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Abstract
The railway industry offers similar revenue management opportunities to those
found in the airline industry. The railway industry caters for the delivery and
management of cargo as well as the transport of passengers. Unlike the airline
industry, the railway industry has seen relatively little attention to revenue man-
agement problems.

We provide an overview of the published literature for both passenger and
freight rail revenue management. We include a summary of the some the avail-
able models and include some possible extensions. From the existing literature
and talks with industry, it is clear that that there is room to exploit revenue man-
agement techniques in the railway industry, an industry that has revenues of $60
billion in the US and promises huge growth in Europe in the forthcoming years.
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1 Introduction

During the past 40 years there have been numerous advances in the field of revenue

management. Though the field is now well-established, academic researchers have ne-

glected to investigate certain industries. While the airline and hotel industries have

received their fair share of attention, the passenger rail and freight rail industries have

been overlooked. There is still little published research on these industries.

The lack of attention on the part of academic researchers is inexplicable. Consider

the following. The rail industry boasts large revenues: $60billion for freight rail in the

US (Association of American Railroads 2009), Amtrak saw $2billion in 2009 (Amtrak

2009) and combined revenues for all passenger rail operators in the UK for 2009 were

in excess of £6billion (Office of Rail Regulation 2009).

In addition, rail is a green alternative to other modes of transport. A number of

countries, including the UK, are making a big effort to reduce carbon emissions. Pas-

senger and freight rail traffic will almost certainly increase massively over the next

decade. The number of kilometres travelled by passenger rail has been increasing year-

on-year in the UK (Office of Rail Regulation 2009). In the US, where the rail network

is less developed than Europe and Asia, $8billion has been made available under the

American Recovery and Reinvestment Act of 2009 for the purpose of rebuilding high

speed rail links throughout the country.

In this article we provide an overview of the literature on railroad passenger revenue

management (RPRM) and railroad freight revenue management (RFRM). The objective of

this paper is to aggregate the available work and to present a list of the available models

along with the problems faced by the rail industry. The paper does not provide a

general overview of revenue management – the interested reader should refer to McGill

and van Ryzin (1999) and Chiang et al. (2007). Similarly, there is some overlap between

the application of revenue management and operations research to rail freight, detailed

overviews can be found in Macharis and Bontekoning (2004) and Bontekoning et al.

(2004). Rail freight car scheduling is the most closely related application, a survey of

such methods can be found in Cordeau et al. (1998).

This paper is structured in the following way. We first discuss the similarities and

differences between the passenger and freight rail industries. We then present a sum-

mary of all the published work related to RFRM and RPRM. The literature is then dis-

cussed §3 followed some minor extensions to passenger rail models in §4. Finally, in

§5 we present future research opportunities and in §6 we conclude the document.
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2 Passenger and Freight Rail

Passenger and freight services vary country to country. Obviously, they all serve to

transport either cargo or passengers from one place to another along some route. For

clarity, let’s define a service as a train travelling from an origin to a destination at

a specific time. Additionally, a service may have intermediate terminals (or railway

stations) where something can be loaded or unloaded. The service travels along some

route, where a route is made up of at least one leg, where a leg is defined as two

adjacent stations.

In both industries, the goal of revenue management goal is to find the optimal

max of passengers or cargo travelling along each leg in order to maximise the overall

revenue. For passenger services, this can be achieved by the pricing of tickets a specific

way or by the limiting of the availability of tickets to passengers. For freight services,

the problem is more complex in organisation. The remainder of this section highlights

why.

The (obvious) key difference between the two industries is that they carry very dif-

ferent items. This is significant because freight has the additional operational burden of

loading and unloading the cargo. Additionally, the cargo needs to be managed around

these situations. This leads to a variety of complex issues pertaining to the way each

carriage (or truck) is loaded so as to reduce the pickup and setoff times at intermediate

terminals. The normal strategy is to form a block of carriages that share a common

origin and destination thus simplifying the operational procedures at the terminals.

In freight rail, it is possible to annul and/or consolidate services should it suit the

service operator. Typically, this is not possible in passenger rail: time-tabled services

are only cancelled under exceptional circumstances. It is also possible to add or remove

carriages, which provide rail freight operators with variable capacity and more freedom

to match demand. Conversely, in the passenger rail industry, the number of carriages

is only modified in exceptional circumstances. On some routes, passenger services will

travel with a very low load factor.

The two industries deal with very different types of customers. Freight rail deals

with a small number of customers who can be dealt with at a fairly personal level.

There may also be contractual agreements between the operator and customer. On the

other hand, passenger rail deals with a large number of customers. Moreover, rail fares

can be purchased in a variety of ways. In some countries, passenger services allow

customers to travel on any service on the same open ticket without their having to seek

authorisation. Naturally, this, coupled with the lack of check-in procedures can make

demand estimation a difficult process.
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Finally, the booking horizons are significantly different. Passenger rail services can

see demand occurring from as far out as three months. For freight rail it can be as

little as 0–24 hours (Campbell 1996). Both of these booking profiles provide different

challenges for the operator.

In summary, it is clear that passenger rail is more closely related to the airline in-

dustry than freight rail. There are to be sure some differences: the services are more

frequent, there are more walk-up customers and there are multiple legs that share the

same resource. In general, though, the problems are quite similar. The freight indus-

try shares some similarities with the airline industry, but has additional constraints

and factors that make the problem of revenue management difficult to solve. The rev-

enue management problems of freight rail are very closely related to those of the car

scheduling business. In any case, the common goal for both industries can be defined

as which orders to accept/reject and where appropriate, how to handle accepted orders

in a way that is beneficial to revenue.

3 Literature

There is little literature on either passenger rail or freight rail. This is probably due to

the limited number of such services in the USA, where air travel is the more common

form of transport. Ciancimino et al. (1999) came to similar conclusions. Similarly,

the use of rail for freight has been on the decline in the USA for years (Association of

American Railroads 2010). Despite this, both types of rail services are very common

in the UK and mainland Europe. In countries like the UK, the use of rail freight is

on the increase (Institution of Mechanical Engineers 2009) and will almost certainly

continue to grow as more and more companies strive to reduce their carbon emissions

and governments seek to reduce road congestion via modal switch.

Previous RM surveys have identified a few pieces of work related to rail, the common

set is typically: Kimes (1989), Strasser (1996) and Ciancimino et al. (1999). Kimes (1989)

presents a general approach to revenue management and identifies areas where RM can

be applied – it does not explicitly deal with rail. Strasser (1996) is often categorised as

rail passenger revenue management, this is incorrect as it deals with rail freight revenue

management. Ciancimino et al. (1999) appears to be the first published piece of work

to deal with revenue management for passenger rail services and Campbell and Morlok

(1994) and Campbell (1996) to be amongst the first that deals directly with revenue

management for freight services. Table 1 provides a chronological listing of literature

that deals with revenue management for rail.

The following subsections provide an overview of the literature for both fields.
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Sector Count Reference

Freight 12 Allman (1972), Strasser (1992), Nozick (1992),
Kwon et al. (1993), Campbell and Morlok (1994),
Kwon (1994), Strasser (1996), Campbell (1996),
Kraft (1998), Kraft et al. (2000), van Slyke and
Young (2000), Kraft (2002)

Passenger 6 Ciancimino et al. (1999), Kraft et al. (2000), Hood
(2000), Sibdari et al. (2008), Bharill and Rangaraj
(2008), You (2008)

Table 1: Summary of Railway Revenue Management Literature

3.1 Rail Freight Revenue Management

Rail freight can be categorised into three types: intermodal, general carload and unit

(or bulk flow) train. Intermodal freight transport is the utilisation of a variety of modes

of transport (e.g. truck, rail or ship) to move a container without handling the cargo

within. General carload freight can be considered as anything that is not transported

by container, but in some form of railcar, for example: a hopper, tank car or box car.

Intermodal and carload freight have many differences, but can be simplistically seen

as cars carrying shipments from many origins to many destinations. Unit trains are

generally made up of the same type of car and travel from one point of origin to a single

destination. Campbell and Morlok (1994) cites that revenue management techniques

primarily apply to intermodal and carload freight (with emphasis on intermodal) and

that it is less applicable to unit trains due to the nature of the business, that is, high

volume customers who have service and capacity fixed under a contract.

The generalisation between intermodal and carload freight allows models to be dis-

cussed as a single topic – generally, terminals can handle cars and containers with little

trouble. Campbell’s thesis and Campbell and Morlok (1994) investigate the applicability

of revenue management techniques to intermodal freight. He looks at the techniques

used in airline revenue management and derives a series of changes in the models to

reflect the different goals of intermodal freight. The applicability of RM to rail freight

is tested under the perishable asset revenue management (PARM) model (Weatherford

and Bodily 1992). The variable capacity nature of freight is noted, but passes the PARM

model under the inclusion of additional logistical complexities. A general model coined

the “Periodic Train Capacity Allocation (independent periods)” model is developed in

Campbell and can be characterised by:

• T available train departure times denoted t = 1, ..., T .
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• A network of m legs where each leg is constrained by the maximum serviceable

capacity, ok, for k = 1, ..,m.

• The capacity for a train departing at t on leg k, ckt for k = 1, ...,m.

• The set of all allowed blocks is denoted F.

• Each block is denoted by the origin-destination pair (ij).

• The set Ik = {(ij) ∈ F | ij includes leg/link k}

We denote xijt ∈ N as the variable used to control the available capacity on block (ij)
for departure time t. The variable bijt denotes any previous bookings for the block

(ij). Pijt(xijt) is some function that represents the expected profit for block (ij) for

the departure at t.
We then aim to maximise the objective

∑
(ij)∈F

∑
t
Pijt(xijt) (1)

subject to the constraints∑
(ij)∈Ik

xijt ≤ min{ok, ckt}∀k, t (2)

xijt ≥ bijt∀t = 1, ...T , (ij) ∈ F. (3)

Those familiar with Campbell’s model will notice that we have dropped the multiple

containers per car constraint. This can be trivially reintroduced by constraining taking

xijt ∈ sN, where s is the number of slots per car. The model can be reduced to a steady

state formulation by assuming that demand is stationary, dropping the time subscripts

and thus fixing capacity for each leg over the entire planning period.

While Campbell and Morlok were perhaps the first to explicitly talk about yield

management, prior work had exploited revenue management techniques in the form

of service differentiation and allocation strategies. Allman (1972) developed a linear

programming formulation to maximise profit given some configuration of freight cars.

The significance of the work is that it demonstrates that different car configurations

can have substantial impact on profit.

Strasser (1992) looks at the effects of scheduling decisions on performance and rev-

enue via simulation. Her work looks into the suggestions of two unnamed railroads in

the US and evaluates these suggestions via a simulation model. She concludes that her

model provides an economical way for yards to investigate scheduling decisions with-

out the need for historical data. It is not clear of the applicability of the model to the
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real world due to difficulty in estimating the required parameters, but for those lack-

ing historical data it provides a starting point to investigate new scheduling/allocation

policies. Based on the results of the simulation, Strasser suggests a new scheduling

policy for the two railroads that can increase revenue at no further cost to the shipper.

Nozick (1992) develops a framework for analysing strategies available to the rail-

roads to increase the profitability of intermodal services. The aim of Nozick’s thesis

was to develop a model, a solution technique and a general improved understanding

of intermodal services. Her work develops a model of similar structure to a multi-

commodity network flow model that allows railroads to determine optimal fleet size

and the cost to provide different price-service combinations.

Kwon et al. (1993) and Kwon (1994) looked at applying service differentiation to the

freight market. Their work cited that shippers are highly sensitive to service reliability

in mode and carrier selection and have noticed the inability of the railroad to achieve

the same standard of reliability as the trucking industry. Kwon (1994) suggests that

the freight market can be divided into two markets defined by service quality and will-

ingness to pay. In their work, they differentiate products by low, medium and high

priorities and design three heuristics to test how well the differentiation works. Using

simulation they show that trip time and reliability are improved for all three of their

heuristics and that there is a clear trade-off between service and cost. They conclude

that highly reliable services are not required for all customers and that service differ-

entiation enables the railroad to better cater for their market. Kwon et al. note that

further work needs to be performed on a more realistic network before these results

are generalised. Kwon (1994)’s thesis provides a more thorough analysis of the work

and discusses service differentiation further. It also includes a multi-commodity net-

work flow model formulation.

Strasser (1996) looks at the potential of service differentiation to intermodal ser-

vices and the problems faced with adopting revenue management practices. In particu-

lar, the problems that occur at management level and more generally, at what level RM

should be applied; should it be managed locally, making small gains with risk of loss

at other yards; or globally, requiring co-operation at yard level. Strasser also includes a

literature review, which in summary, suggests that adoption of service differentiation

and variable capacity models would help with revenue management with the rail freight

industry.

Kraft (1998) concentrated on rail service reliability. The aim of the work was to find

a way of increasing the reliability of rail in order to compete with trucks. He develops

a novel approach to managing the day-to-day railroad network operations. Kraft devel-

ops two models: the ‘dynamic car scheduling’ model, a deterministic model to handle
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observed demand; and the ‘train segment pricing’ model, a stochastic model that im-

plements a bid-price approach in order to determine the acceptance of future orders.

Both these models are based on multi-commodity network flow models. These new

models can be reduced to a series of small sub-problems. This allows the approach to

be scaled to large networks with the aid of parallel (or now, high performance comput-

ing). The model is run through a simulation and the results suggest that should the

model be fully implemented, an expected improvement of more than 10 points could

be achieved in operation ratio. Similar work is also available in Kraft (2002). The train

segment pricing model can be characterised in the following manner.

Assume we have a set of K customers, where for each k ∈ K we have some expected

volume of shipping required, denoted dk. Suppose that we can define our rail network

in the following way:

• The set of nodes, N , that defines the entire network in terms of yards at some

point in time.

• The subset of nodes, Tk ⊂ N , that represents destination nodes for each customer

k ∈ K.

• A single fictitious node, Ω, that represents the common destination for all traffic.

• The set of all train schedules over space and time, F, where (ij) ∈ F denotes an

origin-destination pair where i, j ∈ F.

• The set F also includes pairs of the form (j,Ω), j ∈ Tk ∀k ∈ K and define a link.

• The set of leg/segment, S, where a leg s ∈ S is defined as two adjacent yards and

has physical capacity as an integer number of cars, denoted as cs .

We also define the following notation:

• The subsets, Sij ⊂ S, include all the legs that make up the schedule (ij) for all

(ij) ∈ F.

• The subsets, Is ⊂ F, includes all links that utilise the leg s for all s ∈ S.

• The revenue for a customer k shipping over (ij) is denoted rkij .

We further define:

• The flow volume over the schedule (ij) for customer k ∈ K as xkij ≥ 0.

• The probability that customer k accepts a delivery slot that terminates at node

j ∈ Tk as Pkj .
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• An optional user-defined booking limit, bs for all s ∈ S, that can be greater than

or less than cs and can be used instead to account for demand uncertainty. In

either case, we denote the choice of booking/capacity limit as Cs .

Kraft (2002) define Pkj as the logit function in the form of

Pkj =
exp

(
α− ∆α

ρk

)
1+ exp

(
α− ∆α

ρk

) (4)

Where α is a calibration parameter, the ∆ parameter corresponds to the difference

between delivery slot j and the desired level of service for the customer k and ρk should

be set to the number of delivery slots beyond the base transit time that provides a 50%

acceptance level.

The model itself can then be formulated such that we seek to maximise

∑
k∈K

∑
(ij)∈F

rkij · xkij (5)

subject to the following constraints

∑
j∈Tk

1

Pkj
· xkjΩ ≤ dk ∀k ∈ K, (6)

∑
(iQ)∈F

xkiQ −
∑

(Qj)∈F
xkQj = 0, Q ≠ Ω and Q ≠ shipping origin, (7)

∑
k∈K

∑
(ij)∈Is

xkij ≤ Cs ∀s ∈ S. (8)

van Slyke and Young (2000) formulate the accept/reject booking problem as a time-

dependent, finite horizon stochastic knapsack model. They propose that their model

extends to freight yield management. However, this is only true for cases where cus-

tomers cannot cancel their order and the capacity of the vehicle is fixed. In cases where

the previous assumptions hold, the model provides a way to allocate capacity to vari-

able sized orders over multiple-legs.

Table 2 provides a summary of what each piece of literature covers. Table 3 pro-

vides an overview of what each of the optimisation models offer. Optimisation models

that allocate a number of carriages to a specific trip are flagged as capacity allocation

models. Models that attempt to optimise over the entire booking horizon are denoted

with the booking horizon flag. If a model can handle different levels of service, it

is marked with the service differentiation flag. Models are formulated as time-space

problems are also flagged.
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Reference PhD Thesis Summary Opt Model Sim Model

Allman (1972) × × √ ×
Strasser (1992) × × × √

Nozick (1992)
√ √ √ ×

Kwon et al. (1993) × × × √

Campbell and Morlok (1994) × √ × ×
Kwon (1994)

√ √ √ √

Strasser (1996) × √ × ×
Campbell (1996)

√ √ √ ×
Kraft (1998)

√ × √ ×
Kraft et al. (2000) × √ × ×

van Slyke and Young (2000) × × √ ×
Kraft (2002) × × √ ×

Summary: provides a discussion about the rail freight problem, previ-
ous/related literature and future work, Opt Model: includes a revenue opti-
misation model, Sim Model: provides a model to analyse different pricing or
differentiation policies

Table 2: Summary of Railway Freight Revenue Management Literature

Reference CA SD BH Det Stoch TS

Allman (1972)
√ × × √ × ×

Nozick (1992) × √ × √ × √

Kwon (1994) × √ × × √ √

Campbell (1996)
√ √ × √ √ ×

Kraft (1998)
√ × × × √ √

van Slyke and Young (2000) × √ √ × √ ×
Kraft (2002)

√ × × × √ √

CA: capacity allocation, SD: service differentiation, BH:
booking horizon, Det: deterministic, Stoch: stochastic or
probabilistic, TS: time-space network formulation

Table 3: Summary of Railway Freight Revenue Management Models

3.2 Rail Passenger Revenue Management

Passenger rail services tend to vary country to country and in some cases, between

operators within the same country. For the purpose of simplicity, we assume that

passenger services all share a common theme. That is, they all transport passengers

from an origin to destination along a common set of legs and there is at least one class
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of travel. Passengers are able to purchase tickets in advance for a finite amount of time

and we further assume that the the train operating company (TOC) can select or set

different prices for tickets during the booking horizon.

Before we dive into the literature, we briefly touch on the fundamental differences

between the airlines and passenger rail.

• There is no check-in procedure on passenger rail services

• Open tickets generally allow passengers to travel on any rail service (without

check-in or authorisation to travel)

• Walk up tickets are very common; a large number of passengers purchase their

tickets on the day from the station

• A large number of services run at a load factor of less than 100%, thus the over-

booking paradigm does not need to be considered

• Passengers are often allowed to stand during train journeys hence increasing ca-

pacity beyond the number of seats

• Legs cannot be considered independently as the majority of journeys are com-

posed of multiple adjacent legs

The first three points can make it very difficult to estimate how many passengers

actually travel on specific services. In the UK, TOCs perform manual counts in order

to determine how many passengers are travelling on the service, but this can be error

prone and inaccurate, especially on busy services. The fourth and fifth point allows us

to simplify the problem with respect to overbooking and cancellations. That is, in the

majority of passenger rail problems we do not need to consider either.

Finally, whilst nested fare classes are somewhat common in the airline industry,

their use within passenger rail is mostly dependent on the TOC and the services offered.

Most of the existing literature does not consider nested fare classes. Ciancimino et al.

(1999) explicitly stated that there is no interest in considering nested fare classes in

their model. You (2008) extended the model to incorporate a bumpable second fare.

Other pieces have considered single-fares over resource differentiable products. Hence,

whilst the existing literature does not really consider nested fares, they are actively

used within the industry.

In summary, the passenger rail and airline problems are quite closely related, how-

ever, the large amount of dependence on the legs within the network along with the

differences in ticket structure and travel regulations differentiate the problem. The

remainder of this section provides a summary of the existing literature.
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The first piece of work directly concentrating on RPRM is Ciancimino et al. (1999).

Ciancimino et al. developed a model for a single-fare, multi-leg capacity allocation

problem. Here the goal is to allocate a specific quantity of seats to each of the origin-

destination pairs in order the maximise the revenue for entire journey. They develop

a deterministic and probabilistic approach to solving the problem. The deterministic

model is formulated as a linear programming problem, whereas the the probabilistic

formulation utilises a truncated normal distribution to model service demand with pa-

rameters to be provided by the end user. Ciancimino et al. ran numerical experiments

based off a real-world data-set provided by the Italian railway company Ferrovie dello

Stato and contrasted the results to an existing first-come-first-served (FCFS) booking

policy. They report results for a variety of different cases. For the single step optimi-

sation case where optimisation is performed only at the start of the booking horizon,

the deterministic approach yielded approximately a 3% decrease in revenue against the

FCFS policy whereas the probabilistic approach gained around about a 1% increase.

When both models are optimised repeatedly over a 60 day booking period (5 times, 15

times and daily). They observe that optimising daily on their data set does not result

in a significant improvement. Their results clearly show that the greater the number of

legs, the larger the potential for revenue improvement. When optimising 5 times at day

60, 45, 10, 4 and 1, the deterministic model saw revenue increases ranging from 0.4%

to 6.2% as the number of legs increased. The probabilistic model increased from 0.7%

to 6.9%. Similar results are seen when optimising the model 15 times over the booking

period with increases from 0.9% to 6.83% for the deterministic problem and 1.16% to

7.46% for the probabilistic model. The Single-Fare, Multi-Leg model developed in their

paper can be characterised by:

• A unique fare class.

• A route of m legs, with each leg constrained by a service capacity ck for k =
1, ...,m.

• n origin-destination pairs (ij), where n ≤
(
m+1

2

)
= m(m+1)

2 .

For each pair (ij), we know

• The rate (cost), tij .

• The mean value for service demand, µij .

• The standard deviation of service demand, σij .
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We denote xij as the variable used to control the available capacity for each leg (ij)
and

F =
{
(ij) | (ij) is a valid O-D pair

}
to denote the set of feasible origin-destination pairs on the route. Let lij and uij de-

note the minimum and maximum capacity for a each pair (ij). Then the following

constraints should be satisfied

0 ≤ lij ≤ xij ≤ uij ∀(ij) ∈ F (9)

and

∑
(ij)∈Ik

xij ≤ ck (10)

where

Ik =
{
(ij) ∈ F | ij includes leg k

}
.

Ciancimino et al. note that equations 9 and 10 can be rewritten as

l ≤ x ≤ u (11)

and

Bx ≤ c (12)

where B ∈ {0,1}m×n, c = {ck} ∈ Rm and x, l,u ∈ Rn denote vectors for their respective

(ij) components. We denote the revenue for (ij) as tij ·min{xij , dij} where dij is the

service demand for (ij). Naturally, it is unlikely that we know dij so we assume it is a

continuous random variable. Hence, let p(dij) denote the probability density function

of dij , then the expected revenue over F is

∑
(ij)∈F

tij

(∫ uij
lij
yp(y)dy + xij

∫∞
xij
p(y)dy

)
, (13)

where p(dij) = 0 for dij < lij . This problem can be transformed into a deterministic

integer programming problem by setting p(dij) = µij ∀(ij) ∈ F and by adding the
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additional constraint

xij ≤ µij (14)

that adjusts the upper-bound in (9) to min{µij , uij}, we would like to maximise our

revenue function,

∑
(ij)∈F

tijxij . (15)

A probabilistic formulation can developed by taking dij to have truncated normal

distribution with mean µij and standard deviation σij .
Kraft et al. (2000) provide a discussion about both RFRM and RPRM. Kraft et al. dis-

cuss some of the advantages of applying a bid-price methodology to both fields and the

problems that EMSR leg-based approaches face with railroad RM problems. Their work

also focuses on the network aspect of railroad RM and talks about problems faced with

traffic-mix optimisation, that is, determining optimal combination of origin-destination

fares across the route. They discuss some of the successful implementations of RPRM

such as the system implemented for SNCF – Soceiété Nationale des Chemins de fer

français (Ben-Khedher et al. 1998), but do not mention some of the initial teething

problem faced when the system first went active (Mitev 1996). Another horror story

regarding the implementation of an RM system can be found in Link (2004). Link dis-

cusses the issues that Deutsche Bahn AG faced.

Though not strictly revenue management, Hood (2000) developed a choice model

to aid with demand estimation in order to improve time tabling and pricing decisions.

Hood’s MERLIN: Model to Evaluate Revenue and Loadings for InterCity work draws upon

a number of factors that passengers face when deciding which train to travel on. The

model takes the various factors and translates them into a generalised cost which is

then fed into a logit model. They claim their results to produce demand estimates

similar to the observed demand, however they also cite problems with computation

time.

Bharill and Rangaraj (2008) consider a premium segment of Indian Railways, the

Rajdhani Express and how revenue management strategies can be applied in order to

increase average revenue. The Rajdhani Express is a high speed service that offers

connections between the capital (New Delhi) to state capitals and other prominent In-

dian cities. The service offers three resource differentiable products and a single fare

for each of these products. Their work looks into how they can estimate cross-price

elasticity of demand for three products. Using these values, they develop a model
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that allows them to estimate demand subject to changes in the price of the fares and

additional costs such as booking cancellation fees. They use their models to analyse

existing pricing strategies and to suggest changes to IR. Bharill and Rangaraj suggests

that analysis similar to their own on similar train routes over differing demand periods

(peak/off-peak etc.) is feasible and can be expected to yield positive results.

Sibdari et al. (2008) develop a series of pricing policies for a multi-product revenue

management problem for the Amtrak Auto Train. Auto Train is a service that allows

passengers to bring their own vehicles onboard and then ride the train. Passengers ride

the train in one of the available types of accommodation ranging from seats to sleepers.

The passengers vehicle type and accommodation type are bundled together and sold in

a two-stage process: passenger selects vehicle type, then selects accommodation type.

A booking is only complete when both parts of the process have taken place. The bun-

dle price is made up by the vehicle type and accommodation type, the price of each

product is selected from a choice of four fares and can be changed daily upon manager

authorisation. Sibdari et al. take a reduced subset of the available products (capturing

the majority of the product offering) and perform a variety of analyses to learn about

demand. The analysis of their historical booking data suggests that you cannot learn

about future demand based on the past sales. They then develop a model and opti-

mise over it using a variety of methods. Their results show that problem formulated

as dynamic program yields the greatest improvement in revenue, 17%-31% over their

test case at different points in the booking horizon. A myopic policy and static price

heuristic (fixed price for the duration) yields a loss in revenue during the later stages of

the booking period whilst generating a 4-5% increase at the start of the booking period.

You (2008) extend the single-fare, multi-leg model presented by Ciancimino et al.

(1999) to a two-fare, multi-leg model. Their model has an underlying assumption that

passengers on discount fares can be bumped. You developed a hybrid optimisation

algorithm to solve the model. Their hybrid algorithm first solves a relaxation of the

problem using linear programming to locate the so-called solution generating point.

It then uses particle swarm optimisation to locate feasible and high-quality solutions.

As with Ciancimino et al. (1999), the model does not directly deal with multi-stage

aspect of the booking process, but again, it is suggested to overcome this by running

the algorithm sequentially at different points in the booking horizon. They test their

optimisation approach on a series of 60 theoretical test cases of differing complexity

and show that their approach outperforms existing optimisation tools. You’s two-fare,

multi-leg model can be characterised similarly to the single-fare case and we again

assume there is m legs, with m+ 1 stations, with n = m(m+1)
2 origin-destination pairs.

This implies that a passenger can now travel from any station to any future station on
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the route. We now let α = 1, α = 2 denote the standard and discount fares and tαij
denote the rate for fare α between i and j. We assume that discount passengers can be

bumped to another train at a cost of hk for leg k = 1, ...,m with total bumping cost for

the origin-destination pair (ij) equal to
∑j
k=ihk. We also assume that sales of the full

fare for all legs k are constrained by ck, that is, we cannot serve excess demand for full

fare passengers.

Similarly, demand is assumed demand to be independently normally distributed

for each fare and origin-destination pair with mean µαij , standard deviation σαij and

pαij(·) denote the density function. Once again, let xαij denote the capacity decision

variable for fare α on the pair (ij) and let

Rαij(xαij) = tαij
(∫ xαij

0
ypαij(y)dy + xαij

∫∞
xαij

pαij(y)dy
)

(16)

denote the potential revenue for fare α over the pair (ij) when the booking limit is xαij .
Let X ∈ Rm(m+1) with xαij at the 0.5(α − 1)m(m + 1) +

∑i−1
k=1(m − k + 1) + (j − 1)th

entry. Denote R(X) to be the total revenue when the booking limits are set as X, then

R(X) =
2∑
α=1

m∑
i=1

m+1∑
j=i+1

Rαij(xαij). (17)

Let Sαij(xαij) be the expected sales for fare α over (ij) with booking limit xαij
given by

Sαij(xαij) =
∫ xαij

0
ypαij(y)dy + xαij

∫∞
xαij

pαij(y)dy

Observing that seats on leg k = 1, ...,m are consumed by itineraries of form {(ij) | 1 ≤
i ≤ k, k+ 1 ≤ j ≤m+ 1} we have sales of leg k for fare α defined as

Sαk(X) =
k∑
i=1

m+1∑
j=k+1

Sαij(xαij)

and the total expected sales for train leg k as
∑2
α=1 Sαk. Returning to the assumption

that discount passengers can be bumped, we define the expected excess demand for

leg k, Ok as

Ok =max


2∑
α=1

Sαk(X)− ck,0

∀k
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with total bumping cost given by

H(X) =
L∑
k=1

Okhk.

Finally, to enforce an upper bound on demand for full fare seats, the constraint

S1k(X) ≤ ck, ∀k

should be satisfied whilst maximising the objective

R(X)−H(X)

with xi ≥ 0, ∀xi ∈ X.

In summary, there is very little literature that attacks RPRM problems. The approach

by Ciancimino et al. (1999) makes the assumption that there is a single fare that is

resource differentiable, You (2008) makes an assumption about bumping costs – in

the UK, rail passengers with pre-booked tickets are only bumped under exceptional

circumstances. The approach by Sibdari et al. (2008) could potentially be adapted to

cater for the multi-fare nature in the UK, but estimating the distributions for each fare

could prove difficult and the model is designed for a single-leg.

Table 4 summarises what each of the models presented in the literature offers. A

model is said to be multi-fare if can offer more than one price for the same set of re-

sources at the same time, for example: a standard fare and a discount fare. In the MF

and ML columns, integers indicate the number of fares and legs available to be used

in the model, n indicates the model has been generalised. We make the differentiation

between fare and products by noting multiple fares are offered for the same shared

resource, whereas multiple products utilise different resources, for example: standard

and first class. We make this differentiation due to the nature of railway where there

may exist a set of n fares over m products that utilise m distinct vehicle resources,

all travelling over the same network. Naturally, each fare for each vehicle on each leg

can be treated as a single product if necessary, that is, a multi-product, multi-resource

problem. Multi-leg denotes that the model handles the sequential network nature that

is seen on the railway. Dynamic pricing implies that the price of products is changed

during the booking horizon via the optimisation step. We note that capacity allocation

can be used to achieve a pseudo dynamic pricing policy: in a shared resource case

we can limit the capacity of all but one fare to zero and change the available fare at

different time-steps to achieve the desired effect. To satisfy the revenue optimisation
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criteria, models had to present a methodology to solve the model. The demand estima-

tion criteria implies that the model takes a set of parameters and produces an estimate

of the passenger count.

Reference MF MP ML DP CA Opt DE

Ciancimino et al. (1999) 1 × n × √ √ ×
Hood (2000) 1

√ × × × × √

Sibdari et al. (2008) 1
√ × √ × √ √

Bharill and Rangaraj (2008) 1
√ × × × √ √

You (2008) 2 × n × √ √ ×
MF: Multi-Fare, MP: Multi-Product, ML: Multi-Leg, DP: Dynamic
Pricing, CA: Capacity Allocation, Opt: Revenue Optimisation,
DE: Demand Estimation

Table 4: Summary of Railway Passenger Revenue Management Models

4 Rail Passenger Revenue Management Model

The following subsections show some small generalisations to the models to cater for

different cases.

4.1 Multi-Fare, Multi-Leg Model

The previous models can be easily extended to the q fare case. First, we remove the

assumption that passengers can be bumped. This assumption is unrealistic for the

UK railway where passengers are not routinely bumped. It can be reintroduced by

assuming that passengers who pay more to travel receive a larger bumping cost should

it occur.

Suppose we have a set of q fares {1, ..., q} and again, let α denote the fare. Then,

noting that Ik =
{
(ij) | 1 ≤ i ≤ k, k+ 1 ≤ j ≤m+ 1

}
, then the capacity constraint for

each leg can be adjusted to

q∑
α=1

∑
(ij)∈Ik

xαij ≤ ck

with 0 ≤ lαij ≤ xαij ≤ uαij enforcing any capacity requirements for the fare α on

itinerary (ij). Similarly, we can calculate the total revenue generated when the booking
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limit for each itinerary (ij) at fare α is set to xαij as

q∑
α=1

∑
(ij)∈F

tαij

(∫ xαij
0

ypαij(y)dy + xαij
∫∞
xαij

pαij(y)dy
)

and maximise this quantity in order to maximise our revenue over all the legs and fares

in the journey.

The difficulty of this model is obtaining an accurate estimation of pαij(·) and the

underlying assumption that all the fares are independently distributed–something that

is unlikely to be true when groups of fares are differentiable only by price.

4.2 Single-Leg, Dynamic Pricing Model

It is possible to reduce the problem by Sibdari et al. (2008) to cater for multiple-fares on

a single-leg. For the case over the booking horizon t = T , ...,0, denote F = {f1, ..., fq}
to represent the q available fares, let C represent the capacity of the train.

Over the booking period it is possible to offer a single price for a period of time.

Demand for each fare is dependant on the price and time in the booking horizon and

denoted D(fi, t). Assume D(fi, t) has a Poisson distribution with mean λ(fi, t) where

fi ∈ F .

At time t suppose we have n seats remaining with the maximum expected revenue

from day t to 0 denoted Rt(n). On day t − 1, say we have m seats remaining. We can

then calculate Rt(n) as follows:

Rt(n) =max
fi∈F

n∑
m=0

(fi(n−m)+ Rt−1(m))× Pt(fi,m,n) (18)

where R0(n) = 0 for all n > 0 and Pt(fi,m,n) is the probability of selling n−m seats

at price fi. The transition probability, Pt is calculated as:

Pt(fi,m,n) =

Pr(D(fi, t) = n−m) if n ≥m
0 if n <m.

(19)

5 Future Work

Given the differences between the two types of rail, we believe there are opportunities

for future work in two subsections.



Armstrong and Meissner: Railway Revenue Management: Overview and Models 19

5.1 Freight Rail

Freight rail would yield great benefits from a pricing optimisation system that can learn

about demand and adjust its parameters and existing allocations accordingly. The very

short period in which demand occurs can make it difficult to plan schedules and as such

can lead missed opportunities in revenue. Switching existing processes to an on-line

learning model would benefit both car scheduling and revenue decisions. Alternately,

a model (similar to that presented in Kraft (2002)) that can create a loop between car

scheduling and pricing decisions could also yield potential improvements for revenue,

whilst still considering service reliability.

5.2 Passenger Rail

Our suggestions for future work for passenger rail stem from conversations with train

operating companies in the UK. Through our talks we discovered that a clear that a

better understanding of passenger purchase behaviour is required. Work should be

undertaken that seeks to understand:

1. How passengers react to price changes for a single journey,

2. How passengers react to price changes for a group of adjacent journeys, and

3. How to stimulate demand, that is, at what price customers switch to no-purchase

or alternate mode of transport.

Or, more generally, efforts should be focused on deriving accurate choice models for

passenger rail. It would be hugely advantageous to know the substitution effect for

journeys with respect to price and time.

While there is some literature available for passenger rail pricing models, we ob-

served that TOCs favour a more systematic approach to their pricing and favour allo-

cation decisions based on analyst prior knowledge and sets of rules. A more scientific

approach to pricing and allocation decisions could yield significant gains in revenue.

Thus, we suggest that work is performed to bring passenger rail pricing to the same

level that is currently seen in more mature areas of revenue management.

6 Conclusion

In this paper we have listed the available literature and models for both freight and

passenger rail revenue management. It is clear that as compared to other areas of

revenue management such as airlines and hotels there is comparatively little literature.
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Kraft et al. (2000) list a number of cases of revenue management systems having been

implemented into the rail passenger industry. However, the lack of literature would

imply either that the technology is proprietary or that the systems are based on airline

revenue management technology. In agreement with Ciancimino et al. (1999), we also

hypothesise that the lack of literature in passenger rail is also down to the low usage

of rail in the United States. This hypothesis may also hold true for freight rail, where

the industry has been in decline for over a decade.

In closing, despite the lack of literature, it is clear that revenue management tech-

niques can be made use of by the rail industry to solve the complex issues involving

pricing.
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