Lancaster EPrints

Differentiated regions of human placental cell surface associated with exchange of materials between maternal and foetal blood:a new organelle and the binding of iron

OCKLEFORD, C D and MENON, G (1977) Differentiated regions of human placental cell surface associated with exchange of materials between maternal and foetal blood:a new organelle and the binding of iron. Journal of Cell Science, 25. pp. 279-291. ISSN 0021-9533

Full text not available from this repository.

Abstract

To elucidate the method of uptake of a neutral iron compound into the placenta, isolated human chorionic villi were incubated in a medium containing the substance and were fixed at intervals and subsequently examined using transmission electron microscopy. None of the specimens examined showed evidence of vesicular transport in either micro- or macro-pinocytic vesicles which were either coated or smooth-surfaced. Iron uptake may involve attachment of particles to differentiated regions of the cell surface of the syncytiotrophoblast. These differentiated zones in the syncytial cell surface are composed of morphological distinct parts and therefore probably merit classification as an organelle. Our interpretation of the organelle's structure is that it is flattened, with a maximum distance across of about 30 nm in the plane of the membrane. It is of otherwise uncertain shape but possesses a multilaminar structure. The external layer is apparently composed of the iron compound to be taken up. Beneath this is an electron-lucent layer possibly composed of glycoacalyx. The next innermost layer is continuous with the trilaminar unit membrane of the cell surface, however no trilaminar appearance is observed within the organelle. Beneath the membrane layer is an electron-dense plaque of amorphous material. Occasionally in favourable sections there is the suggestion of a thin electron-lucent strip interposed between the dense plaque and the membrane layer. The whole structure is composed therefore of 4 or 5 different regions. One possible function is that of initial binding in a process of active as opposed to passive transport of iron into the cell.

Item Type: Article
Journal or Publication Title: Journal of Cell Science
Subjects: UNSPECIFIED
Departments: Faculty of Health and Medicine > Medicine
ID Code: 49294
Deposited By: ep_importer_pure
Deposited On: 05 Aug 2011 11:13
Refereed?: Yes
Published?: Published
Last Modified: 09 Apr 2014 22:39
Identification Number:
URI: http://eprints.lancs.ac.uk/id/eprint/49294

Actions (login required)

View Item