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Abstract

Forecasts of demand are crucial to drive supply chains and enterprise resource
planning systems. Usually, well-known univariate methods that work auto-
matically such as exponential smoothing are employed to accomplish such
forecasts. The traditional Supply Chain relies on a decentralised system
where each member feeds its own Forecasting Support System (FSS) with
incoming orders from direct customers. Nevertheless, other collaboration
schemes are also possible, for instance, the Information Exchange framework
allows demand information to be shared between the supplier and the retailer.
Current theoretical models have shown the limited circumstances where re-
tailer information is valuable to the supplier. However, there has been very
little empirical work carried out. This works assesses the role of sharing
market sales information obtained by the retailer on the supplier forecasting
accuracy. Data have been collected from a manufacturer of domestic cleaning
products and a major UK grocery retailer to show the circumstances where
information sharing leads to improved accuracy. We find significant evidence
of benefits through information sharing.
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1. Introduction and Background

Since the beginning of the 20th century, one of the main problems that
Supply Chain Management has had to face is the bullwhip effect [1]. The
phenomenon consists of demand variability amplification when moving up-
wards in the supply chain [2]. Among the consequences of this amplification,
for instance, we might find excess inventory, poor customer service and poor
product forecasts. Demand signal processing, rationing gaming, order batch-
ing, and price variations are the four main sources of the bullwhip effect
sources identified in [3]

In order to avoid the bullwhip effect some authors suggest supply chain
collaboration as a mean to ameliorate it, see [4] and references herein. The
idea behind supply chain collaboration is to find a global optimal solution
for all supply chain members instead of different sub-optimal solutions for
each one [5]. Information sharing is a way to accomplish such collaboration.
In fact, information transparency is one of the ten principles proposed in [1]
to achieve bullwhip reduction.

Holweg et al. in [6] suggest a classification of four different supply chain
collaborations depending on the extent in planning collaboration and in-
ventory control. According to that scheme, we may find: i) The traditional
supply chain, where no collaboration is established; ii) Information exchange,
the supplier and retailer agree a planning collaboration; iii) Vendor Managed
Replenishment, here supply chain members collaborate in terms of inventory;
and iv) synchronised supply, where an integrated planning and inventory col-
laboration is put in place. In this paper, we will be focused on analyzing the
benefits of planning collaboration, thus, only the first two types will be con-
sidered.

Among the benefits of a planning collaboration, an improvement in fore-
casting accuracy is expected. However, there is no general agreement from
the literature at this point. In fact, some authors, based on analytical models
claim that all the information available in the market sales can be translated
upwards the stages of a supply chain by the subsequent orders. Thus, a
chain echelon might retrieve such information by means of a filter. However,
in order to make the problem mathematically tractable those works rely on
restrictive assumptions that tend to be highly modified versions of reality
[7]. For instance, they do not include the influence of promotions. However,
according to the companies studied in [8] and [9] promotions appear at 90
and 60 percent of observations, respectively. Therefore, insights obtained
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from theoretical developments are limited [7].
On the other hand, some authors based on real customer demand datasets

state that information sharing improve the forecasting accuracy [7], [10], [11].
In fact, an attempt to minimize the gap between theory and practice was
done in [11] by analyzing the influence of supply chain collaboration on the
basis of real data. Basically, an analysis of three SKUs with different level of
sales and without promotion sales were considered. Furthermore, they limit
the real customer demand and orders to models that follow an AR(1) and
ARMA(1,1) structure, respectively raising the question as to whether this is
too limiting a specification to understand the benefits achievable.

In this article, we extend the number of SKUs analyzed in our test dataset,
as well as, we neither do not assume any restriction about promotions nor
any particular structure for the customer demand. In order to achieve more
generic conclusions we use automatic system identification procedures to se-
lect the adequate structure for the supplier sales using the retailer sales infor-
mation. We employ both linear and nonlinear AR models with explanatory
(exogeneous) variables (ARX models). Looking forward, the results show
that the supplier can improve the forecast performance by using the market
sales shared by the retailer. Other univariate techniques such as ARIMA,
exponential smoothing, Moving Averages and Neural Networks where em-
ployed as benchmarks. The supply chain characteristics of the bullwhip offer
only a partial explanation of the relative errors.

This article is organized as follows: Section 2 introduces the case study.
Section 3 gives a brief description of the models considered in the paper.
Section 4 discusses the empirical experiments, while section 5 provides a
discussion of the results. Finally, main conclusions are drawn in Section 6.

2. Case study

The supply chain system consists of a serially linked two-level supply
chain, see Figure 1. There is a flow of information from the market towards
the manufacturer and an inverse one regarding materials. Market sales and
shipments from the manufacturer are the measured variables, indicated by
the sensors in figure 1. There is also a switch that represents the option of
sharing information. When the switch is off it means that we are considering
the traditional supply chain case. When it is on, market sales information is
available for the manufacturer.
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Data from a manufacturing company specialized in household products
has been collected. The data has been sampled weekly between October
2008 and October 2009. This manufacturing company provides products
to one of the largest retailers in UK. The data consist of two time series
per SKU, the first one corresponds to the shipments received by the retailer
from the manufacturer. The second one, is the customer demand measured
by the retailer sales. It should be noted that previous works [11] use the
retailer orders as a measure of supplier sales. Given that we just had available
information about volume received by the retailer, we employed that volume
as a measure of supplier sales. The volume received by the retailer is a
delayed version of the retailer orders time series.

In summary, the dataset under study comprises 43 Stock Keeping Units
(SKU) with 52 observations per SKU. An example is depicted in Figure 2.

2.1. Exploratory Data Analysis

In Figure 2 we can clearly see the demand variance amplification phe-
nomenon. A possible way to measure the bullwhip effect is to use the ratio
of standard deviations between the output supplier sales and the input re-
tailer sales. Let the Bullwhip Ratio (BWR) be denoted by:

BWR = σsupplier/σretailer. (1)

Dejonckheere et al. in [12] propose other two bullwhip measures based
on the frequency response plot (FR). However, in order to compute the fre-
quency response plot is necessary to model the replenishment rule and calcu-
late the corresponding transfer function between the customer demand and
retailer orders. For the sake of generality, the replenishment rule used by the
retailer is assumed unknown. Thus, in this article we will measure the BWR
as defined in (1). However, it should be pointed out that if extreme (very
high or low) sales are expected as a consequence of a promotion campaign,
(1) may be estimated by means of the Median Absolute Deviation. This
latter statistical measure provides a more robust version less sensitive to ex-
treme observations. The above measure has a significant weakness for time
series data. If either time series of the supplier or the retailer sales exhibit
trend (local or global) or seasonality the estimation of σsupplier or σretailer

does not measure only the variability around the level of the time series that
one would need, but additional variability due to the nonstationarities in the
time series.
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To overcome these limitations we propose a new method to measure the
Bullwhip Ratio. Given a time series y, we fit a Least Absolute Deviation
(LAD) regression and calculate the Root Mean Squared Error of the resid-
uals, which essentially measures the deviation around a robust estimation
of the level of the time series, instead of the mean y as in the normal stan-
dard deviation calculation. The LAD regression is similar to normal OLS
regression, with the exception that the cost function is based on absolute
instead of squared errors, therefore it is more robust to outlying values, such
as promotions. We denoted this as σyLAD

. This new estimator is robust to
outliers and additionally can follow changes in the level of the time series,
thus resulting in more informative measurement of BWR. We propose:

Robust BWR = σsupplierLAD
/σretailerLAD

, (2)

as a robust estimation of the Bullwhip Ratio, which we will use in the
analysis that follows.

Figure 3 shows the histogram of BWR calculated using (1) and (2). In
this figure we can see that the two measures provide different results, with
the Robust BWR showing higher measured ratios, due to the more robust
estimation of the time series deviation around the mean. The differences be-
tween the two measures are primarily due to the differences between σretailer

and σretailerLAD. Furthermore we can observe that under both estimations the
resulting histogram is bimodal. The first peak is located around BWR=1.5
and the second one is placed at BWR=3.5 and BWR=4 approximately, de-
pending on the calculation. Note that some SKUs can reach a BWR greater
than 4.

According to Figure 3 we can classify the SKUs in our dataset depending
on the BWR. Considering the Robust BWR and taking a value of 3.24 as
a threshold, SKUs with BWR bigger than 3.24 are denoted as High BWR
group and those SKUs lower than 3.24 correspond to Low BWR. Table 1
shows some descriptive statistics. Observe that for both measurements the
number of High BWR SKUs is lower than the Low BWR ones.

Figure 4 plots the relationship between the mean of both the retailer and
supplier sales for the SKUs of our database. Given that the relationship
is linear with a regression coefficient equal to 1 approximately, we can con-
clude that the replenishment rule is focused on following the level of the real
customer demand. However, what if we analyze the relationship between
variances instead of means? Figure 5 is a scatter plot between the variance
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of supplier and retailer sales. In contrast to the previous figure, the linear
relationship is not so clear and the regression coefficient is 1.6, that is greater
than 1. This observation verifies the Bullwhip Effect (BE).

3. Models

Two kind of models have been analysed to find out whether retailer sales
information is useful for the supplier to improve its forecasting accuracy.
On the one hand, we employ univariate models, such as Single Exponential
Smoothing (SES), Autoregressive (AR), Moving Average (MA) and Autore-
gressive Integrated Moving Average (ARIMA) models, a univariate Neural
Network and a Näıve method. These methods only rely on past information
of supplier sales to forecast and so, no information sharing is accomplished.
We employ both linear and nonlinear methods in order to capture potential
nonlinearities in the data and produce adequate benchmarks. On the other
hand, a multivariate ARX model and multivariate Neural Networks have also
been used, where suppliers sales and retailer sales are used as dependent and
explanatory variables, respectively.

3.1. Näıve and Moving Average

In order to reduce the time series random variation and to extract the low-
frequency trend-cycle component a moving average can be used. A moving
average forecast of order k, or MA(k), is given by:

Ft+1 =
1

k

t
∑

t−k+1

yi. (3)

The order has been identified by minimizing the sum squared error of the
one-step-ahead errors. Note that the Näıve approach used in this paper is a
MA(1), since the last known data point (yt) is taken as the forecast for the
next period, which is the well known Random Walk.

3.2. Single Exponential Smoothing

Since around 1950 the use of Exponential Smoothing with forecasting
purposes have been the most popular forecasting methods used in business
and industry [13, 14]. Basically, the Single Exponential Smoothing (SES)
consists of adjusting the previous forecast by weighting the forecast error,
i.e:
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Ft+1 = Ft + α(yt − Ft), (4)

where α is a constant between 0 and 1. This parameter may be set on a

priori grounds that usually is between 0.05 and 0.3. However, if a reasonable
number of observations are available, α can be estimated by minimizing the
sum of the one-step-ahead squared forecast errors.

3.3. AR and ARIMA processes

[15] propose a general framework based on an autoregressive integrated
moving average (ARIMA) process of order (p,d,q) to model stationary and
nonstationary time series. The process can be expressed by:

φ(B)(1−B)dyt = θ(B)at, (5)

where yt is an observable time series and at is a white noise process
having mean zero and variance σ2

a. The backward shift operator is denoted
byBzt = zt−1. The Autoregressive and Moving Average operators are defined
by φ(B) and θ(B) polynomials of order p and q respectively, such as:

φ(B) = 1− φ1B − φ2B
2 − · · · − φpB

p, (6)

θ(B) = 1− θ1B − θ2B
2 − · · · − θqB

q. (7)

The automatic identification procedure consists of selecting the best ARIMA
model from a full range of possibilities according to the Akaike Information
Criterion (AIC) normalized by sample size n that combines the fit of the
model with the number of parameters used in order to avoid over parame-
terisation, i.e.

AICp,q ≈ ln(σ̂2

a) + r
2

n
, (8)

where r = p + q. The models estimated include orders: i) p=1,2,3; ii)
q=1,2,3; and iii) d=1,2.

A simpler form of the model involves only the identification of the au-
toregressive part, which is essentially a dynamic regression on past lags of
the time series. The identification of the AR order is done again by AIC
optimisation and the model assumes stationarity of the time series.
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3.4. ARX models

An ARX model structure can be expressed by a linear difference equation:

yt + a1yt−1 + . . .+ ana
yt−na

= b1ut−nk
+ . . .+ bnb

ut−nk−nb+1 + at, (9)

where AR refers to the autoregressive part and X to the extra input,
sometimes called the exogenous variable. The parameters na and nb are
the orders of the ARX model, and nk is the number of input samples that
occur before the input affects the output, also called the dead time in the
system [16], and yt and ut stand for the volume received and retailer sales,
respectively. Model orders na, nb and nk have been chosen by minimizing
the AIC. Model selection and the estimation of the unknown parameters ai,
i = 1, . . . , na and bj, j = 1, . . . , nb have been done by means of the routines
implemented in the System Identification toolbox (MATLABTM)

3.5. Neural Networks

Artificial Neural Networks (NN) have been successfully applied in both
univariate and multivariate time series forecasting. The most widely em-
ployed architecture is the multilayer perceptron (MLP). These are well re-
searched regarding their properties and have been shown to be able to gener-
alise any linear or nonlinear functional relationship between the inputs and
the outputs, to any degree of accuracy without any prior assumptions about
the underlying data generating process [17, 18].

Feed-forward architectures of MLPs are used to model nonlinear au-
toregressive NAR(p)-processes or NARX(p)-processes using exogeneous vari-
ables. Given a time series y, at a point in time t, a one-step ahead forecast
Ft+1 is computed using p = I inputs that can be lagged observations of yt or
explanatory variables, lagged or not. I denotes the number of input units pi
of the NN. The functional forms is

Ft+1 = β0 +
H
∑

h=1

βhg

(

γ0i +
I
∑

i=1

γhipi

)

. (10)

where w = (β, γ) are the network weights and β = [β1, . . . , βH ], γ =
[γ11, . . . , γHI ] are for the output and the hidden layer respectively. The β0

and γ0i are the biases of each neuron. I and H are the number of input and
hidden nodes in the network and g(·) is a non-linear transfer function, which
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is usually either the sigmoid logistic or the hyperbolic tangent function ([19]).
MLPs offer extensive degrees of freedom in modeling for prediction tasks.
The modeler must choose the appropriate data and its pre-processing, the
NN architecture, the signal processing within nodes, the training algorithm
and the cost function. For a detailed discussion of these issues and the ability
of NNs to forecast time series, the reader is referred to [17].

In this analysis we develop both univariate and multivariate networks.
The networks use the inputs identified for the AR and ARX models discussed
before. The rest of the parameters of the networks are identified through
simulation and are provided in Table 2. The univariate model is named
NAR and the multivariate is named NARX. Furthermore, we provide the
results for model NARX-Lin which involves direct connections of the inputs
to the output layer, as well as through the hidden node, thus achieving direct
modelling of both linear and nonlinear information. The model is formulated
as:

Ft+1 = β0 +
H
∑

h=1

(

βhg

(

γ0i +
I
∑

i=1

γhipi

))

+
I
∑

i=1

δipi, (11)

where δi are the connecting weights between the inputs and the output
node, which is linear. Results for a univariate NAR-Lin model are not pro-
vided since there was no accuracy gains over the NAR model.

All networks use for their training Bayesian Regularisation and no vali-
dation set is needed as in typical NN training [20]; therefore we use exactly
the same data for training and evaluating the NNs as for the other models.
All models use the sigmoid logistic function for their hidden layers:

f(p) = 1/(1 + exp−p), (12)

where p is an input. The networks are built using the Neural Network
toolbox (MATLABTM) using standard functions.

4. Empirical results

In this section predictive validation is used to compare models. For this
purpose, 20% of the data constituted by the last 10 weeks of each SKU are
kept for comparing the performance of the proposed methods, as hold-out
sample. These last 10 weeks are not used for the parameter estimation of
the models. All forecasts considered are one-step-ahead. The results are first
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analysed by forecasting accuracy, assessing whether the methods that include
downstream information are more accurate or not. Afterwards, encompassing
tests are carried out to identify if the multivariate methods add significantly
more information in comparison to the univariate methods.

4.1. Out-of-sample forecasting performance

Forecast errors are measured across time for each SKU by means of the
Mean Absolute Percentage Error (MAPE) and the Median Absolute Percent-
age Error (MdAPE), i.e:

MAPE = mean(|PEt|),

MdAPE = median(|PEt|),

where PEt is the percentage error given by PEt = 100|yt − Ft|/|Yt|,
t = 1, . . . , N . Here, yt stands for the actual value and Ft is the forecast,
both of them at time t. Obviously, the MdAPE is a more robust imple-
mentation of MAPE. These measures are chosen due to their simplicity of
interpretation and applicability to this particular dataset. A rolling origin
one-step ahead forecast is produce for each of the 10 weeks in the out of
sample. The percentage errors of these forecasts are used to calculate the
MAPE and MdAPE of each individual SKU across the different time ori-
gins, which are afterwards aggregated in dataset average figures, obtaining
the Mean(MAPE), Mean(MdAPE) as overall error measures over all SKUs.
These latter measures will be used to compare forecasting accuracy between
the forecasting methods.

Table 3 shows the Mean of the MAPE and MdAPE of the considered
methods. In this table the minimum values are highlighted in bold. We
can easily observe that the multivariate methods are more accurate than
the univariate ones. This indicates that information sharing reduces the
forecast errors on average. Note that AR, NAR, MA, SES, and ARIMA
obtain similar error level. Regarding the forecast error variability measured
by the standard deviation provided (St. Dev.) in table 3, it is apparent that
the multivariate models on average exhibit lower dispersion, with the lowest
achieved by ARX. Across the univariate models the lowest error variability is
achieved by the nonlinear NAR. The same conclusions can be obtained from
the forecast error boxplots of the MAPE and MdAPE across SKUs depicted
in Figure 6. We provide the mean error on the same figure as well. Again,
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the multivariate models show a better performance in comparison to the rest
of the techniques.

We have performed statistical tests to identify whether the reported ac-
curacy differences are significant. To avoid any assumptions of normality
we employ a series of non-parametric tests. Initially we use the one-way
Friedman tests, which is the non-parametric analogous to the ANOVA test;
therefore testing if at least one of the methods is performing significantly dif-
ferent from the rest. For all MAPE, MdAPE and St. Dev there are significant
differences with reported p-values equal to 0. To clarify which methods per-
form significantly different we use the Nemenyi post-hoc test. This is again
a non-parametric test, based on calculating the mean rank of each method.
A critical distance for the set of methods compared is computed and any
methods within this critical distance from another method has no significant
differences. The reader is pointed for more information to [21]. The numer-
ical results of the non-parametric tests are provided in Table 4, whereas a
visualisation of the results of the Nemenyi test is provided in Figure 7.

The statistical tests indicate clearly that that the results can be separated
into two groups of methods; the univariate and the multivariate. There are no
statistically significant differences in accuracy for both MAPE and MdAPE
across the multivariate methods; hence it is impossible to conclude that one
of these methods performs better. Among the univariate methods there is
a similar picture, with the exception of the Näıve method that significantly
underperforms compared to NAR, SES and ARIMA.

Therefore, from these results we can claim that sharing information re-
duces the forecast error mean and variability and is beneficial.

4.2. Encompassing tests

A forecast encompassing test allows us to evaluate whether a forecasting
method contains more valuable forecasting information compared to another
method, or simply if a method encompasses another. This way we can test
the hypothesis if the univariate models are encompassed by the multivariate
models that make use of the information sharing, i.e. they contain more
valuable information, or not; hence providing further evidence of the benefits
of such a process. There are a number of models that can be used as the
basis of encompassing tests [22]. The test we use is based on:

yt = α0 + α1F1t + α2F2t + et, (13)
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where F1t and F2t are the forecasts of two methods, α0 is a constant that
permits the possibility of bias and yt is the observation at time t. Equation
(13) can be examined either in an unconstrained or a constrained form, where
in the latter α1+α2 = 1. Here we use the later, since without the constraint
the results show little more than the possible collinearity of the methods.

Table 5 presents the results of the encompassing tests. We provide the
p-value of each combination of models. Combinations of models with in-
significant contributions are in boldface. In this table we want to evaluate
whether the multivariate models offer additional useful information to the
univariate models, indicating a beneficial effect of information sharing and
also to examine whether the univariate models capture additional informa-
tion, in comparison to the multivariate models. From table 5 we can conclude
that all ARX, NARX and NARX-Lin contribute significantly to the univari-
ate models. On the other hand, only NAR, MA and the Näıve methods
contribute to ARX, but not to NARX or NARX-Lin. This can be explained
by possible nonlinearities in the time series that are captured by all NAR,
NARX and NARX-Lin methods, but not by ARX. Furthermore, we can ob-
serve that the inclusion of the direct linear modelling of information with the
NARX-Lin method has a minor effect on the significant contribution of ARX
on its nonlinear counterparts. From these results we conclude that the uni-
variate methods have not captured additional significant information over the
multivariate, whereas the opposite is true, due to access of the multivariate
models to downstream information of the supply chain.

5. Discussion

We have provided evidence that information sharing can lead to signifi-
cant improvements in forecasting accuracy. In this section we will investigate
if there is any connection between the BWR and the accuracy gains of using
downstream information of the supply chain. In other words we will try to
establish the conditions under which information sharing can be beneficial in
reducing forecasting error, considering the magnitude of bullwhip observed
for each SKU.

The observed forecasting error for a particular SKU can be viewed as the
sum of several factors that make the time series harder to forecast and more
random. In general, the Bullwhip effect is thought to be one of these factors,
making the forecast less accurate as one moves up-stream in the supply chain
[2]. However, the nature and the magnitude of this connection is neither well
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established, nor well researched. Here we propose a simple framework to
measure this.

Discounting the Bullwhip effect, the remaining error can be attributed to
the forecastability of a product, i.e. the difficulty of forecasting a time series
because of its properties and structure, i.e. presence of trend, seasonality,
irregular components in the time series and so on. There are time series that
are easy to forecast, while others can be more challenging, due to their statis-
tical properties. Before we measure the impact of Bullwhip effect on an SKU,
we need to determine its degree of forecastability first and quantify it. We
propose to construct such a measure by calculating the relative forecasting
error in different levels of the supply chain. More specifically in our case we
are considering the levels of supplier and retailer, therefore we define as a de-
gree of forecastability: Relative Error = Supplier Error/Retailer Error.
Given the error measures we have already used this becomes:

Relative MAPE = MAPEsupplier/MAPEretailer,

Relative MdAPE = MdAPEsupplier/MdAPEretailer. (14)

Note that the proposed relative error includes potential forecasting errors
due to the Bullwhip effect in the supplier time series, or more generally in
the up-stream data. Therefore, although it does not allow us to separate the
two sources of error, it allows us discount the internal forecastability of the
time series. A ratio equal to 1 would imply that the difficulty of forecasting
a particular SKU is equal, i.e. has the same forecasting errors, at supplier
and retailer level. If the ratio is above 1 then the product is more difficult at
supplier level, while the opposite would imply that forecasting that product
becomes harder at retailer level. Therefore, once we calculate the relative
errors at different levels of the supply chain we can investigate whether the
change in forecastability is due to the Bullwhip effect or not. It is imperative
that we consider the same forecasting method for producing forecasts at both
levels of the supply chain, so that we have a fair comparison and not bias our
errors in favour of a particular method. That implies that we have to use an
adequate univariate method, as there is no downstream information sharing
at the retailer level. Based on our forecasting accuracy results in table 3 we
use SES to construct the relative accuracy ratio, given its good performance
in producing forecasts at a supplier level. Table 6 provides the descriptive
statistics of both relative errors defined in (14). On average there is a decrease
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in forecastability (increase of the forecasting errors) for the supplier of 360%
and 298% according to relative MAPE and relative MdAPE respectively. It
is noteworthy that while relative MAPE is always larger than 1, indicating a
degredation of forecastability for the supplier time series, this is not always
true for the relative MdAPE.

In section 2 we established a robust measurement for the BWR. We will
use this as an estimate of the Bullwhip effect and investigate whether we can
identify significant relationships between the degradation of forecastability
and the BWR. Our hypothesis is that there should be a positive relationship
between these two variables, which we test using regression modelling. We
test both a linear and a quadratic specification of the model, to evaluate
possible nonlinearities. These models are:

Linear : Relative Error = α0 + α1BWR + e, (15)

Quadratic : Relative Error = α0 + α1BWR + α2BWR2 + e. (16)

A significant α1 indicates that there is a linear connection between the
degradation of accuracy and the BWR, with a positive coefficient implying
that high BWR results in higher increase of the forecasting errors. Table
7 provides the estimated coefficients, their p-values for each case, the coef-
ficient of determination R2 and the adjusted R2 for each model. We can
see that there is a significant positive linear relationship in both MAPE and
MdAPE, implying that indeed high BWR has a worse impact on forecasting
accuracy. However, modelling BWR seems to account only for about 20% to
23% of the observed variability, depending on the error metric used. This be-
comes clearer in figure 8 where the relative errors are plotted against BWR.
Furthermore, regarding relative MAPE there seems to be some evidence of
nonlinearity that is not captured adequately by the quadratic model.

Instead of using the relative forecasting error we can model directly the
supplier’s error as a function of BWR and the retailer’s error. Here we try
to explicitly separate the forecasting error sources due to the time series
properties and due to Bullwhip effect. In this case the models become:

Linear : errorsupplier = α0 + α1errorretailer + α2BWR + e, (17)

Quadratic : errorsupplier = α0 + α1errorretailer + α2BWR +

α3errorretailer ·BWR + α4error
2

retailer +

α5BWR2 + e, (18)
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where errorsupplier and errorretailer are the supplier and retailer forecast
errors. The quadratic model includes the interaction term errorretailer ·BWR.
The objective of these models is to evaluate whether with this formulation
we can explain further errorsupplier. Table 8 lists the coefficients, the p-values
of the models, coefficient of determination R2 and the adjusted R2 for each
model. In this case we can see that the quadratic model with the interaction
term increases R2 substantially, accounting for 47% or 40% of the variabil-
ity of supplier’s errors for MAPE and MdAPE respectively. Considering the
model coefficients, the results for the linear models are similar to the previous
models. There is a significant positive relationship of both errorretailer and
BWR with errorsupplier, which means that high BWR reduces forecasting ac-
curacy for the supplier. The quadratic models are more difficult to interpret,
however we can see that there are significant nonlinearities, expressed either
as quadratic or interaction terms, implying that there is potential for building
nonlinear models to explain how the BWR affects forecasting accuracy.

Finally, we investigate whether the change in forecasting error due to the
use of downstream information in the supplier forecasts is related to BWR.
For this we calculate the error change for both MAPE and MdAPE as:

MAPEchange = (MAPESES −MAPENARX−Lin)/MAPESES, (19)

MdAPEchange = (MdAPESES −MdAPENARX−Lin)/MdAPESES,(20)

where the subscripts SES and NARX−Lin indicate the errors due to the
respective models that demonstrated good performance in table 3. The cor-
relation between MAPEchange and BWR is -0.214, while for MdAPEchange

and BWR it is 0.101. Both are insignificant at 1%, 5% and 10% significance
level. We provide scatterplots between the error change and BWR in figure
9. Fitting linear regression verifies that BWR is not a significant regressor
and therefore we conclude that the forecasting error reduction due to infor-
mation sharing is not explained by BWR. We found similar results for all
multivariate models in this analysis.

6. Conclusions

The utility of information sharing with regards to forecasting performance
is a controversial point. Theoretical analysis relying on restrictive assump-
tions claims that all the information available in the market sales can be
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extracted by the upstream level in the supply chain by filtering the retailer
orders signal. Therefore, market sales information sharing would not bring
significant improvements in terms of forecasting accuracy. On the other
hand, empirical analysis accomplished in particular companies reached dif-
ferent conclusions. Mainly, they see a clear benefit of sharing information.
Nonetheless, the number of case studies is still small.

The results of this paper conclude that information sharing improves fore-
casting performance, resulting in 6% to 8% lower MdAPE and MAPE respec-
tively. That result was based on the benchmarking of multivariate against
univariate models using a real dataset, based on a serially linked supply
chain. Automatic system identification techniques were employed to model
the supplier demand. In addition, no restrictions about either promotions,
replenishment rules or demand were imposed. Statistical tests indicated sig-
nificant gains in forecasting accuracy of the multivariate models over the
univariate models, demonstrating a clear benefit of information sharing for
reducing forecasting errors. Furthermore, we employed forecast encompass-
ing tests to identify whether there is significant information that was missing
in either uni- or multivariate models and concluded that the multivariate
models contributed significantly to all univariate models, while the opposite
was not true. This provides further empirical evidence of the importance of
information sharing. In addition, no support was found for the assumption
of some earlier work that the supplier can recover the statistical structure of
downstream demand with no information sharing.

We also explored the connection between the extend of the Bullwhip ef-
fect, measured by the Bullwhip Ratio and forecasting accuracy. Initially we
proposed a more robust measurement of BWR and showed that there is a
significant positive relationship, i.e. higher BWR leads to higher forecast-
ing errors for the supplier and we provided evidence of nonlinearities in this
relationship. Once we consider the change in forecasting accuracy achieved
by information sharing, we found no evidence that BWR can explain the
observed error reductions. Therefore, while the BWR arises in part from
downstream demand variability and supply chain processes, it does not de-
termine supply forecasting accuracy once information sharing is considered.

Further research can be addressed on extending the case study to dif-
ferent industries and relaxing the mathematical restrictions to make wider
the application of the results. Defining new measures for the Bullwhip Ef-
fect remains an open question and could depend on the company, industry or
product category, etc. Is the same amplification observed for every category?
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Different industries lead to different BE factors? More informative measures
could also lead to better connection between upstream forecasting accuracy
and the Bullwhip Effect. Then the gap between reality and theory may be
reduced.
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Table 1: Descriptive statistics for BWR.

Obs. Min Median Mean Max Std

BWR
Low 25 1.34 2.02 1.94 2.65 0.41
High 18 2.97 3.61 3.63 4.54 0.42
All 43 1.34 2.37 2.65 4.54 0.94

Robust BWR
Low 26 1.32 2.13 2.13 3.08 0.57
High 17 3.44 4.03 4.13 5.57 0.59
All 43 1.32 2.71 2.92 5.57 1.14
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Table 2: Neural Network models design parameters.

Model Name Hidden Nodes Bias (Hidden, Output) Training Epochs Scaling
NAR 1 No, Yes 2000 [-0.75, 0.75]

NARX 8 Yes, No 2000 [-0.75, 0.75]
NARX-Lin 11, 1 No, No, No 2000 [-0.75, 0.75]
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Table 3: Mean of the MAPE %, MdAPE % and standard deviation of the residuals for all forecasting methods.

Method
Univariate Multivariate

Näıve AR NAR MA SES ARIMA ARX NARX NARX-Lin
MAPE % 47.05 38.20 34.82 36.28 34.43 34.50 26.63 27.61 26.97

MdAPE % 35.46 25.41 23.53 26.50 23.16 22.96 17.35 17.62 17.18
St. Dev. 3183.67 2562.06 2175.20 2555.98 2285.67 2269.31 1880.92 1922.75 1888.70

Lowest figure in each row is in boldface.
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Table 4: Friedman and Nemenyi tests results.

Metric Friedman p-value
Nemenyi Mean Rank*

Näıve AR NAR MA SES ARIMA ARX NARX NARX-Lin
MAPE % 0.000 7.88 6.21 5.14 6.47 5.49 5.44 2.56 3.09 2.72

MdAPE % 0.000 7.76 5.84 5.35 6.52 5.30 5.12 3.23 2.88 3.00
St. Dev. 0.000 8.40 6.63 4.37 7.30 5.60 5.33 2.28 2.84 2.29

*Lowest mean rank is better; Critical distance for Nemenyi test are 2.12, 1.83 and 1.69 for 1%, 5% and
10% significance level respectively.
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Table 5: Encompassing tests results.

p-value
Method II

Näıve AR NAR MA SES ARIMA ARX NARX NARX-Lin

M
et
h
o
d
I

Näıve - 0.001 0.004 0.155 0.314 0.027 0.043 0.267 0.116
AR 0.000 - 0.000 0.000 0.071 0.112 0.864 0.610 0.776

NAR 0.000 0.000 - 0.000 0.005 0.000 0.045 0.490 0.190
MA 0.000 0.000 0.000 - 0.545 0.000 0.021 0.145 0.062
SES 0.000 0.000 0.000 0.000 - 0.000 0.643 0.704 0.374

ARIMA 0.000 0.000 0.000 0.000 0.000 - 0.729 0.721 0.930
ARX 0.000 0.000 0.000 0.000 0.000 0.000 - 0.000 0.002

NARX 0.000 0.000 0.000 0.000 0.000 0.000 0.269 - 0.483
NARX-Lin 0.000 0.000 0.000 0.000 0.000 0.000 0.013 0.000 -

The p-value shows whether method I contributes significantly to method II. Insignificant contributions
at 5% level are shown in boldface.
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Table 6: Descriptive Statistics for Relative Errors.

Obs. Min Median Mean Max Std
Rel. MAPE 43 1.28 3.62 4.60 14.99 3.09

Rel. MdAPE 43 0.51 3.58 3.98 9.93 2.14
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Table 7: Coefficients and R
2 of models using BWR to explain relative errors.

Linear Quadratic

MAPE

α0 1.05 (0.381) 4.72 (0.111)
α1 1.22 (0.003) -1.49 (0.457)
α2 - 0.43 (0.173)
R2 0.203 0.239

adj. R2 0.183 0.201

MdAPE

α0 1.34 (0.100) 1.12 (0.580)
α1 0.90 (0.001) 1.07 (0.442)
α2 - -0.03 (0.902)
R2 0.233 0.234

adj. R2 0.215 0.195

Number in brackets are p-values. Values in boldface are significant at 5%
level.
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Table 8: Coefficients and R
2 of models using downstream prediction error and BWR to

explain upstream error.

MAPE MdAPE

Linear

α0 0.01 (0.927) 0.07 (0.237)
α1 1.64 (0.001) 1.05 (0.002)
α2 0.06 (0.028) 0.03 (0.060)
R2 0.256 0.213

adj. R2 0.219 0.174

Quadratic

α0 0.67 (0.037) 0.12 (0.434)
α1 -1.47 (0.630) 3.22 (0.096)
α2 -0.35 (0.020) -0.07 (0.344)
α3 1.63 (0.048) 0.02 (0.960)
α4 -0.75 (0.882) -9.83 (0.036)
α5 0.05 (0.016) 0.02 (0.145)
R2 0.470 0.404

adj. R2 0.398 0.323

Number in brackets are p-values. Values in boldface are significant at 5%
level.
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