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Abstract. Let ω1 be the �rst uncountable ordinal. A result of Rudin implies that
bounded operators on the Banach space C([0, ω1]) of continuous functions on the ordinal
interval [0, ω1] have a natural representation as [0, ω1]× [0, ω1]-matrices. Loy and Willis
observed that the set of operators whose �nal column is continuous when viewed as a
scalar-valued function on [0, ω1] de�nes a maximal ideal of codimension one in the Ba-
nach algebra B(C([0, ω1])) of bounded operators on C([0, ω1]). We give a coordinate-free
characterization of this ideal and deduce from it that B(C([0, ω1])) contains no other max-
imal ideals. We then obtain a list of equivalent conditions describing the strictly smaller
ideal of operators with separable range, and �nally we investigate the structure of the
lattice of all closed ideals of B(C([0, ω1])).
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1. Introduction

Loy and Willis [24] proved that every derivation from the Banach algebra B(C([0, ω1]))
of (bounded) operators on the Banach space of continuous functions on the ordinal inter-
val [0, ω1] equipped with its order topology into a Banach B(C([0, ω1]))-bimodule is auto-
matically continuous. At the heart of their proof is the observation that the set M con-
sisting of those operators whose �nal column is continuous at ω1 is a maximal ideal of
codimension one in B(C([0, ω1])). We call M the Loy�Willis ideal. Its precise de�nition
will be given in Section 2, once we have introduced the necessary terminology.
Motivated by the desire to understand the lattice of closed ideals of B(C([0, ω1])), we

shall prove the following result.

Theorem 1.1. The Loy�Willis ideal is the unique maximal ideal of B(C([0, ω1])).

This result is in fact an immediate consequence of a more general theorem, which is of
independent interest because it gives a coordinate-free characterization of the Loy�Willis
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ideal. (By `coordinate-free', we mean without reference to the matrix representation of
operators.)

Theorem 1.2. An operator T on C([0, ω1]) belongs to the Loy�Willis ideal M if and only
if the identity operator on C([0, ω1]) does not factor through T in the sense that there are
no operators R and S on C([0, ω1]) such that I = STR.

The implication ⇒ is obvious because the ideal M is proper. The converse is much
harder to prove; this will be the topic of Section 3. Once it has been proved, however,
Theorem 1.1 is immediate because Theorem 1.2 implies that the identity operator belongs
to the ideal generated by any operator not in M .
Many Banach spaces X share with C([0, ω1]) the property that the set

MX = {T ∈ B(X) : the identity operator on X does not factor through T}
is the unique maximal ideal of B(X). As noted in [7], the only non-trivial part of this
statement is that MX is closed under addition, and as in Theorem 1.2, this is often veri�ed
by showing that MX is equal to some known ideal of B(X).
Banach spaces X for which MX is the unique maximal ideal of B(X) include:
(i) X = `p for 1 6 p < ∞ and X = c0 (see [11]) and, more generally, each Banach

space X which is complementably minimal in the sense that each closed, in�nite-
dimensional subspace of X contains a subspace which is isomorphic to X and com-
plemented in X (see [33, Theorem 6.2] and its proof); the Schlumprecht space S is
an interesting example of a complementably minimal Banach space (see [30] and [2]);

(ii) X = Lp([0, 1]) for 1 6 p <∞ (see [8, Theorem 1.3] and the text following it);
(iii) X = `∞ ∼= L∞([0, 1]) (use [23, Proposition 2.f.4], as explained in [16, p. 253]);
(iv) X = `∞/c0 (this is an easy consequence of [9, Corollary 2.4], as observed by Piotr

Koszmider);

(v) X =
(⊕∞

n=1 `
n
2

)
c0
and X =

(⊕∞
n=1 `

n
2

)
`1
(see [17] and [19, Corollary 2.12]);

(vi) X =
(⊕∞

n=1 `
n
1

)
c0
and X =

(⊕∞
n=1 `

n
∞
)
`1
(see [18] and [20]);

(vii) X =
(⊕

N `q
)
`p
for 1 6 q < p <∞ (see [6, Proposition 2.9]);

(viii) X = dw,p, the Lorentz sequence space determined by a decreasing, non-summable
sequence w = (wn) in (0, 1] and p ∈ [1,∞) (see [14, Theorem 5.3] and its proof);

(ix) X an Orlicz sequence space which is close to `p for some p ∈ (1,∞) (see [21]);
(x) X = C([0, 1]) (use [26, Theorem 1] and [27, Theorem 1], as in [5, Example 3.5]);
(xi) X = C([0, ωω]) and X = C([0, ωα]), where α is a countable epsilon number, that is,

a countable ordinal satisfying α = ωα. This result is due to Philip A. H. Brooker
(unpublished), who has kindly given us permission to include it here together with
the following proof. Let X = C([0, ωω

α
]), where α is either 1 or a countable epsilon

number. The set SZα(X) of operators on X having Szlenk index at most ωα is
an ideal of B(X) by [5, Theorem 2.2]. We shall discuss this ideal in more detail
in Section 5; for now, it su�ces to note that SZα(X) ⊆ MX because the identity
operator on X has Szlenk index ωα+1 (see Theorem 5.6(ii) below). Conversely, Bour-
gain [4, Proposition 3] has shown that each operator T /∈ SZα(X) �xes a copy of X.
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Hence, using [26, Theorem 1] as above, we see that the identity operator on X factors
through T , so MX ⊆ SZα(X), and the conclusion follows.

Note that, by [31], C([0, ω1]) di�ers from all of the above-mentioned Banach spaces by not
being isomorphic to its Cartesian square C([0, ω1])⊕ C([0, ω1]).

Having thus identi�ed the unique maximal ideal of B(C([0, ω1])), we turn our attention
to the other closed ideals of this Banach algebra. We begin with a characterization of the
ideal X (C([0, ω1])) of operators with separable range. To state it, we require three pieces
of notation.
Firstly, we associate with each countable ordinal σ the multiplication operator Pσ given

by Pσf = f · 1[0,σ] for f ∈ C([0, ω1]). Since the indicator function 1[0,σ] is idempotent
and continuous with norm one, Pσ is a contractive projection on C([0, ω1]), and its range
is isometrically isomorphic to C([0, σ]). For technical reasons (notably Theorem 1.3(a)
below), we also require the rank-one perturbation

(1.1) P̃σ = Pσ + 1[σ+1,ω1] ⊗ εω1

of Pσ, where εω1 ∈ C([0, ω1])∗ denotes the point evaluation at ω1. Clearly P̃σ is a contractive
projection.
Secondly, for Banach spaces X, Y and Z, we let

(1.2) GZ(X, Y ) = lin{TS : S ∈ B(X,Z), T ∈ B(Z, Y )}.

This de�nes an operator ideal in the sense of Pietsch, the ideal of operators factoring
through Z. Note that if Z contains a complemented copy of its square Z ⊕Z, then the set
{TS : S ∈ B(X,Z), T ∈ B(Z, Y )} is already closed under addition, so the `lin' in (1.2) is
super�uous. We write G Z(X, Y ) for the norm closure of GZ(X, Y ); this is a closed operator
ideal.
Thirdly, we denote by c0(ω1) the Banach space of scalar-valued functions f de�ned

on ω1 = [0, ω1) such that the set {α ∈ [0, ω1) : |f(α)| > ε} is �nite for each ε > 0, equipped
with the pointwise-de�ned vector-space operations and the supremum norm.
We can now state our characterization of the operators on C([0, ω1]) with separable

range. Its proof will be given in Section 4.

Theorem 1.3. The following �ve conditions are equivalent for an operator T on C([0, ω1]) :

(a) T = P̃σT P̃σ for some countable ordinal σ;

(b) T ∈ GC([0,σ])(C([0, ω1])) for some countable ordinal σ;

(c) T ∈ G C([0,σ])(C([0, ω1])) for some countable ordinal σ;

(d) T ∈X (C([0, ω1]));

(e) T does not �x a copy of c0(ω1).

Warning! Theorem 1.3 does not imply that the ideal GC([0,σ])(C([0, ω1])) is closed for each
countable ordinal σ, despite the equivalence of conditions (b) and (c). The reason is that,
for given T ∈ G C([0,τ ])(C([0, ω1])) (where τ is a countable ordinal), the ordinal σ such
that (b) holds may be much larger than τ and depend on T .
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Finally, in Section 5, we study the lattice of closed ideals of B(C([0, ω1])). To classify all
the closed ideals of B(C([0, ω1])) seems an impossible task. In the �rst instance, one would
need to classify the closed ideals of B(C([0, ωω

α
])) for each countable ordinal α, something

that already appears intractable; it has currently been achieved only in the simplest case
α = 0, where C([0, ω]) ∼= c0.
Figure 1 summarizes the �ndings of Section 5, using the following conventions: (i) we

suppress C([0, ω1]) everywhere, thus writing K instead of K (C([0, ω1])) for the ideal of

compact operators on C([0, ω1]), etc.; (ii) I
� � //J means that the ideal I is properly

contained in the ideal J ; (iii) a double-headed arrow indicates that there are no closed
ideals between I and J ; (iv) α denotes a countable ordinal; and (v) Kα = [0, ωω

α
].
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Figure 1. Partial structure of the lattice of closed ideals of B = B(C([0, ω1])).
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2. Preliminaries

All Banach spaces are over the scalar �eld K, where K = R or K = C. The term ideal
always means two-sided ideal. By an operator, we understand a bounded linear operator
between Banach spaces. We write B(X) for the Banach algebra of all operators on the
Banach space X, equipped with the operator norm. Since B(X) is unital, Krull's theorem
implies that every proper ideal of B(X) is contained in a maximal ideal. It is well known
that every non-zero ideal of B(X) contains the ideal F (X) of �nite-rank operators on X.
We de�ne the support of a scalar-valued function f de�ned on a set K by supp(f) =
{k ∈ K : f(k) 6= 0}. When K is a compact space, C(K) denotes the Banach space of all
continuous scalar-valued functions on K, equipped with the supremum norm. For k ∈ K,
the point evaluation at k is the contractive functional εk ∈ C(K)∗ given by εk(f) = f(k).
The Kronecker delta of a pair of ordinals α and β is given by δα,β = 1 if α = β and

δα,β = 0 otherwise. By convention, we consider 0 a limit ordinal. For an ordinal σ, we
write [0, σ] for the set of ordinals less than or equal to σ, equipped with the order topology.
This is a compact Hausdor� space which is metrizable if and only if it is separable if and
only if σ is countable. (As a set, [0, σ] is of course equal to the ordinal σ + 1; we use
the notation [0, σ] to emphasize that it is a topological space.) The symbols ω and ω1 are
reserved for the �rst in�nite and uncountable ordinal, respectively, while N denotes the
set of positive integers. We shall use extensively the well-known fact that a scalar-valued
function on [0, ω1] is continuous at ω1 if and only if it is eventually constant.
Suppose that σ is an in�nite ordinal, and let T ∈ B(C([0, σ])). For each ordinal

α ∈ [0, σ], the functional f 7→ Tf(α), C([0, σ]) → K, is continuous, so by a result of
Rudin [28], there are unique scalars Tα,β, where β ∈ [0, σ], such that∑

β∈[0,σ]

|Tα,β| <∞ and Tf(α) =
∑
β∈[0,σ]

Tα,βf(β) (f ∈ C([0, σ])).

We can therefore associate a [0, σ] × [0, σ]-matrix [Tα,β] with T . Note that the composi-
tion ST of operators S and T on C([0, σ]) corresponds to standard matrix multiplication
in the sense that

(2.1) (ST )α,γ =
∑
β∈[0,σ]

Sα,βTβ,γ (α, γ ∈ [0, σ]).

We shall now specialize to the case where σ = ω1. For T ∈ B(C([0, ω1])) and α ∈ [0, ω1],
we denote by rTα and kTα the αth row and column of the matrix of T , respectively, considered
as scalar-valued functions de�ned on [0, ω1]; thus rTα (β) = Tα,β and kTα (β) = Tβ,α. The
following result of Loy and Willis summarizes the basic properties of these functions.

Proposition 2.1 ([24, Proposition 3.1]). Let T be an operator on C([0, ω1]). Then:
(i) the function rTα is absolutely summable for each ordinal α ∈ [0, ω1], hence has count-

able support, and

‖T‖ = sup

{ ∑
β∈[0,ω1]

|Tα,β| : α ∈ [0, ω1]

}
;
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(ii) the function kTα is continuous whenever α = 0 or α is a countable successor ordinal;
(iii) the function kTα is continuous at ω1 for each countable ordinal α;

(iv) the restriction of kTω1
to [0, ω1) is continuous, and limα→ω1 k

T
ω1

(α) exists.

Note that the statement in (iv) is the best possible because the �nal column of the
matrix associated with the identity operator is equal to 1{ω1}, so it is not continuous at ω1.
Loy and Willis studied the subspace M of B(C([0, ω1])) consisting of those operators T

such that kTω1
is continuous at ω1. They observed that M is an ideal of codimension one,

hence maximal (see [24, p. 336]); this is the Loy�Willis ideal. It is straightforward to verify
that every operator on C([0, ω1]) not belonging to M has uncountably many non-zero rows
and columns. Although not required here, let us mention that the key result of Loy and
Willis [24, Theorem 3.5] states that the ideal M has a bounded right approximate identity.

3. The Loy�Willis ideal: completion of the proof of Theorem 1.2

In preparation for the proof of Theorem 1.2 (⇐), we require three lemmas.

Lemma 3.1. Let T be a Fredholm operator acting on a Banach space X which is isomorphic
to its hyperplanes (and hence to all its closed subspaces of �nite codimension). Then the
identity operator on X factors through T .

Proof. Choose a closed subspace W of X which is complementary to kerT . Then W has
�nite codimension in X, so W is isomorphic to X by assumption, and the restriction
T̃ : w 7→ Tw, W → T (X), is an isomorphism, hence the identity operator on X factors

through T̃ . Now the result follows because T (X) is complemented in X, so T̃ factors
through T . �

Lemma 3.2. Let Ξ = (ξσ)σ∈[0,ω1) be a strictly increasing trans�nite sequence of count-
able ordinals, and de�ne ξω1 = ω1 and ζλ = sup{ξσ : σ ∈ [0, λ)} for each limit ordinal
λ ∈ [ω, ω1]. Then:
(i) the mapping UΞ given by U(1[0,σ]) = 1[0,ξσ ] for each σ ∈ [0, ω1] extends uniquely to a

linear isometry of C([0, ω1]) onto lin {1[0,ξσ ] : σ ∈ [0, ω1]};

(ii) [0, ω1] = [0, ξ0] ∪
⋃

σ∈[0,ω1)

[ξσ + 1, ξσ+1] ∪
⋃

λ∈[ω,ω1] limit

[ζλ, ξλ],

where the intervals on the right-hand side are pairwise disjoint;
(iii) the mapping ϕΞ : [0, ω1]→ [0, ω1] given by

ϕΞ(α) =


ξ0 for α ∈ [0, ξ0]

ξσ+1 for α ∈ [ξσ + 1, ξσ+1], where σ ∈ [0, ω1),

ζλ for α ∈ [ζλ, ξλ], where λ ∈ [ω, ω1] is a limit ordinal,

is continuous and satis�es ϕΞ ◦ ϕΞ = ϕΞ; hence the associated composition opera-
tor ΦΞ : f 7→ f ◦ ϕΞ de�nes a contractive projection of C([0, ω1]) onto the subspace
lin {1[0,ξσ ] : σ ∈ [0, ω1]};
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(iv) the matrix associated with the operator ΦΞ is given by

(ΦΞ)α,β =


δβ,ξ0 for α ∈ [0, ξ0]

δβ,ξσ+1 for α ∈ [ξσ + 1, ξσ+1], where σ ∈ [0, ω1),

δβ,ζλ for α ∈ [ζλ, ξλ], where λ ∈ [ω, ω1] is a limit ordinal.

ζλξ0 ξ1 ξ2 . . . . . . ω1

ω1

0

ξ0

ξ1

ξ2
.

.

.

.

.

.

ξλ
.

.

.

Figure 2. Structure of the matrix associated with ΦΞ.

Proof. (i). For n ∈ N, scalars c1, . . . , cn and ordinals 0 6 σ1 < · · · < σn 6 ω1, we have∥∥∥∥ n∑
j=1

cj1[0,σj ]

∥∥∥∥ = max
16m6n

∣∣∣∣ n∑
j=m

cj

∣∣∣∣ =

∥∥∥∥ n∑
j=1

cj1[0,ξσj ]

∥∥∥∥.
Hence UΞ de�nes a linear isometry of lin{1[0,σ] : σ ∈ [0, ω1]} onto lin{1[0,ξσ ] : σ ∈ [0, ω1]}.
Now the conclusion follows because the domain of UΞ is dense in C([0, ω1]).
(ii). This is straightforward to verify.
(iii). Clause (ii) ensures that the de�nition of ϕΞ makes sense. To prove that ϕΞ is

continuous at α, let (αj) be a net in [0, ω1] which converges to α. We may suppose
that α 6= 0. Then, by the de�nition of the order topology, for each β < α, we have
β < αj 6 α eventually. If α /∈ {ζλ : λ ∈ [ω, ω1] limit}, then ϕΞ(αj) = ϕΞ(α) eventually,
so the continuity of ϕΞ at α is clear in this case. Otherwise α = ζλ for some limit ordinal
λ ∈ [ω, ω1], and ϕΞ(α) = ζλ. Given β < ζλ, we can take σ ∈ [0, λ) such that β < ξσ. Since
ξσ < ξσ+1 6 ζλ, we have ξσ < αj 6 ζλ eventually. Hence the de�nition of ϕΞ implies that
ξσ < ϕΞ(αj) 6 ζλ eventually, so that limj ϕΞ(αj) = ζλ = ϕΞ(α), as required.
We have ϕΞ ◦ ϕΞ = ϕΞ because by de�nition ϕΞ(α) belongs to the same interval as α in

the partition of [0, ω1] given in (ii). Hence ΦΞ is a contractive projection.
To determine its range, we observe that

(3.1) ΦΞ(1[0,α]) =

{
0 for α ∈ [0, ξ0)

1[0,ξσ ] for α ∈ [ξ0, ω1], where σ = sup{τ ∈ [0, ω1] : ξτ 6 α}.
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Consequently, we have

(3.2) ΦΞ(C([0, ω1])) ⊆ lin {1[0,ξσ ] : σ ∈ [0, ω1]}
because the linear span of {1[0,α] : α ∈ [0, ω1]} is dense in C([0, ω1]).
Conversely, (3.1) implies that ΦΞ(1[0,ξσ ]) = 1[0,ξσ ] for each σ ∈ [0, ω1], so we have equality

in (3.2) because ΦΞ has closed range.
(iv). This is clear from the de�nition of ϕΞ. �

Lemma 3.3. Let H be an uncountable subset of [0, ω1]. Then H is order-isomorphic
to [0, ω1], and the order isomorphism ψH : [0, ω1] → H is continuous with respect to the
relative topology on H if and only if H is closed in [0, ω1].
Now suppose that H is closed in [0, ω1]. Then ω1 ∈ H, and the composition operator

ΨH : f 7→ f ◦ ιH ◦ ψH , where ιH : H → [0, ω1] denotes the inclusion mapping, de�nes a
contractive operator on C([0, ω1]).

Proof. Clearly H is order-isomorphic to [0, ω1]. If the order isomorphism ψH is continuous,
then H is compact (as the continuous image of the compact space [0, ω1]) and hence closed
in [0, ω1].
Conversely, suppose that H is closed in [0, ω1]. Then ψH is a bijection between two

compact Hausdor� spaces, so ψH is continuous if and only if its inverse is. Now

ψH([0, σ)) = [0, ψH(σ)) ∩H and ψH((σ, ω1]) = (ψH(σ), ω1] ∩H (σ ∈ [0, ω1]),

which shows that ψ−1
H is continuous because the sets [0, σ) and (σ, ω1] for σ ∈ [0, ω1] form

a subbasis for the topology of [0, ω1].
The second part of the lemma follows immediately. �

Unlike ΦΞ, the matrix associated with ΨH cannot in general be depicted schematically;
it is, however, possible in the particular case that we shall consider in the proof of Theo-
rem 1.2, as shown in Figure 3 below.

Proof of Theorem 1.2 (⇐). Let T ∈ B(C([0, ω1])) \M . Going through a series of reduc-
tions, we shall eventually reach the conclusion that there are operators R, S ∈ B(C([0, ω1]))
and F ∈ F (C([0, ω1])) such that STR+F = I. Then STR = I−F is a Fredholm operator,
and the conclusion follows from Lemma 3.1.
We begin by reducing to the case where each column with countable index of the asso-

ciated matrix vanishes eventually. Indeed, since rTω1
is absolutely summable, we can take

a countable ordinal ρ such that Tω1,β = 0 whenever β ∈ (ρ, ω1). Proposition 2.1(iii) then
implies that kTβ is eventually null for each β ∈ (ρ, ω1), and hence the βth column of the
operator T1 = T (I − Pρ) is eventually null for each β ∈ [0, ω1). Note, moreover, that
T1 /∈M because kT1ω1

= kTω1
.

Next, perturbing T1 by a �nite-rank operator and rescaling, we can arrange that the
�nal row and column of its matrix are equal to 1{ω1}. To verify this, we observe that
Proposition 2.1(iv) implies that the function g : [0, ω1]→ K given by

g(α) =

{
(T1)α,ω1 for α ∈ [0, ω1)

limβ→ω1(T1)β,ω1 for α = ω1
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is continuous, soG = g⊗εω1 de�nes a �nite-rank operator. The number c = (T1)ω1,ω1−g(ω1)

is non-zero because T1 /∈ M , and the operator T2 = c−1(T1 − G) satis�es kT2β = c−1kT1β
for each β ∈ [0, ω1) and kT2ω1

= 1{ω1}. The latter statement implies that T2 /∈ M , and

rT2ω1
= 1{ω1} because k

T1
β vanishes eventually for each β ∈ [0, ω1).

We shall now inductively construct two trans�nite sequences (ησ)σ∈[0,ω1) and (ξσ)σ∈[0,ω1)

of countable ordinals such that ητ + ω < ησ and ξτ < ξσ whenever τ < σ. First, let
η0 = ξ0 = 0. Next, assuming that the sequences (ητ )τ∈[0,σ) and (ξτ )τ∈[0,σ) have been chosen
for some σ ∈ [1, ω1), we de�ne

(3.3) ησ =


sup

(
{ητ + ω} ∪

⋃
β∈[0,ξτ ]

supp(kT2β )

)
+ 1 for σ = τ + 1, where τ ∈ [0, ω1),

sup{ητ : τ ∈ [0, σ)} for σ a limit ordinal

and

(3.4) ξσ = sup

(
{ξτ + 1 : τ ∈ [0, σ)} ∪

⋃
α∈[0,ησ+ω]

supp(rT2α )

)
.

It is clear that ξτ < ξσ for each τ < σ, and also that ητ + ω < ησ if σ is a successor
ordinal. On the other hand, if σ is a limit ordinal, then τ < σ implies that τ + 1 < σ, so
ητ + ω < ητ+1 6 ησ, as desired. Hence the induction continues.
Let T3 = T2ΦΞ, where ΦΞ is the composition operator associated with the trans�nite

sequence Ξ = (ξσ)σ∈[0,ω1) as in Lemma 3.2(iii). Using Lemma 3.2(iv) and matrix multipli-
cation, we see that rT3ω1

= kT3ω1
= 1{ω1}. In fact, each of the rows of the matrix of T3 indexed

by the set H =
⋃
σ∈[1,ω1)[ησ, ησ+ω]∪{ω1} has (at most) one-point support. More precisely,

since the intervals de�ning H are pairwise disjoint, we can de�ne a map θ : H → [1, ω1] by

θ(α) =


ξσ for α ∈ [ησ, ησ + ω], where σ ∈ [1, ω1) is a successor ordinal,

ζσ for α ∈ [ησ, ησ + ω], where σ ∈ [1, ω1) is a limit ordinal,

ω1 for α = ω1,

where ζσ = sup{ξτ : τ ∈ [0, σ)} as in Lemma 3.2, and we claim that

(3.5) supp(rT3α ) ⊆ {θ(α)} (α ∈ H).

This has already been veri�ed for α = ω1. Otherwise α ∈ [ησ, ησ + ω] for some σ ∈ [1, ω1),
and ω1 /∈ supp(rT3α ) because kT3ω1

= 1{ω1}. Given γ ∈ [0, ω1), matrix multiplication shows
that

(T3)α,γ =
∑

β∈[0,ω1]

(T2)α,β(ΦΞ)β,γ =
∑

β∈[0,ξσ ]

(T2)α,β(ΦΞ)β,γ

because α 6 ησ + ω implies that sup supp(rT2α ) 6 ξσ by (3.4), so that (T2)α,β = 0 for
β ∈ (ξσ, ω1]. Now if σ is a successor ordinal, say σ = τ + 1, then for each β ∈ [0, ξτ ], we
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have sup supp(kT2β ) < ησ 6 α by (3.3), so that (T2)α,β = 0 for such β, and hence

(T3)α,γ =
∑

β∈[ξτ+1,ξτ+1]

(T2)α,β(ΦΞ)β,γ =


∑

β∈[ξτ+1,ξτ+1]

(T2)α,β if γ = ξτ+1 = ξσ = θ(α)

0 otherwise

by Lemma 3.2(iv). Otherwise σ is a limit ordinal, and for each β ∈ [0, ζσ), we can choose
τ ∈ [0, σ) such that β 6 ξτ . Then sup supp(kT2β ) < ητ+1 < ησ 6 α, so that (T2)α,β = 0 for
such β, and as above we �nd that

(T3)α,γ =
∑

β∈[ζσ ,ξσ ]

(T2)α,β(ΦΞ)β,γ =


∑

β∈[ζσ ,ξσ ]

(T2)α,β if γ = ζσ = θ(α)

0 otherwise.

This completes the proof of (3.5).
The set H de�ned above is clearly uncountable. To prove that it is also closed, let (αj)

be a net in H converging to some α ∈ [1, ω1]. Then, for each β ∈ [0, α), there is j0 such that
β < αj 6 α whenever j > j0. In particular, we may suppose that αj 6 α for each j. Let
σ = sup{τ ∈ [1, ω1) : ητ 6 α} ∈ [1, ω1]. If σ = ω1, then α > sup{ητ : τ ∈ [0, ω1)} = ω1, so
that α = ω1 ∈ H. Otherwise σ is countable. The choice of σ implies that ησ 6 α < ησ+1.
(In the case where σ is a limit ordinal, the �rst inequality follows from the fact that
ησ = sup{ητ : τ ∈ [0, σ)} by (3.3).) Hence, for each j, we have

αj ∈ H ∩ [0, α] ⊆ H ∩ [0, ησ+1) =
⋃

τ∈[1,σ]

[ητ , ητ + ω] ⊆ [0, ησ + ω],

so ησ + ω > limj αj = α and thus α ∈ [ησ, ησ + ω] ⊆ H, as desired.
We can therefore associate with H the composition operator ΨH as in Lemma 3.3;

Figure 3 sketches the matrix associated with ΨH .

η1 η1+ω η2 η2+ω ω1

ω1

0

ω

ω ·2

Figure 3. Structure of the matrix associated with ΨH .
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Let T4 = ΨHT3. Then, for f ∈ C([0, ω1]) and α ∈ [0, ω1], we have

(3.6) (T4f)(α) = (T3f)(ψH(α)) =
∑

β∈[0,ω1]

(T3)ψH(α),βf(β) = (T3)ψH(α),γf(γ)

by (3.5), where γ = (θ ◦ ψH)(α) and ψH : [0, ω1] → H denotes the order isomorphism as
in Lemma 3.3. Taking α = ω1 and f = 1[0,ω1], we obtain T4(1[0,ω1])(ω1) = (T3)ω1,ω1 = 1.
Being continuous, the function T4(1[0,ω1]) is eventually constant, so we can �nd a countable
ordinal χ such that T4(1[0,ω1])(α) = 1 for each α ∈ [χ, ω1]. Moreover, (3.6) implies that
supp(rT4α ) ⊆ {(θ ◦ ψH)(α)} for each α ∈ [0, ω1], hence we conclude that

(3.7) (T4)α,β = δ(θ◦ψH)(α),β (α ∈ [χ, ω1], β ∈ [0, ω1]).

Let T5 = QT4, where Q = I − Pχ + 1[0,χ] ⊗ εχ. An easy computation gives

Qα,β =

{
δχ,β for α ∈ [0, χ]

δα,β for α ∈ (χ, ω1]
(α, β ∈ [0, ω1]),

which together with (3.7) implies that

(3.8) (T5)α,γ =
∑

β∈[0,ω1]

Qα,β(T4)β,γ =

{
δ(θ◦ψH)(χ),γ for α ∈ [0, χ]

δ(θ◦ψH)(α),γ for α ∈ (χ, ω1]
(α, γ ∈ [0, ω1]).

This shows in particular that kT5ω1
= 1{ω1}, so T5 /∈M , and consequently the set

Γ = {γ ∈ [0, ω1] : kT5γ 6= 0} = (θ ◦ ψH)([χ, ω1])

is uncountable. Let M = (µσ)σ∈[0,ω1] be the increasing enumeration of Γ. We note that
µ0 = (θ ◦ ψH)(χ) and µω1 = ω1, and for each σ ∈ [0, ω1], we have

(3.9) T5(1[0,µσ ]) = 1[0,νσ ], where νσ = sup{α ∈ [0, ω1] : (θ ◦ ψH)(α) 6 µσ}.
The trans�nite sequence N = (νσ)σ∈[0,ω1] is clearly increasing; to see that it increases
strictly, suppose that 0 6 τ < σ 6 ω1. Then µτ < µσ. On the one hand, since µσ ∈ Γ, we
have µσ = (θ ◦ ψH)(α) for some α ∈ [χ, ω1], and therefore

T5(1[µτ+1,µσ ])(α) =
∑

γ∈[µτ+1,µσ ]

(T5)α,γ = 1

by (3.8). On the other, (3.9) implies that T5(1[µτ+1,µσ ]) = 1[0,νσ ] − 1[0,ντ ]. The only way
that this function can take the value 1 at α is if ντ < α 6 νσ, and the conclusion follows.
Lemma 3.2(i) implies that there are linear isometries UM and UN on C([0, ω1]) such that

UM(1[0,σ]) = 1[0,µσ ] and UN(1[0,σ]) = 1[0,νσ ] for each σ ∈ [0, ω1]. Moreover, their ranges are
complemented in C([0, ω1]) by Lemma 3.2(iii); the projection onto UN(C([0, ω1])) is ΦN ,
and so we can de�ne an operator VN = U−1

N ΦN on C([0, ω1]). We now see that VNT5UM = I
because VNT5UM(1[0,σ]) = 1[0,σ] for each σ ∈ [0, ω1], and the result follows. �

Remark 3.4. Ogden [25] extended the de�nition of M to the case of B(C([0, ωη])), where
η is any ordinal such that ωη is a regular cardinal. Theorems 1.2 and 1.1 remain valid in
this case with similar proofs.
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4. Operators with separable range: the proof of Theorem 1.3

We require four lemmas. The �rst is straightforward, so we omit its proof.

Lemma 4.1. Let K be a compact topological space, and let (fα)α∈[0,ω1) be a family of
pairwise disjointly supported functions in C(K) such that sup{‖fα‖ : α ∈ [0, ω1)} <∞ and
inf{‖fα‖ : α ∈ [0, ω1)} > 0. Then (fα)α∈[0,ω1) is a trans�nite basic sequence equivalent to
the canonical Schauder basis (1{α})α∈[0,ω1) for c0(ω1).

Lemma 4.2. A subspace X of C([0, ω1]) is separable if and only if X is contained in the

range of the projection P̃σ given by (1.1) for some countable ordinal σ.

Proof. The implication⇐ is clear. Conversely, suppose thatW is a countable dense subset
of X. Since each continuous function on [0, ω1] is eventually constant, we can choose a
countable ordinal σ such that f |[σ+1,ω1] is constant for each f ∈ W . This implies that

P̃σf = f for each f ∈ W , so as P̃σ has closed range and W is dense in X, we conclude that
X ⊆ P̃σ(C([0, ω1])). �

Lemma 4.3. Let T be an operator on C([0, ω1]) such that T 6= P̃σT P̃σ for each countable
ordinal σ. Then there is an ε > 0 such that, for each countable ordinal ξ, there is a function
f ∈ C([0, ω1]) with supp(f) ⊆ (ξ, ω1) satisfying ‖f‖ 6 1 and ‖Tf‖ > ε.

Proof by contraposition. Suppose that the conclusion is false. Then, taking ε = 1/n for
n ∈ N, we obtain a sequence (ξn)n∈N of countable ordinals such that ‖Tf‖ < 1/n for each
function f ∈ C([0, ω1]) with supp(f) ⊆ (ξn, ω1) and ‖f‖ 6 1.

We claim that the countable ordinal ξ = sup{ξn : n ∈ N} satis�es T = T P̃ξ. To verify

this claim, it clearly su�ces to prove that T (I − P̃ξ)g = 0 for each g ∈ C([0, ω1]) with

‖(I− P̃ξ)g‖ 6 1. Letting f = (I− P̃ξ)g, we have supp(f) ⊆ (ξ, ω1) =
⋂
n∈N(ξn, ω1) because

Pξ(I − P̃ξ) = 0 and f(ω1) = 0. Hence the choice of ξn implies that ‖Tf‖ < 1/n for each

n ∈ N, so 0 = Tf = T (I − P̃ξ)g, and the claim follows.

In particular, T has separable range, so Lemma 4.2 implies that T = P̃ηT for some

countable ordinal η. Since P̃αP̃β = P̃min{α,β}, we conclude that T = P̃σT P̃σ is satis�ed for
σ = max{ξ, η}. �

Lemma 4.4. Let S be an operator on C([0, ω1]) with kSω1
= 0. For each pair ζ, η of

countable ordinals, there is a countable ordinal ξ > ζ such that PηS(I − Pξ) = 0.

Proof. Let ξ = sup
(
{ζ}∪

⋃
α∈[0,η] supp(rSα)

)
. Then clearly ζ 6 ξ, and ξ is countable because

supp(rSα) is countable and Sα,ω1 = 0 for each α. We show that PηS(I − Pξ) = 0 by verifying
that (PηS(I − Pξ))α,δ = 0 for each pair α, δ ∈ [0, ω1]. Indeed, by (2.1), we have

(PηS(I − Pξ))α,δ =
∑

β,γ∈[0,ω1]

(Pη)α,βSβ,γ(I − Pξ)γ,δ =


0 if α ∈ (η, ω1],

0 if δ ∈ [0, ξ],

Sα,δ otherwise,

and Sα,δ = 0 for α ∈ [0, η] and δ ∈ (ξ, ω1] by the choice of ξ. �
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Proof of Theorem 1.3. The implications (a)⇒(b)⇒(c)⇒(d)⇒(e) are all straightforward.

Indeed, (a)⇒(b) because P̃σ is a rank-one perturbation of Pσ, whose range is isometrically
isomorphic to C([0, σ]); (b)⇒(c) is obvious; (c)⇒(d) follows from the facts that C([0, σ]) is
separable and X is a closed operator ideal; and (d)⇒(e) because c0(ω1) is non-separable.

Finally, we prove that (e)⇒(a) by contraposition. Suppose that T 6= P̃σT P̃σ for each
countable ordinal σ. If T /∈M , then Theorem 1.2 implies that T �xes a copy of C([0, ω1])
and thus of c0(ω1). Otherwise choose ε > 0 as in Lemma 4.3. By induction, we shall con-
struct a family (fα)α∈[0,ω1) of functions in C([0, ω1]) such that sup{‖fα‖ : α ∈ [0, ω1)} 6 1,
inf{‖Tfα‖ : α ∈ [0, ω1)} > ε, f0(ω1) = 0, Tf0(ω1) = 0 and

(4.1) supp(fα) ⊆ (sup supp(fβ), ω1) and supp(Tfα) ⊆ (sup supp(Tfβ), ω1)

whenever 0 6 β < α < ω1. Before giving the details of this construction, let us explain
how it enables us to complete the proof. The families (fα)α∈[0,ω1) and (Tfα)α∈[0,ω1) both
satisfy the conditions in Lemma 4.1, so they are equivalent to the canonical Schauder basis
for c0(ω1). Hence, as T maps (fα)α∈[0,ω1) onto (Tfα)α∈[0,ω1), it �xes a copy of c0(ω1).
It remains to inductively construct (fα)α∈[0,ω1). To start the induction, we note that

ξ = sup(supp(rTω1
) \ {ω1}) is a countable ordinal by Proposition 2.1(i). Lemma 4.3 there-

fore enables us to choose a function f0 ∈ C([0, ω1]) with supp(f0) ⊆ (ξ, ω1) such that
‖f0‖ 6 1 and ‖Tf0‖ > ε. Of the conditions that f0 must satisfy, only Tf0(ω1) = 0 is not
evident; however, we have

(4.2) Tf0(ω1) =
∑

β∈[0,ω1]

Tω1,βf0(β) = 0

because f0(β) = 0 for β ∈ [0, ξ] ∪ {ω1}, while Tω1,β = 0 for β ∈ (ξ, ω1) by the choice of ξ.
Now let α ∈ (0, ω1), and assume inductively that functions (fβ)β∈[0,α) in C([0, ω1]) have

been chosen as speci�ed. The function kTω1
is continuous because T ∈M , so we may de�ne

a rank-one operator by F = kTω1
⊗ εω1 . Since k

T−F
ω1

= 0, we can apply Lemma 4.4 with

ζ = sup

(
(supp(rTω1

) \ {ω1}) ∪
⋃

β∈[0,α)

supp(fβ)

)
and η = sup

( ⋃
β∈[0,α)

supp(Tfβ)

)
to obtain a countable ordinal ξ > ζ such that Pη(T − F )(I − Pξ) = 0. (Note that the
ordinals ζ and η are countable because fβ and Tfβ are continuous functions on [0, ω1]
mapping ω1 to 0, so they have countable supports for each β ∈ [0, α).) By Lemma 4.3,
we can take a function fα ∈ C([0, ω1]) with supp(fα) ⊆ (ξ, ω1) such that ‖fα‖ 6 1 and
‖Tfα‖ > ε. It remains to check that (4.1) holds for each β ∈ [0, α). The �rst statement
is clear because supp(fα) ⊆ (ξ, ω1) and sup supp(fβ) 6 ζ 6 ξ. To verify the second, we
observe that Tfα(ω1) = 0 by an argument similar to that given in (4.2) above. Moreover,
since fα ∈ kerPξ and fα ∈ ker εω1 = kerF , we have

PηTfα = Pη(T − F )(I − Pξ)fα = 0.

Consequently, supp(Tfα) ⊆ (η, ω1), from which the desired conclusion follows because
sup supp(Tfβ) 6 η. Hence the induction continues. �
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5. The lattice of closed ideals of B(C([0, ω1]))

The aim of this section is to establish the hierarchy among the closed ideals of B(C([0, ω1]))
shown in Figure 1. Beginning from the bottom of the diagram, we note that as C([0, ω1])
is a L∞-space, it has the bounded approximation property, so K (C([0, ω1])) is the closure
of the ideal of �nite-rank operators and thus the minimum non-zero closed ideal.
To prove the minimality of the next two inclusions in Figure 1, we require the following

variant of Sobczyk's theorem for C([0, ω1]), which is due to Argyros et al.

Proposition 5.1 ([3, Proposition 3.2]). Let X be a subspace of C([0, ω1]) which is isomor-
phic to either c0 or c0(ω1). Then X is automatically complemented.

Remark 5.2. The �rst part of Proposition 5.1 follows easily from our results and Sobczyk's
theorem. Indeed, let X be a subspace of C([0, ω1]) which is isomorphic to c0. Then X is

separable, hence contained in P̃σ(C([0, ω1])) for some countable ordinal σ by Lemma 4.2.

Sobczyk's theorem implies that X is complemented in P̃σ(C([0, ω1])), and as P̃σ(C([0, ω1]))
is complemented in C([0, ω1]), so is X.

Proposition 5.3. The identity operator on c0 factors through each non-compact operator
on C([0, ω1]). Hence no closed ideal of B(C([0, ω1])) lies strictly between K (C([0, ω1]))
and G c0(C([0, ω1])).

Proof. This is a standard argument which we outline for completeness. Since [0, ω1] is
scattered, C([0, ω1])∗ ∼= `1([0, ω1]), so C([0, ω1])∗ has the Schur property. Hence all weakly
compact operators on C([0, ω1])∗ are compact. The theorems of Gantmacher and Schauder
then imply that all weakly compact operators on C([0, ω1]) are compact, and therefore, by
a theorem of Peªczy«ski, each non-compact operator on C([0, ω1]) �xes a copy of c0. Now
the conclusion follows from Proposition 5.1. �

For each countable ordinal α, let Qα denote the αth projection associated with the
canonical Schauder basis (1{β})β∈[0,ω1) for c0(ω1); that is, (Qαf)(β) = f(β) for β ∈ [0, α]
and (Qαf)(β) = 0 for β ∈ (α, ω1). We can use the projections Qα to characterize the
separable subspaces of c0(ω1) in a similar fashion to Lemma 4.2 for C([0, ω1]). Although
this characterization follows easily from standard results such as [13, Proposition 5.6], we
outline a short, elementary proof.

Lemma 5.4. A subspace X of c0(ω1) is separable if and only if X is contained in the range
of the projection Qα for some countable ordinal α.

Proof. The implication⇐ is immediate becauseQα has separable range for each α ∈ [0, ω1).
Conversely, suppose that X is separable, and let W be a dense, countable subset of X.

Since each element of c0(ω1) has countable support, the ordinal α = sup
(⋃

f∈W supp(f)
)

is countable, and clearly Qαf = f for each f ∈ W . Hence W is contained in the range
of Qα, which is closed, so the same is true for X. �

Proposition 5.5. No closed ideal of B(C([0, ω1])) lies strictly between G c0(C([0, ω1])) and
G c0(ω1)(C([0, ω1])).
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Proof. Given T ∈ G c0(ω1)(C([0, ω1])), we consider two cases. If T ∈ X (C([0, ω1])), then

Theorem 1.3 shows that T = P̃σT P̃σ for some countable ordinal σ. Given ε > 0, choose
operators U : C([0, ω1]) → c0(ω1) and V : c0(ω1) → C([0, ω1]) such that ‖T − V U‖ 6 ε.

Since the range of the operator UP̃σ is separable, we can take a countable ordinal α such
that QαUP̃σ = UP̃σ by Lemma 5.4. Hence we have

‖T − V QαUP̃σ‖ = ‖T P̃σ − V UP̃σ‖ 6 ‖T − V U‖ ‖P̃σ‖ 6 ε,

so T ∈ G c0(C([0, ω1])) because Qα ∈ Gc0(c0(ω1)).
Otherwise T /∈X (C([0, ω1])), and Theorem 1.3 implies that T �xes a copy X of c0(ω1).

Proposition 5.1 ensures that T (X) is complemented in C([0, ω1]), so the closed ideal gen-
erated by T is equal to G c0(ω1)(C([0, ω1])). �

To complete Figure 1, we require the Szlenk index as a tool to distinguish the C(K)-
spaces considered therein. This ordinal-valued index, denoted by SzX, was originally
introduced by Szlenk [32] for Banach spaces X with separable dual and has subsequently
been generalized to encompass all Asplund spaces (or all Banach spaces, provided that one
is willing to accept that SzX takes the value `unde�ned' (or ∞) if X is not an Asplund
space). We shall not state the de�nition of the Szlenk index here as all we need to know is
its value for certain C(K)-spaces. The interested reader is referred to [13, Section 2.4] for
a modern introduction to the Szlenk index.
A proof of the �rst part of the following theorem is outlined in [10, Exercise 8.55], while

the second, much deeper, part is due to Samuel [29]; a simpli�ed proof of it, due to Hájek
and Lancien, can be found in [12] or [13, Theorem 2.59].

Theorem 5.6. (i) The Szlenk index of c0(ω1) is ω.
(ii) Let α be a countable ordinal. Then C([0, ωω

α
]) has Szlenk index ωα+1.

In fact, a Szlenk index can be associated with each operator between Banach spaces in
such a way that the Szlenk index of a Banach space is equal to that of its identity operator.
We are interested in this notion because Brooker [5, Theorem 2.2] has shown that, for each
ordinal α, the collection SZα of operators having Szlenk index at most ωα forms a closed
operator ideal in the sense of Pietsch.
Armed with this information, we can prove that all inclusions are proper in each of the

two in�nite ascending chains in Figure 1.

Proposition 5.7. Let α be a countable ordinal, and let Kα = [0, ωω
α
]. Then:

(i) G C(Kα)(C([0, ω1])) ( G C(Kα)⊕c0(ω1)(C([0, ω1]));

(ii) G C(Kα)(C([0, ω1])) ( G C(Kα+1)(C([0, ω1]));

(iii) G C(Kα)⊕c0(ω1)(C([0, ω1])) ( G C(Kα+1)⊕c0(ω1)(C([0, ω1]));

(iv) G c0(ω1)(C([0, ω1])) ( G C(K1)⊕c0(ω1)(C([0, ω1])).

Proof. (i). LetQ ∈ B(C([0, ω1])) be a projection whose range is isomorphic to c0(ω1). Then
we have Q ∈ Gc0(ω1)(C([0, ω1])) ⊆ G C(Kα)⊕c0(ω1)(C([0, ω1])), but Q /∈ G C(Kα)(C([0, ω1]))
because its range is non-separable.
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We shall prove (ii) and (iii) simultaneously by displaying an operator belonging to
G C(Kα+1)(C([0, ω1])) \ G C(Kα)⊕c0(ω1)(C([0, ω1])). More precisely, we claim that the pro-

jection Pσ is such an operator for σ = ωω
α+1

. Indeed, Pσ ∈ GC(Kα+1)(C([0, ω1])) because its
range is isometrically isomorphic to C(Kα+1). On the other hand, Theorem 5.6(ii) implies
that the identity operator on C(Kα+1) does not belong to the operator ideal SZα+1. Since
it factors through Pσ, we deduce that Pσ /∈ SZα+1(C([0, ω1])), and consequently we have
Pσ /∈ G C(Kα)⊕c0(ω1)(C([0, ω1])) because G C(Kα)⊕c0(ω1) ⊆ SZα+1 as the following calculation
shows

SzC(Kα)⊕ c0(ω1) = max{SzC(Kα), Sz c0(ω1)} = ωα+1.

Here, the �rst equality follows from [5, Proposition 1.5(v)] (which in turn is a consequence
of [12, Equation (2.3)]) and the second from Theorem 5.6.
Finally, (iv) follows by taking α = 0 in (iii) because C(K0) = C([0, ω]) ∼= c0, so that

C(K0)⊕ c0(ω1) ∼= c0(ω1). �

We now come to the most interesting result in this section.

Theorem 5.8. The ideal X (C([0, ω1])) + G c0(ω1)(C([0, ω1])) is closed, and

X (C([0, ω1])) ( X (C([0, ω1])) + G c0(ω1)(C([0, ω1])) ( M .

Proof. To show that the ideal X (C([0, ω1])) + G c0(ω1)(C([0, ω1])) is closed, let T be an
operator belonging to its closure, and take sequences (Rn)n∈N in X (C([0, ω1])) and (Sn)n∈N
in G c0(ω1)(C([0, ω1])) such that Rn + Sn → T as n → ω. Then lin

⋃
n∈NRn(C([0, ω1])) is

a separable subspace of C([0, ω1]), so Lemma 4.2 implies that it is contained in the range

of P̃σ for some countable ordinal σ. Hence we have P̃σRn = Rn for each n ∈ N, and
therefore

(I − P̃σ)Sn = (I − P̃σ)(Rn + Sn)→ (I − P̃σ)T as n→ ω,

so (I − P̃σ)T ∈ G c0(ω1)(C([0, ω1])). Since P̃σ has separable range, we conclude that

T = P̃σT + (I − P̃σ)T ∈X (C([0, ω1])) + G c0(ω1)(C([0, ω1])),

as required.
We have X (C([0, ω1])) ( X (C([0, ω1]))+G c0(ω1)(C([0, ω1])) because C([0, ω1]) contains

a complemented subspace isomorphic to c0(ω1), which is non-separable.
The proof that X (C([0, ω1]))+G c0(ω1)(C([0, ω1])) is properly contained in the Loy�Willis

ideal M is somewhat more involved. By Theorem 1.1, it su�ces to display an operator
belonging to the latter, but not the former ideal. We construct such an operator by
considering an operator whose range is contained in a certain C(K)-subspace of C([0, ω1]).
Let H = {ωλ : λ ∈ [ω, ω1] is a limit ordinal}; note that ω1 ∈ H because ωω1 = ω1. We

de�ne an equivalence relation ∼ on [0, ω1] by

α ∼ β ⇐⇒ (α = β or α, β ∈ H) (α, β ∈ [0, ω1]).

Denote by K the quotient space [0, ω1]/∼ equipped with the quotient topology, and let
π : [0, ω1] → K be the quotient map. Then K is compact (as the continuous image of



UNIQUENESS OF THE MAXIMAL IDEAL OF B(C([0, ω1])) 17

a compact space), and the composition operator Cπ : f 7→ f ◦ π, C(K)→ C([0, ω1]), is a
linear isometry.
For each α ∈ [0, ω1] \ H, either α ∈ [0, ωω) or α ∈ (ωλ, ωλ+ω) for some limit ordinal

λ ∈ [ω, ω1). In the �rst case, let Aα = [0, α], in the second, let Aα = (ωλ, α]. Then Aα is
clopen in [0, ω1] and disjoint from H, so π(Aα) is clopen in K.
This implies that K is Hausdor�. Indeed, given two distinct points π(α), π(β) ∈ K,

we may suppose that α /∈ H and α < β. Then π(Aα) and K \ π(Aα) are disjoint open
neighbourhoods of π(α) and π(β), respectively.
Moreover, we can de�ne a linear map U : lin{1[0,α] : α ∈ [0, ω1]} → C(K) by

(5.1) U1[0,α] =

{
1π(Aα) for α ∈ [0, ω1] \H
0 for α ∈ H

because π(Aα) being clopen ensures that the indicator function 1π(Aα) is continuous. To
prove that U is bounded, we consider the action of U on a function of the form f =∑n

j=1 cj1[0,αj ], where n ∈ N, c1, . . . , cn ∈ K and 0 6 α1 < α2 < · · · < αn 6 ω1. We have

‖f‖ = max
{∣∣∑n

j=m cj
∣∣ : 1 6 m 6 n

}
, while for β ∈ [0, ω1],

(Uf)(π(β)) =
∑
j∈J

cj1π(Aαj )(π(β)) =
∑
j∈J

cj1Aαj (β),

where J = {j ∈ {1, . . . , n} : αj /∈ H} and the second equality follows because Aαj is
disjoint from H for each j ∈ J . Thus (Uf)(π(β)) = 0 if β /∈

⋃
j∈J Aαj . Now suppose that

β ∈ Aαj for some j ∈ J . If β ∈ [0, ωω), we let λ = 0, and otherwise we choose a limit

ordinal λ ∈ [ω, ω1) such that β ∈ (ωλ, ωλ+ω). Then, letting

k = min{j ∈ {1, . . . , n} : β 6 αj} and m = max{j ∈ {1, . . . , n} : αj < ωλ+ω},
we have β ∈ Aαj if and only if k 6 j 6 m, so

(Uf)(π(β)) =
m∑
j=k

cj =
n∑
j=k

cj −
n∑

j=m+1

cj,

and consequently |(Uf)(π(β))| 6
∣∣∑n

j=k cj
∣∣ +
∣∣∑n

j=m+1 cj
∣∣ 6 2‖f‖. This proves that U is

bounded with norm at most two. (In fact ‖U‖ = 2 because f = −21{0}+1[0,ωω ] ∈ C([0, ω1])
has norm one, so ‖U‖ > ‖Uf‖ = 2‖1{π(0)}‖ = 2.)
Since the subspace lin{1[0,α] : α ∈ [0, ω1]} is dense in C([0, ω1]), U extends uniquely to

an operator of norm two de�ned on C([0, ω1]). We now claim that the operator V = CπU
belongs to M \(X (C([0, ω1]))+G c0(ω1)(C([0, ω1]))). Once veri�ed, this claim will complete
the proof.
We have V ∈M because kVω1

= 0. Indeed, given α ∈ [0, ω1], we shall prove that Vα,ω1 = 0
by direct computation. Since rVα has countable support, we can choose a non-zero countable
limit ordinal λ such that Vα,β = 0 for each β ∈ (ωλ, ω1). Then

Vα,ω1 =
∑

β∈(ωλ,ω1]

Vα,β = (V 1(ωλ,ω1])(α) = Cπ(U1[0,ω1] − U1[0,ωλ])(α) = 0,

where the �nal equality follows from (5.1) because ω1 and ωλ both belong to H.
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To show that V /∈ X (C([0, ω1])) + G c0(ω1)(C([0, ω1])), assume the contrary, say V =

R + S, where R ∈ X (C([0, ω1])) and S ∈ G c0(ω1)(C([0, ω1])). By Theorem 1.3, we can

choose a countable ordinal σ such that R = P̃σRP̃σ, and thus

(5.2) (I − P̃σ)V = (I − P̃σ)S ∈ G c0(ω1)(C([0, ω1])).

Take a non-zero countable ordinal τ such that σ 6 ωω
τ
, and let λ = ωτ . Further, let

ι : (ωλ, ωλ · 2]→ [0, ω1] be the inclusion map, and de�ne ρ : [0, ω1]→ (ωλ, ωλ · 2] by

ρ(α) =


ωλ + 1 for α ∈ [0, ωλ]

α for α ∈ (ωλ, ωλ · 2)

ωλ · 2 for α ∈ [ωλ · 2, ω1].

Clearly ρ is continuous, and we claim that the diagram

(5.3) C((ωλ, ωλ · 2])
I //

Cρ

��

C((ωλ, ωλ · 2])

C([0, ω1])
Pωλ·2 // C([0, ω1])

V // C([0, ω1])
I − P̃σ // C([0, ω1])

Cι

OO

is commutative, where Cρ : f 7→ f ◦ ρ and Cι : f 7→ f ◦ ι denote the composition operators
associated with ρ and ι, respectively. To verify this claim, it su�ces to check the action
on each function of the form 1(ωλ,α], where α ∈ (ωλ, ωλ · 2], because such functions span

a dense subspace of C((ωλ, ωλ · 2]). We have Cρ1(ωλ,α] = 1[0,α] for α ∈ (ωλ, ωλ · 2) and

Cρ1(ωλ,ωλ·2] = 1[0,ω1], so Pωλ·2Cρ1(ωλ,α] = 1[0,α] for each α ∈ (ωλ, ωλ · 2]. Hence, by (5.1),

Cι(I − P̃σ)V Pωλ·2Cρ1(ωλ,α] = Cι(I − P̃σ)Cπ1π(Aα) = Cι(I − P̃σ)1Aα = 1Aα ,

which proves the claim because Aα = (ωλ, α].
The map α 7→ ωλ + 1 + α, [0, ωλ] → (ωλ, ωλ · 2], is a homeomorphism, so the Banach

spaces C([0, ωλ]) and C((ωλ, ωλ ·2]) are isometrically isomorphic. Hence C((ωλ, ωλ ·2]) has
Szlenk index ωτ+1 by Theorem 5.6(ii).
On the other hand, Theorem 5.6(i) implies that G c0(ω1) ⊆ SZ1, so by (5.2)�(5.3) (the

identity operator on) C((ωλ, ωλ·2]) has Szlenk index at most ω, contradicting the conclusion
of the previous paragraph. �

Remark 5.9. We shall here outline an alternative, more abstract, approach to part of the
proof of Theorem 5.8 given above as it sheds further light on a construction therein and
raises an interesting question at the end. Our starting point is the observation that the
compact Hausdor� space K de�ned in the proof of Theorem 5.8 is in fact just a convenient
realization of the one-point compacti�cation of the disjoint union of the intervals [0, ωω

α
]

for α ∈ [0, ω1).
A topological space is Eberlein compact if it is homeomorphic to a weakly compact

subset of c0(Γ) for some index set Γ. Being compact metric spaces, the intervals [0, ωω
α
]
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are Eberlein compact whenever α is countable. Therefore, by a result of Lindenstrauss [22,
Proposition 3.1], the one-point compacti�cation of their disjoint union is Eberlein compact;
that is, our space K is Eberlein compact. On the other hand, the interval [0, ω1] is not
Eberlein compact.
A Banach space X is weakly compactly generated if it contains a weakly compact sub-

set W such that X = linW . Amir and Lindenstrauss [1] have shown that a compact
space L is Eberlein compact if and only if the Banach space C(L) is weakly compactly
generated. Hence, returning to our case, we see that C(K) is weakly compactly gener-
ated, whereas C([0, ω1]) is not. This implies that the closed ideal G C(K)(C([0, ω1])) is
proper and thus contained in the Loy�Willis ideal M . By de�nition, the operator V de-
�ned in the proof of Theorem 5.8 factors through C(K). On the other hand, we showed
there that it does not belong to X (C([0, ω1])) + G c0(ω1)(C([0, ω1])), so this ideal is distinct

from G C(K)(C([0, ω1])).

To prove that X (C([0, ω1])) + G c0(ω1)(C([0, ω1])) is contained in G C(K)(C([0, ω1])), con-

sider �rst an ordinal λ of the form ωτ , where τ ∈ [1, ω1). Replacing P̃σ with 0 in (5.3),
we obtain a commutative diagram as before, and since V factors through C(K) and
C([0, ωλ]) ∼= C((ωλ, ωλ · 2]), we conclude that the identity operator on C([0, ωλ]) factors
through C(K). Hence C(K) contains a complemented copy of C([0, ωλ]), and therefore
we have X (C([0, ω1])) ⊆ GC(K)(C([0, ω1])) by Theorem 1.3. Secondly, Lemma 4.1 implies
that (1{π(ωλ+1)}), where λ ranges over all non-zero countable limit ordinals, is a trans�nite
basic sequence in C(K) equivalent to the canonical Schauder basis for c0(ω1). Proposi-
tion 5.1 ensures that the closed linear span of this sequence is complemented in C([0, ω1])
and hence also in the subspace C(K), so Gc0(ω1) ⊆ GC(K).
Thus, to summarize, we have shown that

(5.4) X (C([0, ω1])) + G c0(ω1)(C([0, ω1])) ( G C(K)(C([0, ω1])) ⊆M .

We do not know whether the �nal inclusion is proper; we conjecture that it is.
Another interesting question is whether the inclusion

G C(Kα)⊕c0(ω1)(C([0, ω1])) ⊆ SZα+1(C([0, ω1])),

established in the proof of Proposition 5.7, is proper for some, or each, countable ordinal α.

Note added in proof. After this paper was completed, we have shown in joint work with
Piotr Koszmider [15] that GC(K)(C([0, ω1])) = M , hence the �nal inclusion in (5.4) is an
equality.
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