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Abstract 

 

The paper shows that due to the features of SKU (stock-keeping unit) demand data well-

known error measures previously used to analyse the accuracy of adjustments are 

generally not advisable for the task. In particular, percentage errors are affected by 

outliers and biases arising from a large number of low actual demand values and 

correlation between forecast errors and actual outcomes. It is also shown that MASE is 

equivalent to the arithmetic average of relative mean absolute errors (MAEs) and 

inherently is biased towards overrating the benchmark method. Therefore existing 

measures cannot deliver easily interpretable and unambiguous results. 

 

To overcome the imperfections of existing schemes a new measure is introduced which 

indicates average relative improvement of MAE. In contrast to MASE the proposed 

scheme is based on finding the geometric average of relative MAEs. This allows 

objective evaluation of relative change in forecasting accuracy yielded by the use of 

adjustments. Empirical analysis employed a large number of observations collected from 

a company specialising on manufacturing of fast-moving consumer goods (FMCG). The 

results suggest that adjustments reduced MAE of baseline statistical forecast on average 

by approximately 10%. Using a binomial test it was confirmed that adjustments improved 

the accuracy of forecasts significantly more frequently rather than they reduced it. 

 

 

Keywords: judgmental adjustments, forecasting support systems, forecast accuracy, 

forecast evaluation, forecast error measures. 
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1. Introduction 
 

Judgmental adjustments to baseline statistical forecasts are widely used for 

demand forecasting at a level of SKUs (stock-keeping units) (Sanders and Ritzman 2004, 

Fildes, et al. 2009). At the same time, empirical evidence suggests that judgments under 

uncertainty are affected by various types of cognitive biases and inherently are non-

optimal (Tversky and Kahneman 1974). Therefore it is important to monitor the 

performance of adjustments in order to ensure the rational use of resources invested in the 

forecasting process. 

This paper shows that due to the features of SKU demand data well-known error 

measures are generally not advisable for the evaluation of adjustments and can even give 

misleading results. In particular, percentage measures cannot be efficiently used because 

of a large number of extremely high percentage errors arising from a relatively low actual 

demand values. Moreover, it was found that percentage errors penalise the errors of 

positive and negative adjustments differently due to the correlation between demand 

values, forecast errors, and the adjustment sign. 

MASE (mean absolute scaled error) measure proposed in (Hyndman and Koehler 

2006) to overcome the disadvantages of percentage measures was also found to be 

unsuitable for the adjustments data. The paper shows that MASE is equivalent to the 

weighted arithmetic average of relative mean absolute errors (MAEs). One of the 

disadvantages of this scheme is that it introduces a bias towards overrating the 

performance of a benchmark forecast. This happens because when using the arithmetic 

average the reward for improving MAE of benchmark forecast does not compensate the 

penalty given for reducing benchmark MAE by the same quantity. Another disadvantage 

of MASE scheme in the given context is that it is influenced by outliers arising as a result 

of dividing by small benchmark MAE values. 

To ensure a more reliable evaluation of the effectiveness of adjustments this paper 

recommends using an enhanced scheme that shows average relative improvement in 

MAE. In contrast to MASE it is proposed to use the weighted geometric average to find 

average relative MAE. By taking the statistical forecast as a benchmark it becomes 

possible to objectively evaluate the relative change in forecasting accuracy yielded by the 

use of judgmental adjustments. Therefore the proposed statistic can be used to provide a 

more robust and easily interpretable indicator of changes in accuracy. 

Previously the analysis of the accuracy of adjustments was done in a number of 

empirical studies (Fildes, et al. 2009, Nikolopoulos 2008, Franses and Legerstee 2010). 

However, different measures were applied to different datasets and suggested different 

conclusions. The analysis of adjustments was mainly performed with the use of 

percentage errors. This paper considers the appropriateness of previously used measures 

and demonstrates the use of the proposed enhanced accuracy measurement scheme based 

on a real dataset. 

The current research employed data collected from a company specialising on 

manufacturing of fast-moving consumer goods (FMCG). The data contains observed 

monthly values of actual SKU-level demand, corresponding one-step-ahead statistical 
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forecasts, and judgmentally adjusted forecasts relating to 413 SKUs. In total, 7544 cases 

of forecasts and corresponding actual outcomes pertaining to a period of three years have 

been analysed. 

2. Appropriateness of Existing Measures 
 

2.1. Percentage errors 

A traditional way to compare the accuracy of forecasts across multiple time series 

is based on using absolute percentage errors (Hyndman and Koehler 2006). 

Let the forecasting error for a given time period � and SKU � be 

 ��,� = ��,� − 
�,�, 

 

where ��,� is a demand value for SKU � observed at time �, 
�,� is the forecast of ��,�. 

The percentage error (PE) is calculated as 

 ��,� = 100 × ��,� ��,�⁄ . 

 

The most popular PE-based measures are MAPE and MdAPE which are defined as 

follows: 

 MAPE = mean(|��,�|),  MdAPE = median(|��,�|), 
 

where mean(|��,�|) denotes the sample mean of |��,�| over all available values, and median(|��,�|) is the sample median. 

These measures served as a main tool for the analysis of judgmental adjustments in 

some recent empirical studies (Fildes, et al. 2009, Nikolopoulos 2008). In order to 

determine a change in forecasting accuracy MAPE and MdAPE values were calculated 

and compared for statistical baseline forecasts and for final judgmentally adjusted 

forecasts. The significance in the change of accuracy was assessed based on the 

distribution of the differences between absolute percentage errors (APEs) of forecasts. The 

difference between APEs is defined as 

 

��,�� ! = "��,�# " − "��,�$ ", 
 

where "��,�# " and "��,�$ " denote APEs for the same SKU � and same period � for final and 

baseline statistical forecasts respectively. In (Nikolopoulos 2008) a paired t-test was used 

to detect if the mean of ��,�� ! was significantly different from zero, while in (Fildes, et al. 

2009) it was suggested testing whether the median of ��,�� ! significantly differs from zero 

using two-sample paired (Wilcoxon) sign rank test. 
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It can be shown that the sample mean of ��,�� ! is the difference between MAPE 

values corresponding to statistical and final forecasts: 

 

                 mean%��,�� !& = mean%"��,�# "& − mean%"��,�$ "& = MAPE# − MAPE$.    (1) 

 

Therefore testing the mean or median of ��,�� ! against zero using the above-

mentioned tests means finding out if MAPE# significantly differs from MAPE$ . 

The reported results suggest that overall values of MAPE and MdAPE were 

improved by the use of adjustments, but the accuracy of positive and negative adjustments 

differed substantially. Based on MAPE measure it was found that positive adjustments did 

not significantly change forecasting accuracy, while negative adjustments lead to 

significant improvements. 

However, the current research has shown that percentage errors have a number of 

disadvantages when applying to the adjustments data. 

One well-known disadvantage of percentage errors is that when the actual value ��,� in the denominator is relatively small compared to forecast error ��,� the resulting 

percentage error ��,� becomes extremely large, which distorts the results of further analysis 

(Hyndman and Koehler 2006). Such high values can be treated as outliers since they do 

not allow for a meaningful interpretation. However, identifying outliers in a skewed 

distribution is a non-trivial problem where it is needed to determine an appropriate 

trimming level in order to achieve adequacy of distribution characteristics, while at the 

same time not to lose too much information. Usually authors choose the trimming level 

according to their intuition and experience as 1% or 2% (Fildes, et al. 2009, Nikolopoulos 

2008), but this decision still remains highly subjective. 

At the same time, SKU-level demand time series typically exhibit a high degree of 

variation among actual values due to seasonal effects and different stages of a product life 

cycle. Therefore adjustments data can contain a high proportion of low demand values, 

which makes PE-based measures inadvisable. In addition, all cases with zero actual values 

should be excluded from analysis since the percentage error cannot be computed when ��,� = 0 due to its definition. 

Obtaining extreme percentage errors can be illustrated using scaled values of errors 

and actual demand values (Fig. 1). The variables shown were scaled by the standard 

deviation of actual values in each series in order to eliminate differences between time 

series. It can be seen that final forecast errors have a truncated and skewed distribution, 

correlate both with actual values and the sign of adjustments, and a substantial proportion 

of errors is comparable to actual demand values. Excluding observations with relatively 

low values on the original scale (here all observations less than 10 were excluded from the 

analysis as was done in (Fildes, et al. 2009)) still cannot sufficiently improve the 

properties of percentage errors since a large number of observations remains in the area 

where the actual demand value is less than the absolute error. This results in extremely 

high (>100%) and hardly interpretable percentage errors as well as high variance of the 

difference in absolute percentage errors ��,�� !. 
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Figure 1. Dependencies between forecast error, actual value, and the sign of 

adjustment (based on scaled data). Absolute errors in the area below the dashed line 

are higher than corresponding actual demand values and therefore result in extreme 

percentage errors (Fig. 2). 
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Figure 2. Percentage errors depending on actual demand value and adjustment sign. 

Fig. 1(a,b) illustrates that errors arising from positive adjustments are on average 

negative and correspond to low actual values of demand, while negative adjustments on 

average lead to positive errors and relate to higher actuals. Transition to percentage 

measures magnifies the errors of positively adjusted forecasts (Fig. 1(a), Fig. 2(a)) due to 

low values of actual demand. The opposite transformation happens with the errors of 

negative adjustments (Fig. 1(b), Fig. 2(b)). Moreover, the distribution of ��,�� ! for positive 

adjustments becomes highly diffuse, which does not allow a proper estimation of its 

characteristics.  

One of the important effects arising from the presence of cognitive biases and non-

negative nature of demand values is that most damaging positive adjustments typically 

correspond to low actuals, while worst negative adjustments correspond to high actuals. 

More specifically, the following general dependency can be found within most time series. 
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The difference between absolute final forecast error "��,�# " and absolute statistical forecast 

error "��,�$ " is positively correlated with actual value ��,� for positive adjustments, while for 

negative adjustments there is a negative correlation. To reveal this effect distribution-free 

measures of association between variables were used. For each time series � Spearman’s ( 

coefficients were calculated representing the correlation between the improvement in 

terms of absolute errors %"��,�# " − "��,�$ "& and actual value ��,�. Fig. 3 shows the distribution 

of coefficients (�) calculated for positive adjustments and (�* that correspond to negative 

adjustments. For the given dataset mean((�)) ≈ 0.47 and mean((�*) ≈ −0.44, which 

indicates that the improvement in forecasting markedly correlates with actual demand 

values and this relationship is inversely different for positive and negative adjustments. 
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Figure 3. Spearman’s . coefficients showing correlation between the improvement 

in accuracy and actual demand value. 

This means that the improvement in terms of percentage errors ��,�� ! (which can as 

well be expressed as ��,�� ! = 100 × %"��,�# " − "��,�$ "& ��,�/ ) will underrate the accuracy of 

positive adjustments as a result of dividing the difference of absolute errors by higher 

actuals. In the same way it will overrate the accuracy of negative adjustments. Since the 

difference in MAPEs is calculated as a mean improvement in terms of percentage errors 

(in accordance with formula (1)), the comparison of forecasts using MAPE will also give a 

biased result towards overrating positive adjustments and underrating negative 

adjustments. Consequently, since the forecast errors arising from adjustments of different 

signs are penalised differently, the MAPE measure is not sufficiently appropriate for the 

comparison of the performance of adjustments of different signs. One of the aims of the 

present research therefore has been to reconsider the results of previous studies with the 

use of alternative measures. 

Another measure based on percentage errors was used in (Franses and Legerstee 

2010). In order to evaluate the accuracy of improvements RMSPE (root mean square 

percentage error) was calculated for both statistical and judgmentally adjusted forecast 

then compared. Based on this measure it was concluded that expert forecasts were not 

better than the model forecasts. However, RMSPE is also based on percentage errors and 

is even more affected by the outliers and biases described above. 
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(2) 

2.2. MASE (Mean Absolute Scaled Error) 
 

In order to overcome the imperfections of PE-based measures it was proposed in 

(Hyndman and Koehler 2006) to use MASE (mean absolute scaled error). The MASE is 

found as follows (see Appendix 1): 

MASE = mean%|1�,�|&,    1�,� = ��,�
MAE�2

 , 

where MAE�2 – mean absolute error (MAE) of the naïve (benchmark) forecast for series �. 
The naïve method was chosen as a benchmark to ensure a sufficient number of 

forecasts for finding a non-zero and stable denominator. In the current case the number of 

available statistical forecasts is larger than the number of in-sample naïve forecasts. 

Therefore scaling can be done more efficiently using the MAE of statistical forecast: 

1�,� = ��,�#
MAE�$

, MAE�$ = 1
3� 4 |��,5$ |5∈78

 , 

where ��,�#  – error of judgmentally adjusted forecast for series � and period �, ��,5$  – error of 

baseline statistical forecast for series � and period 9, :� – a set containing all time indexes 

for which the values of ��,�#  for series � are known, 3� – the number of elements in :�. 
Though it was not specified in (Hyndman and Koehler 2006), it is possible to show 

(Appendix 1) that MASE is equivalent to the weighted arithmetic mean of relative MAEs: 

MASE = 1
∑ 3�<�=>

4 3�
<
�=> ?� ,    ?� = MAE�

MAE�2
, 

where @ – total number of series, MAE�2 – MAE for a benchmark forecast for series �, MAE� – MAE for the forecast being evaluated against the benchmark, 3� – the number of 

errors used to calculate MAE�. 
It is known that the arithmetic mean is not strictly appropriate for averaging 

observations representing relative quantities and in such situations the geometric mean 

should be used instead (Spizman and Weinstein 2008). As a result of using the arithmetic 

mean of MAE ratios formula (2) introduces a bias towards overrating the accuracy of a 

benchmark forecasting method. In other words, the penalty for bad forecasting becomes 

larger than the reward for good forecasting. 

To show how MASE rewards and penalises forecasts it can be represented as 

MASE = 1 + 1
∑ 3�<�=>

4 3�
<
�=> (?� − 1). 

The reward for improving benchmark MAE from B to C (B > C) in a series � is 

found as E� = 3�(1 − C/B), while the penalty for reducing benchmark MAE from C to B 
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in the same series is G� = 3�(C/B − 1). Since E� < G� the reward given for improving 

benchmark MAE cannot compensate the penalty given for reducing benchmark MAE by 

the same quantity. As a result, for some datasets it can be the case that MASE > 1 

regardless of the choice of the benchmark method, which cannot ensure unambiguity of 

the comparison of the accuracy of forecasts. 

For example, suppose a comparison of accuracy of two forecasting methods is 

performed across two series (@ = 2). For the first series the MAE ratio is ?> = 1/2 and 

for the second series the MAE ratio is the opposite: ?J = 2/1. Averaging the ratios gives MASE = ½ (?> + ?J) = 1.25, which indicates that two methods have different accuracy. 

Moreover, the benchmark method is superior regardless of which method is chosen as a 

benchmark. 

With regard to the available data the bias introduced by MASE was found to be 

substantial, especially in case of short series and large differences in accuracies. In 

addition, using MASE (in the same way as MAPE) results in unstable estimates as the 

arithmetic mean is severely influenced by extreme cases arising from dividing by 

relatively small values. In this case outliers occur when dividing by relatively small 

MAEs of benchmark forecast which can appear in short series. 

The next section presents an improved statistic which is more suitable for 

comparing accuracy of SKU-level forecasts. 

3. Recommended Accuracy Evaluation Scheme 
 

By changing the arithmetic mean to the geometric mean in formula (2) it is 

possible to define an unbiased measure of average relative MAE (ARMAE):  

 

ARMAE = NO ?�P8<
�=> Q>/ ∑ P8R8ST ,   ?� = MAE�#MAE�$

, 
 

where MAE�$ is MAE for baseline statistical forecast for series �, MAE�# is MAE for 

judgmentally adjusted final forecast, other variables have their previous meaning. 

This measure is immediately interpretable as it adequately represents the average 

relative value of MAE and directly shows how adjustments improve/reduce MAE 

compared to baseline statistical forecast. Obtaining ARMAE < 1 means that on average 

MAE�# < MAE�$ and adjustments improve accuracy, while ARMAE > 1 indicates the 

opposite. The average percentage improvement in MAE of forecasts is found as 

 (1 − ARMAE) × 100. 

It also can be used to answer the question ‘if for a given series MAE of statistical 

forecast is U, what will be the MAE of final forecast for the same series?’ by computing U × ARMAE. Therefore based on ARMAE it is possible to find a rough estimate of the 

magnitude of final forecast error on a real scale. 

Equivalently, the geometric mean of MAE ratios can be found as 

 

 

(3) 
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ARMAE = exp X 1
∑ 3�<�=>

4 3� ln ?�
<
�=> Z. 

 

Therefore obtaining ∑ 3� ln ?�<�=> < 0 means an average improvement of accuracy, ∑ 3� ln ?�<�=> > 0 has the opposite meaning. 

Since no scaling by actual values is required, this scheme can applied in cases of 

low or zero actuals, as well as in cases of zero forecasting errors. Consequently, it is 

suitable for intermittent demand forecasts. The only limitation is that the MAEs in (3) 

should be greater than zero for all series. 

Thus, the advantages of the recommended accuracy evaluation scheme are that it  

i) can be easily interpreted, ii) objectively represents the performance of the adjustments 

(without introduction of additional biases or outliers), iii) is informative and efficiently 

uses all available information, and iv) is applicable in a wide range of settings with 

minimal assumptions about the features of the data. 

4. Results of Empirical Evaluation 
 

The results of applying the described above measures are shown in Table 1. 

 
Table 1: Accuracy of adjustments according to different error measures 

 

 
Positive adjustments Negative adjustments 

All nonzero 

adjustments 

Statistical 

forecast 

Adjusted 

forecast 

Statistical 

forecast 

Adjusted 

forecast 

Statistical 

forecast 

Adjusted 

forecast 

MAPE, % 

(2% trim) 
30.98 40.56 48.71 30.12 34.51 37.22 

MdAPE, % 25.48 20.65 23.90 17.27 24.98 19.98 

MASE 1.00 1.12 1.00 0.86 1.00 1.02 

ARMAE 1.00 0.96 1.00 0.71 1.00 0.90 

Avg. improve-

ment in MAE 

(1-ARMAE) 

 0.04  0.29  0.10 

 

For the given dataset a large number of percentage errors have extreme values 

(>100%) arising from low actual demand values (Fig. 4). Though 2% trimmed MAPE 

values were used, it is difficult to determine the trim level since there is no indication of 

what proportion of data will represent the percentage error adequately. As a result, the 

difference in APEs has a very high dispersion and cannot be used efficiently to assess the 

improvements in accuracy. It can also be seen that the distribution of APEs is highly 

skewed. 
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Figure 4. Box-and-whisker plot for absolute percentage errors (log scale). For the given 

dataset the range and the variation of percentage errors is extremely high, which makes 

them difficult to interpret and to analyse. 

Table 1 shows that MdAPE and MAPE values are different and suggest different 

conclusions about the effectiveness of adjustments. While MdAPE is resistant to outliers, 

it is not sufficiently informative as it is insensitive to APEs lying above the median. In 

addition, the improvement in terms of percentage errors is biased since the improvement 

on a real scale within each series markedly correlates with the actual value (as was 

described in Subsection 2.1). Therefore applying percentage errors in the current settings 

leads to ambiguous results and brings confusion in their interpretation. 

Scaled errors found according to the MASE scheme (calculated as described in 

Subsection 2.2) are also affected by extreme values and have a non-symmetrical 

distribution (Fig. 5). Outliers commonly occur in short series where MAE of statistical 

forecast is smaller than the error of judgmental forecast. For adjustments data the lengths 

of series vary substantially, which makes MASE seriously affected by outliers. 

 

 

Figure 5. Box-and-whisker plot for scaled errors found according to the MASE scheme (log 

scale). Extreme cases arise due to dividing by small values of statistical forecast MAE. 

Average relative MAE represents the effectiveness of adjustments more 

adequately. This measure gives a directly interpretable meaning and is not affected by 

extreme cases arising when using the alternative schemes. The sample mean of the log-

transformed ratios is not severely influenced by outliers and can by reliably estimated 

based on the sample data (Fig. 6). Therefore ARMAE can serve as a robust indicator of 

changes in accuracy. 

 

 

Figure 6. Box-and-whisker plot for logarithms of MAE ratios. 
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While ARMAE shows improvements that correspond to both positive and 

negative adjustments, according to MAPE and MASE only negative adjustments improve 

accuracy. ARMAE value indicates that adjustments improve MAE of statistical forecast 

on average by 10% . Positive adjustments are less accurate than negative adjustments and 

bring only minor improvements. 

To determine if the probability of a successful adjustment is higher than 0.5 a 

two-sided binomial test was applied. The results are shown in Table 2. 

 
Table 2: Results of a binomial test 

 

Adjust-

ment sign 

Total 

number of 

adjust-

ments 

Number of 

adjustments 

that improved 

forecast 

p-value Probability 

of a 

successful 

adjustment 

95% confidence 

interval for the 

probability of a 

successful adjustment 

Positive 3161 1662 0.004 0.526 0.508 0.543 

Negative 1504 1034 0.000 0.688 0.663 0.711 

Both 4665 2696 0.000 0.578 0.564 0.592 

 

According to the obtained p-values in all cases it can be concluded that 

adjustments improved accuracy of forecasts more frequently rather than reduced it. 

However, for positive adjustments the probability of success was rather low. 

5. Conclusions 
 

Due to the features of SKU-level demand data many well-known error measures 

cannot be efficiently used to evaluate the effectiveness of adjustments. In particular, the 

use of percentage errors is not advisable because of a considerable proportion of low 

actual values which lead to high percentage errors with no direct interpretation for 

practical use. Moreover, errors corresponding to adjustments of different signs are 

penalised differently when using percentage errors because forecasting errors correlate 

both with actual demand values and with the adjustment sign. As a result measures such 

as MAPE or MdAPE do not give enough information to justify drawing conclusions 

about the improvements yielded by the use of adjustments. At the same, time it was 

found that MASE can also induce biases and outliers as a result of using the arithmetic 

mean to average relative quantities. 

In order to overcome the disadvantages of existing measures it is recommended to 

use average relative MAE which is calculated as the geometric mean of relative MAE 

values. This scheme allows for objective comparison of forecasts and is more reliable for 

the analysis of adjustments. For the given dataset the analysis has shown that adjustments 

improved average relative MAE by approximately 10%. 
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Appendix A 
 

According to (Hyndman and Koehler 2006) for the scenario when forecasts are 

made from varying origins but with a constant horizon the scaled error is defined as
1
 

 

1�,� = ��,�
MAE�2

 , MAE�2 = 1
[� − 1 4 |��,5 − ��,5*>|

\8

5=J
, 

 

where MAE�2 – MAE from the benchmark (naïve) method for series �, ��,� – error of a 

forecast being evaluated against the benchmark for series � and period �, [� – number of 

elements in series �, ��,5 – actual value observed at time 9 for series �. 
Let the mean absolute scaled error (MASE) be calculated by averaging absolute 

scaled errors across time periods and time series: 

 

MASE = 1
∑ 3�<�=>

4 4 "��,�"
MAE�2

P8

�=>

<

�=>
, 

 

where 3� – number of errors ��,� in series � used to calculate MASE, @ – total number of 

time series. 

Then 

 

MASE = 1
∑ 3�<�=>

4 4 "��,�"
MAE�2

P8

�=>

<

�=>
 

 

= 1
∑ 3�<�=>

4 ∑ |��,�|P8�=>MAE�2
<

�=>
 

 

= 1
∑ 3�<�=>

4 3�
13� ∑ |��,�|P8�=>

MAE�2
<

�=>
 

 

= 1
∑ 3�<�=>

4 3�?�
<

�=>
,   ?� = MAE�

MAE�2
, 

 

where MAE� – MAE for the forecast being evaluated against the benchmark, 3� – number 

of errors used to calculate MAE�.  

                                                 
1
 The formula corresponds to the software implementation described in (Hyndman and Khandakar 2008). 
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