ti).
[20] Finally, one must define the resident concentration,

say CR(t), as the average of the individual concentrations of
the water particles in storage within the catchment at time t
as a function of the residence times (or age) distribution
[see, e.g., Maloszewski and Zuber, 1982]. For passive
solutes, the mean resident concentration CR(t) of the stored
particles at time t is given by

CR tð Þ ¼
Z t

�∞
Cin tið ÞpRT t � ti; tð Þdti ð5Þ

which derives from the accounting of the relative fractions
of particles entered at t = ti that at time t have age t − ti in the
control volume [see, e.g., Rinaldo et al., 1989; McDonnell,
1990; McDonnell et al., 1991; Maloszewski et al., 1992;
Evans and Davies, 1998; Weiler et al., 2003; McDonnell
et al., 2010]. Recently, the watershed equivalent of the
Lagrangian description used by Cvetkovic and Dagan [1994]
(inspected for large‐scale properties by Botter et al. [2005])
has been discussed by Duffy [2010] (see also Duffy and
Cusumano [1998]), leading to dynamic modeling of con-
centration‐age‐discharge through deterministic conservation
equations.
[21] For reactive solutes, resident concentrations are harder

to pin down. Individual concentrations of water particles
may be defined as CR(t, ti) and controlled by transport

Figure 3. An illustration of the physical meaning of p′T (t − ti, t). The graph shows how the discharge
time series Q(t) sampled at t is made up of water particles injected at different times ti whose various
travel times are tT = t − ti. As stressed in the text, this distribution is the one measured by any age‐dating
techniques and may differ notably from the travel time distribution pT conditional on injection time. The
fractions of the total flux J(ti) (color coded in grey) exiting the catchment as Q at time t are color coded as
the corresponding output.
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phenomena driven by the contact time t = t − ti (as an
example, a reaction kinetics of the type ∂CR(t, ti)/∂t =
F [CR(t, ti) − B(t)] where B is a relevant concentration in
‘fixed’ (as opposed to mobile) phases, F [·] being a suitable
mass exchange scheme [e.g., Rinaldo et al., 1989]). To
avoid issues of spatial variability, one may assume the system
to obey the mass response function postulate [Rinaldo and
Marani, 1987; Rinaldo et al., 1989; Botter et al., 2005];
that is, whenever the characteristic size of the injection area
is large with respect to the correlation scale of heteroge-
neous properties of the catchment control volume (say, land
use and cover, heterogeneity of the soils), resident con-
centrations are solely driven by the contact time between
fixed and mobile phases, which is the residence time of the
water particle within the transport volume V. Spatial effects
may thus be conceptualized in the non–point source
framework. This is the case for the assumption of a reservoir
for mass exchanges uniformly distributed over the catch-
ment allowing CR not to depend on x because averaging
over a large number of stream tubes yields a significant
mean field property of the transport volume [Botter et al.,
2005]. In such a case one may write the analog of

equation (6) as [Rinaldo and Marani, 1987; Botter et al.,
2005, 2010]:

CR tð Þ ¼
Z t

�∞
CR t; tið ÞpRT t � ti; tð Þdti ð6Þ

which is a mass response function approach for reactive
solute transport at catchment scales.
[22] The above equations define a general framework for

the nonlinear, time‐variant description of travel time dis-
tributions for water flow through soils at the catchment
scale. The predictions of the theory are dependent on mixing
assumptions (Appendix A), which must reflect the dis-
tributions of flow velocities, the distributed nature of the
inputs, and the difference between advective velocities of
water particles and the celerities that control the hydrograph
response over the length scales of the hillslopes in the
catchments. The mixing assumptions approximate the
details of the distributed responses but, as will be shown
below, can do so effectively in particular when compared to
the results of a detailed simulation that tackle the relevant
physical processes operating at the catchment scale.

3. Catchment Travel Times From an Exact
Minimalist Model

[23] To illustrate the differences between the travel time
distributions pT(tT, ti) and pT(tT, t), this section describes a
series of examples showing a summary of the behavior of
the relevant quantities obtained using an exact solution of a
lumped model of dynamic catchment behavior [Botter et al.,
2010], described in Appendix A (see also auxiliary material
for a complete description of the computational details,
including the synthetic generation of diverse rainfall inputs J,
the calculation of evapotranspiration fluxes ET and the
parameters’ values adopted).1 Note that in the specific case
considered here, the particles exiting the control volume
at time t are assumed to be randomly sampled among all
particles within V, leading to the equivalence between the
distributions pT and pRT (Appendix A).
[24] Figures 4 and 5 show the travel time distributions

conditional on three different injection times chosen at
random within Poissonian sequences of forcing rainfall
(Figures 4 (top) and 5 (top)), and the travel time distributions
conditional on three different exit times (Figures 4 (bottom)
and 5 (bottom)) for a dry and a wet climate, respectively.
Figures 4 and 5 show both the probability density functions
of travel times (insets) and their integral (i.e., the cumu-
lated probabilities), to better appreciate the overall differ-
ences smoothed by integration. It clearly appears that, in
general, the distributions pT and pT do not coincide whatever
the injection/exit time chosen. The radical departures
between the two types of travel time distributions is
evidenced in both cases (Figures 4 and 5). Moreover, one
readily notes the substantial differences arising in the travel
times conditional on different injection times ti for the dry
catchment (Figure 4, top), which suggest the marked time
variance of the system. Such differences are attenuated, but
far from negligible, in the wet case (Figure 5, top).

Figure 4. A comparison of (top) pT(tT, ti) for different
injection times ti and (bottom) p′T(tT, t) for different sampling
times t for a dry climate. Cumulated density functions and
probability distributions (insets) are shown. Here total pre-
cipitation is fixed at 180 mm/yr with 10% of rainy days
(average interarrival rate l = 0.1 d−1, average rainfall pulse
a = 5 mm) (see auxiliary material for computational details).

1Auxiliary materials are available in the HTML. doi:10.1029/
2011WR010478.
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[25] An important synthesis of the above results is shown
in Figure 6, where the distributions of the average travel
times (computed from pT over all injection times ti) and the
average residence times (computed from p′T over all sam-
pling times t, being in this case (Appendix A) pRT ≡ p′T) are
shown for the dry and wet cases, respectively. Interestingly,
one notes that the wetter the catchment, the closer the mean
residence and travel time distributions become. This was
somewhat expected, because time‐invariant conditions tend
to be approximated only for consistently wet conditions and
for the bulk of the distribution rather than in its tails,
whereas in dry cases such differences can never be over-
looked for they are substantial as highlighted by the vast
difference in their means. Suffice here to note that the
implications of the differences in travel and residence time
distributions are often overlooked in catchment hydrology
with various consequences. In particular, isotope hydrology
is based on measuring the mix of travel times of exiting
particles conditional on the sampling at time t (a proxy of
p′T) whereas it is often used to infer travel time distributions
conditional on injection times (which requires the definition
of pT). Note that only in particular cases, notably for wet
conditions, a reasonable degree of invariance is observed as
indicated by the collapse of different cumulated distribu-
tions. Thus we suggest that differences between pT and p′T
emerge in many cases of practical interest owing to their

differing dependence on the sequence of hydrologic forcings
and thus of the state variables that control catchment
behavior.
[26] Of course, it remains to be seen whether the above

remarks are tied to the specifics of the examples chosen.
One notices, however, that similar results have been
obtained by Botter et al. [2010] for a two‐layer model where
the first embeds soil moisture dynamics, and by van der
Velde et al. [2010] for a study using p′T to describe nitrate
and chloride circulation at catchment scales. In section 4 we
shall show by comparison with sophisticated numerical
solutions that such effects are not the byproduct of the
specific assumptions built into the particular model chosen
for proof of concept, much less a numerical artifact, but
rather reflect a general tendency of catchment transport.

4. Catchment Travel Times From Complete
Numerical Simulation of Flow and Transport
in a Spatially Heterogeneous Hillslope

[27] To stress the general nature of our results, we have
computed the same kinematic quantities through a com-
pletely different approach, specifically one that operates
under a minimum of assumptions on the behavior of the
system. In the next example, in fact, we simulate the
transport of a tracer in a variably saturated, spatially het-
erogeneous hillslope connected to a surface water stream.
The tracer is used in order to mark the water in the system,

Figure 5. As in Figure 4 but for a wet climate (total pre-
cipitation is 2000 mm/yr with 30% of rainy days, average
rainfall interarrival rate l = 0.3 d−1, and average rainfall
pulse a = 20 mm).

Figure 6. Distribution of the mean travel times htTi gener-
ated from all injection times ti (htTi = htTiti =

R∞
0 pT(tT, ti)tTdtT)

in the wet and dry cases dealt with in Figures 6 and 7
compared with the distribution of the mean residence
times htRi generated for a large batch of sampling times t for
the cases in Figures 6 and 7 (htRi = htRit =

R∞
0 p′T (tT, t)tTdtT).

Note that here the residence time is generated via the distri-
bution p′T owing to the well‐mixed assumption (Appendix A)
that allows for pRT ≡ p′T. Note also the vast differences in the
mean values emerging in dry cases, which are progressively
reduced as wet conditions are attained (in this case tuned by
a proper choice of rainfall interarrival rates). Single reali-
zations (i.e., single travel time distributions conditional on
different initial times) may nonetheless be very different
even in very wet cases, depending on initial conditions and
on the actual sequence of rainfall events triggering runoff
and speeding up the discharge formation process.
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including uptake by plant roots. This case study is analo-
gous to the one considered by Fiori and Russo [2007, 2008].
The formation consists of a relatively shallow layer of a
high‐conductive soil overlying a relatively thick layer of
low‐conductive subsoil (bedrock). Details of the flow
domain, the relevant equations, the computational scheme,
and the boundary conditions embedding climatic conditions
are reported elsewhere (see auxiliary material; suffice here
to recall that the flow parameters are heterogeneous and
spatially distributed, the statistics of their relevant soil
parameters being given by Fiori and Russo [2008, Tables 1
and 2]. Complete details on the numerical schemes involved
in the solutions of the governing equations are given by
Russo et al. [2001, 2006], Russo and Fiori [2008], Fiori and
Russo [2007, 2008], and Russo [2011]).
[28] Critical to the scheme, and to a comparison with

other schemes, is the evaluation of exit fluxes. Considering
water uptake by plant roots, water flow and solute transport
in the three‐dimensional, heterogeneous flow system were

simulated by employing numerical solutions of the “mixed”
formofRichards equation and the classical, single‐component,
convection dispersion equation (CDE), respectively. Water
flow and tracer transport were simulated for a sequence of two
identical successive years, starting on 1 April (APR; pulse
release during “dry” season) or 1 September (SEP; pulse
release during “wet” season). A flow domain initially tracer
free was considered (see auxiliary material).
[29] The numerical scheme (and any tracer experiment)

does not allow to compute p′T (tT, t) for different sequences
of injections at times ti unless individual particle tracking
schemes are enforced onto the transport model. Thus, in the
following p′T (tT, t) is represented as a function of exit time
t (p′T (t, t) of equation (3)), which corresponds to the weight
function [Maloszewski and Zuber, 1982] that one would
obtain from application of the convolution model to flux
averaged concentration data as consequence of an instanta-
neous release of tracer at the surface. The travel time dis-
tribution pT(tT, ti) = pT(t, 0) (where ti = 0 and tT = t are the
time of injection and the travel time, respectively) is given
(equation (4)) by pT(t, 0) = F(t)/(M�(0)); in the latter F is
the solute flux [M/T] at the control section and M�(0) is the
total mass flowing to the river, the difference between the
tracer injected and that uptaken by the roots. The function
p′T (tT, t) = p′T (t, t) (equation (3)) is obtained by p′T (t, t) =
QiF(t)/(M�(0)Q(t)), with Qi and Q the mean net rainfall
during injection (i.e., rainfall minus ET) and discharge
through the control section (here the river), respectively.
[30] The distribution pT(t, 0) and the function p′T (t, t) as a

function of tT are represented in Figure 7 for the APR case,
as an example. The curves display a significant periodicity
driven by the seasonal variability of precipitation and
evapotranspiration. The role of ET on transport is subtle, as
it removes solutes in both the initial (i.e., the injection) and
the final (the discharge) stage of the transport process. In
fact, when the plume approaches the river, the water table in
the riparian area is near the surface and roots are very
effective in draining water and the tracer; this feature thus
derives from the combined effect of ET and of the system
geometry. It is worth mentioning that a significant portion of
the injected mass is still present in the system after 2 years,
around 40% for both cases APR and SEP. Thus, the dis-
tributions depicted in Figure 7 miss the late‐time tail, which
would require additional years of simulation to be ade-
quately captured. The mass fraction which left the system by
transpiration strongly depends on the injection period, and
after 2 years it was around 45% (APR) and 25% (SEP).
Hence, a correct evaluation of the actual ET fluxes appears
as a fundamental prerequisite for assessing travel times in
different periods of the year.
[31] Figure 7 clearly shows that the distribution pT(t, 0)

and the function p′T (t, t) are quite different even though in
the steady state they must coincide. Their time integrals
differ as the integral of pT(t, 0) is unit, while that of p′T (t, t)
depends on the entire discharge history and is not unit unless
ins steady sate conditions. It is seen that pT(t, 0) is typically
more noisy than p′T (t, t), which is somewhat smoothed out as
it represents the more regular flux averaged concentration
[e.g., Kreft and Zuber, 1978]. The APR case (Figure 7)
exhibits a relatively small peak at the injection time fol-
lowed by larger peaks after periods of 1 year lag. This
happens because the injection occurs in a relatively dry
period, and the tracer initially does not move much from its

Figure 7. The probability distribution pT(t, 0) and the
function p′T (t, t) for the APR case computed by the complete
numerical integration of the flow and transport equations in
the heterogeneous saturated or unsaturated 3‐D hillslope
modeled by Fiori and Russo [2008]. Here water flow and
tracer transport are simulated for a year starting on 1 April
(APR; pulse release during “dry” season). Note that the
curves display significant periodicity driven by the seasonal
variability of precipitation and evapotranspiration. The inset
shows steady state travel time distributions (where, by defi-
nition, verified computationally to precision, pT(t, 0) = p′T (t, t))
in two relevant cases: (1) steady state flow with prescribed
mean annual net recharge (ESS) and (2) steady flow with
prescribed mean annual precipitation and a root zone with
given, constant mean annual uptake (SS + UP). The steady
state travel time distributions are significantly different from
their time‐variant counterparts, do not show any periodicity,
and show a more persistent tail. Differences between the two
curves stem from the different spatial distribution of solute
uptake by roots, which is spatially uniform for ESS and
nonuniform for SS + UP.
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initial location; also, a significant fraction of the mass leaves
the system by transpiration. The later peaks of the distri-
bution correspond to the beginning of the “wet” period in
which the increased precipitation (and reduced ET) con-
tribute to the flushing of the tracer out of the hillslope.
Interestingly enough, the largest mode of the distribution is
not the first one, as one would expect along the usual, time‐
invariant representation of the travel time pdf. The SEP case
(Figure 8) displays a different behavior, with a larger peak
near the injection time, which is reasonable as the injection
is performed at the beginning of the wet period. Although
both distributions display significant periodic features, the
overall shape and sequence of modes are quite different
from the APR case, indicating a strong dependence of the
distributions on the time of the injection.
[32] For comparison, we also show the travel time dis-

tributions for steady state flow, leading to the classic time‐
invariant formulation of travel time (Figure 7, inset). In

such a case one derives exactly, and finds numerically, that
pT(t, 0) = p′T (t, t). We analyzed two different steady state
configurations: (1) steady state flow with prescribed mean
annual net recharge (i.e., total precipitation minus total
actual ET), denoted as ESS, and (2) steady flow with pre-
scribed mean annual precipitation and a root zone with
given, constant mean annual uptake (SS + UP). The travel
time distributions for the two configurations are depicted in
Figure 7 and significantly different from their time‐variant
counterparts. Steady state results do not show any period-
icity, and the tail of pT(t, 0) = p′T (t, t) is always more per-
sistent than those depicted in Figures 7 and 8. The difference
between the two curves in the inset of Figure 7 derives from
the different spatial distribution of solute uptake by roots,
which is spatially uniform for case ESS [Russo and Fiori,
2008] and nonuniform for SS + UP [Russo, 2011]. In par-
ticular, the role played by solute uptake in the riparian area
is quite significant and responsible for the observed non-
monotonous behavior of pT with travel time. Altogether, the
case study emphasizes a significant difference between the
time‐invariant and time‐variant formulations of the travel
time distributions. In the time‐variant case the distributions
p and p′ are markedly different and strongly depend on the
time of injection and generally on the history of meteoro-
logical forcings (precipitation and ET) as well as the system
configuration. Thus an accurate representation of the ET
fluxes proves fundamental for a correct representation of
solute fluxes, which may strongly differ with the tracer/flow
initial conditions.
[33] A snapshot of the concentration fields in space at a

particular time is shown in the inset of Figure 8. It
emphasizes the marked effects on the transport features of
physical heterogeneities and the strong instantaneous spatial
gradients of concentration underlying a far from complete
mixing (where concentration would be spatially uniform)
exhibited by the passive tracer. Nonetheless, Figure 8 shows
the results of a comparative exercise with a minimalist
scheme (Appendix A) implying complete mixing. In the
exercise, the boundary fluxes P(t), ET(t) and Q(t) (deriving
by continuity the instantaneous storage S(t)) are computed
by the numerical code by Russo and Fiori [2009]. For com-
parative purposes, we have computed the equivalent travel
time distribution obtained exactly by Botter et al. [2010]
from the minimalist model described in Appendix A. The
comparative analysis of the travel time distributions shown
in Figure 8 shows differences, of course, and yet reveals a
surprising overall match of the results, critically including
the nonstationary characteristics induced by the periodicity
of rainfall forcings. The minimalist lumped catchment
model seems to capture the bulk of the transport processes
once fluxes are properly assigned. We suggest that this
might prove an important result. In fact, the lumped nature
of the exact approach to the conceptual scheme, and in
particular the unrealistic complete mixing assumption,
endows the system with an integral nature that smooths out
much detail. This robustness is indeed a peculiar and
attractive property of the formulation of transport by travel
time distributions. This also suggests that field measure-
ments of the relevant fluxes, as an alternative to computa-
tion, may provide direct information on the variant nature of
travel times. Thus the key ingredient missing from past
catchments models (the time‐variant travel time distribu-
tions) may find a direct, analytical and reliable inclusion.

Figure 8. Comparative analysis of the computations of
pT(t, 0)�(0) from the numerical 3‐D model (SEP case) and
the exact solution to the lumped model described in
Appendix A. The wet case (SEP) is represented here for
comparative purposes. Note that the complete formulation
of the exact solution is given in equations (A4) and (A5),
properly normalized. The inset shows a snapshot of an
instantaneous concentration field of the passive solute [Fiori
and Russo, 2008; Russo and Fiori, 2009], color coded in a
grey tone scale (white is the maximum concentration, and
black is null concentration). Note the lack of complete
mixing exhibited by the field and, nevertheless, the sur-
prisingly effective match of the exact solution postulating it.
Indeed, when continuity of the total mass within the control
volume V is considered (by integration in space of instan-
taneous concentrations over V), differences smooth out and
the exit fluxes sum well the entire process. Such result
highlights the robustness of the travel time formulation of
transport owing to its integrative nature and the potential for
determining variant travel time distributions upon direct
measurement of the relevant macroscopic fluxes (J, Q, and
ET) at the catchment scale.
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[34] While our results above should not be over-
emphasized owing to the particular nature of the example,
they are instructive and suggestive of possibly broad
implications. Certainly, the integral nature of the exact
solution obscures the process mechanisms that lead to dif-
ferences between celerities (controlled by storage deficits)
and velocities of particles in storage in the timing of
hydrograph and travel time responses. These differences
will be length‐scale dependent and, depending on changes
in storage and storage deficits, time variable. They underly
the expected hysteresis in the control volume response [see
Beven, 2006]. This additional complication is left for future
work.

5. Identification of Time‐Variant Travel Time
Distributions

[35] The analysis above has revealed that residence and
travel time distributions can vary significantly, particularly
under dry antecedent conditions. Thus inferences about
catchment travel times based on assumptions of linearity
and stationarity will be gross (and misleading in the case of
solute transport) approximations, even when simulated data
are used in the analysis. In real catchments, the approxi-
mation will be greater since most published analyses are
based on relatively poor information about the time and
space variability of environmental tracers due to sampling
limitations. Under the stationarity assumption they have also
generally ignored variations in discharges, relying only on
relating input to output concentrations even though there is
evidence that tracer concentrations can vary significantly
with discharges and in sequences of events [e.g., Iorgulescu
et al., 2005, 2007; Rinaldo et al., 2006a, 2006b], that there
may be mass imbalances between inputs and outputs [e.g.,
Page et al., 2007], and that tracers such as the environ-
mental isotopes of water might be affected by fractionation
and vegetation uptake [e.g., Brooks et al., 2010].
[36] To allow more realistic inferences about residence

times better data sets will be required in which the time
variability of input and output concentrations and flow rates
are better characterized, particularly during hydrographs
(even if it is accepted that the spatial variability might
remain much more difficult to characterize). For environ-
mental isotopes this is now becoming possible with the
availability of a new generation of laser mass spectrometers,
while some catchment experiments have committed to mea-
suring water chemistry to much finer time resolution (e.g.,
Kirchner and Neal [2010] at Plynlimon, although the 7 h
sampling time step used there is still relatively long com-
pared with the response time of the catchment).
[37] It is still likely, however, that for the foreseeable

future, analysis of residence and travel time distributions
will still be based on bulk input and output concentrations
and fluxes at the catchment scale. Direct measurements of
concentrations within catchment storage will be prohibitive
when the expectation is that there will be marked spatial
variability of sample concentrations for different types of
storage in different parts of the hillslope. This means
therefore that any representation of the evolution of resi-
dence times in a catchment area will be dependent on fitting
the multiple parameters associated with potential sets of
assumptions to the observed bulk concentrations and fluxes.
Iorgulescu et al. [2005, 2007] did this for a three component

end‐member mixing model that allowed for dynamic mixing
between the components. Even a simplified representation
of the three components (rainfall, soil water and ground-
water) resulted in 17 parameters. They sampled 2 billion
parameter sets and accepted 216 as behavioral within
specified limits of acceptability based on information
about sampling variability and measurement accuracy. This
allowed some testing of different hypotheses about the
nature of the responses. The results showed quite clearly that
the mixing of different sources and effective residence times
(i.e., ages) were changing during the wetting up sequence of
storms covered by the observations. This is an indication
that more sophisticated analyses, allowing for the noncon-
servative nature of selected tracers, will be required as the
observational data get better. This might also involve
rethinking hypotheses about the mixing of different water
sources in a catchment (see, e.g., the model of Davies et al.
[2011]). It remains to be seen, however, what types of
assumptions and method of fitting will be appropriate, since
there will continue to be significant epistemic errors about
the nature of the catchment characteristics and the details of
its hydrological response (see also the discussion of Beven
[2010]).

6. Conclusions

[38] In this paper we have discussed the issues that arise
in considering the different types of travel time distributions
within a catchment area. We have shown that the travel time
distribution for water particles in an increment of discharge,
will be different from the travel time distribution for a water
particles in the inputs for a particular time step. These will
also be different from the residence time distribution of
water in storage on the hillslope/catchment transport vol-
ume. All of these distributions can be incorporated into a
consistent formal theoretical framework, that implies that
these distributions must be nonstationary and nonlinear, and
formal relationships among them can be established. The
implications of this more complete theory are in conflict
with the normal assumptions made in the analysis of envi-
ronmental tracer data at the catchment scale in which both
linearity and stationarity are assumed. This means that the
inferences made in such analyses might be incorrect (as also
indicated by the dependence of inferred mean residence
times from different tracers [e.g., Stewart et al., 2010]).
[39] Moreover, we have shown that flow‐weighted rescal-

ing techniques [e.g., Niemi, 1977] used to obtain a surrogate
stationary travel time distributions rely on assumptions (e.g.,
constant storage) rarely achieved in any real hydrologic
setting, yielding misleading or wrong inferences, e.g., on the
tails on travel/residence time distributions [e.g., Kirchner
et al., 2010]. The radical departures of travel time dis-
tributions from the age (or residence time) distributions
appear clearly in all the cases presented, and is now justified
theoretically. It is thus evident that such distributions should
be expected to be different, in general, on kinematic grounds
irrespective of the details of the transport model employed.
This fact is often overlooked in hydrology, with various
consequences. In particular, isotope or tracer hydrology is
based on measuring the mix of ages of exiting particles
conditional on the sampling at time t (a proxy of travel time
distributions conditional on exit time) whereas it is often
used to infer input‐output transfer functions which require
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the definition of travel time distributions conditional on
injection times. This, we suggest, needs to be corrected: in
the past, the limitations of the available observations have
not justified the use of more sophisticated analyses than
types of steady state analyses commonly used, but the time
seems ripe, owing to our improved measuring capabilities
and to the general theoretical framework now available, for a
true paradigm shift in theory and practice.
[40] The interpretation of travel and residence time dis-

tributions would be greatly facilitated if it was possible to
know more details of the complexity of water flows on
hillslopes. Unfortunately, this still seems a long way off,
except at very local scales, and the most important source of
field evidence about the water flow velocities in the soil
system is likely to be natural and artificial tracers. But as we
have shown here, the interpretation of tracer information
requires that the time variability of the water flow in soils be
considered.
[41] Some aspects still need to be addressed. In particular,

we have noted that the travel time distributions controlling
hydrograph shape, related to the distribution of wave cele-
rities in the system will be different from the travel time
distributions for water particles controlled by the water
velocities. Both are also dependent on the length scales of
the flow pathways in the system. These differences will
affect the mixing assumptions required in the kinematic
theory at catchment scale presented here to provide good
simulations of the actual concentration responses in a
catchment given estimates of the exit fluxes. This will be
explored further in future work.

Appendix A: Derivation of an Exact Solution
for Nonstationary Travel Time Distributions

[42] We shall derive exact nonstationary solutions for a
particular lumper kinematic wave model. Reference is made
to the control volume V in Figure 1, bounded by the
catchment/hillslope surface through which water particles
enter as precipitation, a no‐fluxlateral surface defined by the
catchment divides, and the outlet collecting the hydrologic
response Q(t). Deep losses and recharge terms supplying
deep groundwater bypassing the catchment control section
are neglected. The processes affecting the time evolution of
water storage S(t) in the control volume V (Figure 1) are
macroscopic fluxes: precipitation J(t), evapotranspiration
ET(t) and discharge Q(t). Mass balance yields

dS tð Þ
dt

¼ J tð Þ � Q tð Þ � ET tð Þ ðA1Þ

[43] Transport features within V are described through
exit times of the individual water particles into which the
input can be ideally subdivided. Exit time of a given water
particle (tEX) is defined as the time elapsed between its
injection within V through rainfall, and its exit through any
boundary (as Q or as ET). tEX is a random variable char-
acterized by a pdf pEX(t − ti, ti), where t − ti is the time
elapsed since injection, and the conditionality on ti empha-
sizes the fact that exiting the catchment, say through ET,
depends on the state of the system. Accordingly, PEX(t, ti)
is the exceedance cumulative probability of exit time for
the water particles which have entered V at ti (that is,

PEX(t, ti) = 1 −
Z t

0
pEX(x, ti)dx). The instantaneous water

storage S(t) can be generally expressed as

S tð Þ ¼
Z t

�∞
J tið ÞPEX t � ti; tið Þdti ðA2Þ

[44] This is an exact result, derived from Taylor’s [1921]
theorem [e.g., Rinaldo and Rodriguez‐Iturbe, 1996] (see
auxiliary material). Differentiating equation (A2) with
respect to time, using the Leibniz rule, and comparing with
equation (A1), yields

Q tð Þ þ ET tð Þ ¼
Z t

�∞
J tið ÞpEX t � ti; tið Þ dti ðA3Þ

which expresses the equivalence of a deterministic boundary
value problem with a stochastic problem of arrivals at the
boundaries of a tagged particle, and thus output fluxes
(ET, Q) in terms of the input J and of the conditional exit
time pdf. Let �(ti) be the hydrologic partition function, that
is, �(ti) (1 �(ti)) is the fraction of water particles injected at ti
that exit V as Q(ET). The exit time distribution is thus given
by pEX(t − ti, ti) = �(ti)pT(t − ti, ti) + (1 − �(ti))pET(t − ti, ti)
with the usual notation. Note that if the evapotranspiration
term is null (i.e., � ≡ 1), the exit time pdf pEX coincides with
the travel time pdf pT. Otherwise, separating the contribu-
tions due to discharge and evapotranspiration we obtain the

exit fluxes Q and ET as Q(t) =

Z t

�∞
J(ti)�(ti)pT(t − ti, ti)dti

and ET(t) =

Z t

�∞
J(ti)(1 − �(ti))pET(t − ti, ti)dti, respectively.

[45] If the hillslope/catchment control volume may be
described as a simple dynamical system, a lumped kinematic
wave model can be setup by enforcing continuity and a
storage‐discharge equation [e.g., Brutsaert and Nieber, 1977;
Beven, 1981, 2001; Sloan and Moore, 1984; Brutsaert,
2005; Kirchner, 2009]; that is, a constitutive relation Q(S(t))
between outflowing discharge Q and total catchment storage
S(t) is established. Mass balance is enforced through
equation (A1) and momentum balance in this case is sum-
marized by the functional relationship between Q and S,
such as the commonly used Q(t) = KS(t)b where K, b are
parameters possibly obtained from suitable hydrograph
recessions [e.g., Brutsaert and Nieber, 1977]. A further
assumption is needed, concerning the mixing of water par-
ticles’ age sampled by the exit fluxes Q and ET. One may be
concerned with the existence of macropores and preferential
flow paths through which new (or old) water may be
arriving early at the control section if those pathways are
activated as often happens in structured soils [Beven and
Germann, 1982], or old water‐ first assumptions may also
be operating under conditions leading to piston flow acti-
vation. Moreover, in principle one may want to distinguish
the mechanisms of sampling between ET and Q, as for
instance, plants might detect newer water while mixing and
dispersion in groundwaters might dominate age sampling of
exiting fluxes [e.g., Brook et al., 2010]. To obtain an exact
solution, however, Botter et al. [2010] assumed that (1) sam-
pling strategies for Q and ET are the same and (2) complete
mixing occurs. Accordingly, water particles are randomly
sampled among all the available particles (thus sampling is
proportional to the volumes in storage of the different ages).
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The resulting analytical expression for the travel time dis-
tribution is

pT t � ti; tið Þ ¼ Q tð Þ
S tð Þ

e
�
R t

ti

Q xð ÞþET xð Þ
S xð Þ dx

� tið Þ ðA4Þ

where the hydrologic partition function � is given by

� tið Þ ¼
Z ∞

ti

Q �ð Þ
S �ð Þ e

R �

ti

Q xð ÞþET xð Þ
S xð Þ dx

d� ðA5Þ

[46] This is a particularly revealing expression. In fact, the
linear, time‐invariant reservoir scheme for travel times
widely employed in engineering hydrology [see, e.g., Beven,
2001; Brutsaert, 2005] is easily recovered for ET(t) = 0
(hence � ≡ 1) and employing the linear reservoir model
(b = 1). Indeed, setting Q(t) = KS(t) (here K [T−1] takes on
the meaning of the inverse of the mean residence time)
yields pT(t − ti, ti) ≡ pT(t − ti) = Ke−K(t − ti) from equation (A4).
In the general case only the direct measurement of all rel-
evant fluxes would thus allow a proper determination of the
travel time pdf.
[47] Note, finally, that the only primary assumption

underlying the derivation of a kinematic wave equation,
whether for surface or subsurface flow, is a univalued (and
possibly nonlinear) functional relationship between storage
and discharge, imposed on a continuity equation [see Beven,
2001, p.178]. Thus the scheme described in this appendix
qualifies as a kinematic wave model integrated over the
entire control volume. This assumption allows for the simple
analytical development presented but, as a lumped approach,
neglects any length scale effects arising from the different
mechanisms involved in wave celerity and particle velocities
in controlling the hydrograph and travel time responses.
Taking account of this scale effect is left for future work but
does not negate the conclusions drawn from this analysis.
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