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Abstract

One of the fundamental problems in operations management is to determine the op-

timal investment in capacity. Capacity investment consumes resources and the de-

cision is often irreversible. Moreover, the available capacity level affects the action

space for production and inventory planning decisions directly. In this paper, we

address the joint capacitated lot sizing and capacity acquisition problem. The firm

can produce goods in each of the finite periods into which the production season is

partitioned. Fixed as well as variable production costs are incurred for each produc-

tion batch, along with inventory carrying costs. The production per period limited by

a capacity restriction. The underlying capacity must be purchased up front for the

upcoming season and remains constant over the entire season. We assume that the

capacity acquisition cost is smooth and convex. For this situation, we develop a model

which combines the complexity of time-varying demand and cost functions and that

of scale economies arising from dynamic lot-sizing costs with the purchase cost of

capacity. We propose a heuristic algorithm that runs in polynomial time to determine

a good capacity level and corresponding lot sizing plan simultaneously. Numerical

experiements show that our method is a good trade-off between solution quality and

running time.
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1 Introduction

One of the fundamental problems in operations management is to determine the optimal

investment in capacity. A firm’s capacity determines its maximal potential production per

time unit. To acquire capacity is usually costly and time consuming, and once the invest-

ment is made, the cost is often partially or completely irreversible, as installed capacity is

difficult to adjust in the short term. Moreover, the decision on how much capacity to ac-

quire also strongly influences the action space for future operations planning. Obviously,

acquisition of too much capacity wastes investment that could be used for other important

operation activities such as new product development and marketing; too little capacity

means long waiting times, missed sales opportunities, and lost revenue. Therefore, it is

necessary to find an effective and comprehensive method to determine the proper capacity

configuration for operations with specific planning horizons.

We consider a single-production facility that produces a single product item to satisfy

a known demand. The decision problem for the firms is to determine the optimal capacity

and solve a capacitated lot-sizing problem simultaneously. The capacity-acquisition, pro-

duction, and inventory-holding costs are considered and we formulate the problem as a

cost-minimizing Non-Linear Mixed Integer Programming (MIP) model. We conjecture that

the problem is impossible to solve using a polynomial time algorithm, thus we develop

a heuristics algorithm. The major difference between our study and previous efforts to

address capacitated lot-sizing problems, for example, in the well-known papers of Wag-

ner and Whitin (1958) and Zangwill (1968), is that in our model, the capacity level is an

internal decision.

The remainder of this paper is organized as follows. We review the relevant literature

in Section 2. Section 3 introduces the relevant notation and the basic model. In Section

4 we propose a heuristic to solve this problem. A computational study and numerical

results are presented in Section 5. Finally, the conclusions and future research directions

are given in Section 6.
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2 Literature Review

The aim of capacity-acquisition decisions is to select the proper capacity that not only

satisfies demand completely, but also reduces overcapacity. The research on capacity ac-

quisition includes two major streams, the traditional mathematical programming models

and the economic models.

The flexible capacity investment and management problems was addressed at a rel-

atively early stage with mathematical programming methods. Fine and Freund (1990)

introduced a two-stage stochastic programming model and analyzed of the cost-flexibility

trade-offs involved in the investment in product-flexible manufacturing capacity for a firm.

They addressed the sensitivity of the firm’s optimal capacity investment decision to the

costs of capacity, demand distribution, and risk level. van Mieghem (1998) studied the

optimal investment problem of flexible manufacturing capacity as a function of product

prices, investment costs and demand uncertainty for a two-product production environ-

ment. He suggested finding the optimal capacity by solving a multi-dimensional news-

vendor problem assuming continuous demand and capacity. Netessine et al. (2002) pro-

posed a one-period flexible-service capacity optimization and allocation model taking the

capacity acquisition, usage, and shortage costs into account. While each paper mentioned

above considered the multiple products and multiple resources problems with demand

uncertainties, their focuses were limited to single-period models.

Apart from the studies on flexible capacity investment, many efforts have also been

made to solve generalized capacity-investment problems. Harrison and van Mieghem

(1999) developed a single-period planning model to incorporate both capacity investment

and production decisions for a multiple-product manufacturing firm. This study yielded a

multi-dimensional descriptive model generated from the “news-vendor model”, and gave

qualitative insights into real-world capacity-planning and capital-budgeting practices. Nev-

ertheless, the decisions on optimal capacity investment are highly generalized, and the

production plan decisions were not explicitly presented. van Mieghem and Rudi (2002)

extended the work of Harrison and van Mieghem (1999) to include an operations envi-

ronment with multiple products, production processes, storage facilities, and inventory
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management. Moreover, they investigated how the structural properties of a single period

extend to a multi-period setting. They also improved on previous studies by considering

some inventory-management issues.

Since the news-vendor model was developed and applied to capacity decision prob-

lems, it has been an important analysis technique to model and solve complex capacity-

optimization problems under uncertainty. Burnetas and Gilbert (2001) proposed a news-

vendor-like characterization of the optimal production policy on capacity under unknown

demand and increasing costs within a finite horizon with discrete time periods. The

approach focused on the trade-off between increasing production cost and the learning

mechanism about demand, neglecting set-up costs and capacity-supplying limitations.

Lot sizing has remained a fruitful topic in operations research since the 1950’s. Various

variants including single-item and multi-item, uncapacitated and capacitated lot-sizing

problems have been studied extensively. Over fifty years ago, Wagner and Whitin (1958)

develop a forward algorithm for a general dynamic version of the uncapacitated economic

lot-sizing model. The zero-inventory ordering theorem is a key contribution in this paper

for the uncapacitated cases. Although many alternative algorithms have been presented,

the dynamic programming method remains the major approach to solving lot-sizing prob-

lems.

More recent studies include Federgruen and Tzur (1991), who considered a dynamic

lot-sizing model with general cost structure. The authors present a simple forward algo-

rithm which solves the general dynamic lot-size model in O(T logT) time and in O(T)

under mild assumptions on the cost data. This is an important improvement over the

previously recommended well-known shortest path algorithm solution in O(T 2) space.

Wagelmans et al. (1992) extended the range of allowable cost data to allow for coefficients

that are unrestricted in sign. They developed an alternative algorithm to solve the result-

ing problem in O(T logT) time.

The uncapacitated lot-sizing problem is however an ideal case and hardly applicable to

real-world operations. Capacity constraints always heavily influence production-plan de-

cision making. Furthermore, the general capacitated lot-sizing problem is NP-hard, see

Bitran and Yanasse (1982). For the special case of a constant capacity restriction over the
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entire planning horizon, a number of efficient algorithms are capable of calculating an op-

timal production plan. For example, Florian and Klein (1971) presented an algorithm with

the computational complexity O(T 4) for the capacitated lot-sizing problem and explored

the important properties of an optimal production plan. The optimal plan consists of a

sequence of optimal sub-plans. Baker et al. (1978) discovered some important properties

of an optimal solution to the problem when the production and inventory-holding costs

are constant.

Other studies have tried to relax the strict cost-structure restrictions in the algorithms

reviewed above. Kirca (1990) presented a dynamic programming-based algorithm with

the computational complexity of O(T 4) and Shaw and Wagelmans (1998) a dynamic pro-

gramming algorithm for the capacitated lot-size problem with general holding costs and

piecewise linear production costs. The algorithm of the latter reduces the computation

time to O(T 2d̄), where d̄ is the average demand when production cost is linear. Many

other contributions in this area include van Hoesel and Wagelmans (1996), Chen et al.

(1994), and Chung and Lin (1988).

The studies mentioned above all addressed capacity investment or production plan-

ning decision problems individually. The implications of combining these problems are,

however, rarely discussed. As an exception, Atamturk and Hochbaum (2001) studied a

problem on capacity acquisition, subcontracting, and lot sizing. That is the only study

we have found which is closely relevant with our studies. Although their approach makes

the production plan and capacity acquisition decisions simultaneously, the authors sim-

ply discussed some special cases of production and holding-cost structure. Moreover, the

study still focused on solving a series of capacitated lot-sizing problems discretely, caus-

ing the computational complexity to increase exponentially with the number of planning

periods and demands. Additionally, Ahmed and Garcia (2004) studied a dynamic capacity-

acquisition and assignment problem in a simplified operations setting to determine the

resource capacity and allocation of the resources to tasks. This study actually proposed a

capacity-expansion and planning approach without considering inventory carry-over and

the determination of production plans.

In summary, while progress has been made on investigating the questions of capac-
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ity acquisition decisions and lot sizing separately, few results have been achieved that

address joint optimization of capacity acquisition and production decisions under a ca-

pacitated lot-sizing cost structure, even when considering only a single firm.
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3 The Model and Notation

In this section, we analyze the capacity acquisition and lot sizing problem. A firm has

to determine the optimal capacity to purchase and set a corresponding lot sizing plan

simultaneously.

3.1 Formulation

The firm produces an item or product that consumes a common resource during its pro-

duction. The amount of the resource the firm purchased is assumed to be the capacity

limit in a dynamic lot sizing setting. An example for this might be the number of trucks

to lease, the work force to hire and other supportive affectivities for production. The firm

has to purchase the capacity for the entire planning horizon and can then use the capac-

ity over the planning horizon. The capacity must satisfy the demand constraints and the

excess capacity will be disposed of without extra disposal costs.

The production plan will be considered in a planning horizon of T periods. If the firms

face a natural sales season introducing a new model or variant in each season, a natural

choice of T arises, e.g. T = 52 weeks in the automobile manufacturing industry operating

with a weekly production and sales schedule. Otherwise T is chosen large enough to

ensure that the firms’ decisions pertaining to the initial periods of the planning horizon

are not affected by this truncation of the planning process.

The firm has a demand stream during the planning horizon, known only to the firm

itself and following some predictable seasonality pattern. Thus, let

dt = the demand faced by firm in period t, t = 1, . . . , T

The firm produces goods via a production and distribution process that, in principle,

allows for inventory replenishment in each period. As in standard dynamic lot sizing

problems, we assume that fixed as well as variable production costs are incurred as well

as inventory carrying costs, which are proportional to each end-of-the-period inventory.

We assume that all fixed order costs stay constant over the planning horizon, while all

other cost parameters may fluctuate in arbitrary ways. We define
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f = the fixed setup cost for a production batch produced in any period t, t =

1, . . . , T ;

at = the per unit production cost rate for a production batch delivered in period t;

t = 1, . . . , T ;

ht = the cost to carry one unit product in inventory at the end of period t, t =

1, . . . , T .

We define the following variables:

xt = the amount of product produced in period t, t = 1, . . . , T

yt =





1 xt > 0

0 otherwise

It = the inventory amount at the end of period t, t = 1, . . . , T

C = the capacity acquired by the firm.

The firm needs to acquire the capacity in question on a spot market prior to the sea-

son. We name the acquisition cost A(C) and assume it is smooth and convex. Such an

assumption is reasonable, among other explanations, when the purchase of the firm in-

fluences the market price. As a simple example, let the market price for the resource be

p = Λ + θC where Λ and θ are positive constants. Hence the acquisition cost for the

resource is quadratic in C:

A(C) = p · C = p(Λ+ θC) (1)

This gives rise to the following formulation of the problem:

min

T∑

t=1

(atxt + htIt + fyt)+A(C) (2)
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subject to

It = xt − dt + It−1, ∀ t = 1, . . . , T (3a)

xt ≤ Cyt , ∀ t = 1, . . . , T (3b)

I0 = IT = 0 (3c)

xt ≥ 0, It ≥ 0, yt ∈ {0,1}, C ≥ 0, ∀ t = 1, . . . , T . (3d)

where the objective function (2) minimizes the production and inventory-holding costs

as well as the acquisition costs of the capacity. Constraints on the problem are: Equation

(3a) ensures that inventory is balanced; Production is restricted by (3b); Equation (3c) sets

initial and final inventories to zero; and the bounds of the variables are restricted by (3d).

Solving the model entails simultaneously determining the optimal capacity, order periods,

and production amounts in each order period. Capacity is assumed to be a continuous

variable, meaning that capacity can be acquired at any non-negative level.
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4 The Heuristic

4.1 Basic idea of the heuristic

The simultaneous calculation of an optimal capacity and an optimal production plan as

explained above is a quadratically constrained MIP model. This problem class is generally

NP-hard according to Garey and Johnson (1979). While the general capacitated lot sizing

problem is NP-hard, since the capacitated lot sizing problem with constant capacity can

be solved in polynomial time, the capacity acquisition and lot sizing problem with constant

capacity can be solved by discretizing the interval of potential values for the capacities and

solving for each of those values. So it is not NP–hard in the strong sense, and can be

solved in pseudo–polynomial time.

Solving problems with reasonable sizes by discretizing the solution space for the ca-

pacities with CPLEX has shown that, although theoretically satisfactory, the large compu-

tational times make such a methodology impractical (see §5 for details). Therefore, in this

section, we develop an O(T 3 logT) heuristic algorithm which improves the computational

efficiency dramatically.

To facilitate the presentation of our algorithm, we use the following notation. We

define

D(t) =
∑t
j=1 dj to be the cumulative demand in the first t periods, t = 1, . . . , T ;

Xt =
∑t
j=1 xj to be the cumulative production level in the first t periods, t = 1, . . . , T ;

H(i, j) =
∑j−1
k=i hk to be the cost of holding a product from period i to period j, ∀ 1 ≤

i < j ≤ T ;

H(i) =
∑T
k=ihk to be the cost of holding a product from period i to the end of the

planning horizon;

Cnmin = to be the minimum capacity that allows a feasible solution with n setups;

Θ(n) = {1, ℓ2, . . . , ℓn} to be a setup strategy with the fixed setup number n, n =

1, . . . , T . The orders in periods 1, ℓ2, ..., ℓn obey the assumption that the avail-

able capacity is at least Cnmin.

9



In analogy to the algorithm presented by Federgruen and Meissner (2009), who present

an algorithm for a combined pricing and uncapacitated lot sizing problem, the heuristic

developed here considers each possible number of setups n, n = 1, . . . , T separately and

determines the best capacity and production plan. We solve the following problem:

π∗(C) = Kn(C)+A(C) (4)

= min
n

min
C
(nf + Fn(C)+A(C)) (5)

= min
n

min
C
(nf + Fn(C)+ C (Λ+ θC)) (6)

The function Fn(C) represents the production and inventory cost for the fixed setup

number n. For each setup number n, our heuristic progresses in the following stages:

1. construct an initial solution with the minimal capacity that allows a feasible solution;

2. update production plan and calculate the cost savings when capacity is increased.

This allows us to determine the best capacity choice for each n individually;

3. compare the individual cost of each setup choice and pick the overall best solution.

While this procedure may not be optimal, our computational experiments show that,

in many cases, our results are very close to optimality. In the numerical study Section, we

compare the heuristics solution with the solution obtained by a full enumeration over the

discretized decision space method and using CPLEX 11.0 to solve the individual instances.

4.2 Construction of the initial solution

For each number of setups n, we first find the minimal capacity that allows a feasible

solution to the problem. This minimal capacity Cnmin can be calculated as follows:

Cnmin = max

{
D(T)

n
, max

t=1,...,T

{
D(t)

t

}}
∀n = 1, . . . , T (7)
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After determining this minimal capacity, we find the number of order periods neces-

sary for each fixed setup number n = 1,2, . . . , T . We start with a solution that places the

orders as late as possible under the minimal feasible capacity Cnmin, and then we improve

the solution by shifting the orders forward or backward if this is beneficial. The procedure

is fully described in Algorithm 1. While it does not yield the optimal solution in general, in

the important case of no prevailing speculative cost motives and Cnmin being determined

as the average demand per period, it does result in an optimal initial solution:

Lemma 1 Assume that there is no speculative cost motive, i.e. a(s)+H(s, t) ≥ a(t) for all

1 ≤ s < t ≤ T , and that Cnmin =
D(T)
n , then Algorithm 1 results in an optimal solution for

the fixed setup number n.

Proof : Let the initial production strategy from the Algorithm 1 be Θ0 = {ℓ0
1, ℓ

0
2, . . . , ℓ

0
n},

and moreover, since Cnmin =
D(T)
n , the production quantity in each setup period has to be

Cnmin in order to satisfy demands. The proposition will be proved if we show the minimal

cost π∗ = π(Cnmin|Θ0).

Suppose that the strategy Θ0 is not optimal given the condition described in Lemma 1,

there exists another production strategy Θ = {ℓ1, ℓ2, . . . , ℓn} which makes π(Cnmin|Θ) ≤

π(Cnmin|Θ0). According to the algorithm, the setups ℓ0
i , i = 1, . . . , n cannot be post-

poned in order to satisfy the feasibility of solution, thus, there must exist at least one

i, so that ℓ0
i−1 < ℓi < ℓ0

i . This means that a(ℓi) + H(ℓi, ℓ
0
i ) ≤ a(ℓ0

i ). It contradicts the

assumption of no speculative cost motive, a(s) + H(s, t) ≥ a(t) for all 1 ≤ s < t ≤ T .

Thus, Algorithm 1 results in an optimal solution. 2

4.3 Update with increased capacity

Having found an initial solution, we update it with increased capacity. We introduce the

following additional notation:

Ω = a list of potential saving opportunities;

Ξ =
{
ξi, i = 1, . . . , T

}
, where ξi = {0,1};

Φ = a list of active savings generated from Ω;
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Algorithm 1 Initialization

1: R = 0

2: N = n

Require: d,a,H,CNmin
3: for t = T : −1 : 1 do

4: R = R + d(t);
5: if R >= Cnmin then

6: xt = C
n
min

7: lN = t
8: yt = 1

9: N = N − 1

10: R = R − Cnmin
11: end if

12: end for

13: for i = 2 : 1 : n do

14: V = 0

15: B = 0

16: for j = li−1 : 1 : li − 1 do

17: if V > a(j)+H(j, li)− a(li) then

18: V = a(j)+H(j, li)−a(li);
19: B = j;
20: end if

21: end for

22: if V < 0 then

23: yli = 0

24: li = B
25: yli = 1

26: end if

27: end for

28: R := 0

29: for t = T : −1 : 1 do

30: R = R + d(t);
31: if yt = 1 then

32: xt = min{R,Cnmin}
33: R = R − xt
34: end if

35: end for

12



Γ = (ǫmin, Savings) to be the executive list to update the lot sizing plan in each

iteration of computation.

The list of potential saving opportunities Ω is created first, and then elements of poten-

tial savings Ω are converted to a list of active savings Φ that we pursue at a given capacity

increase. Each time a saving opportunity is exhausted, we check whether another element

can be brought from Ω to Φ. Once Ω is empty, stop the algorithm. Each element of Ω

is a quadruplet of the form
{
ℓ−, ℓ+, δ, ǫ

}
, ℓ− represents the period in which production

is to be decreased, ℓ+ is the period in which production is to be increased, and δ is the

potential cost saving per unit, and ǫ denotes the maximum number of units for which the

savings opportunity can be exploited.

After finding the initial solution, we update the production and lot sizing plan while the

capacity increases. For any given number of order periods, we examine the possibility of

improving the solution by using the additional capacity that the company might acquire by

comparing the cost of such a change between two adjacent order periods. The two options

are either a shift of production to a previous order period or a postponement to a later

order period. The first case, shifting the production earlier, creates no problems and can

be repeated until the decreasing order period reaches zero. A postponement is potentially

problematic, but can be done either until the first decreasing period has reached zero

production level or until a further decrease leads to an infeasible solution. The maximum

decrease is given by:

ǫ = min



xℓi ,




i∑

k=1

xℓk −

ℓi−1∑

k=1

dk





 (8)

In Algorithm 2, under the fixed setup number n, we compare each pair of sequential

setups in period ℓi and ℓi+1, i = 1, . . . , n − 1 to determine {ℓ−, ℓ+, δ, ǫ}, and adding it to

Ω.

Based on the saving opportunities matrix generated from the Algorithm 2, we sort the

potential savings candidates Ω. Next, the Algorithm 3 moves to realize the savings. In

order to keep the linear decrease of lot sizing cost, we consider the capacity increases in
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Algorithm 2 Build sorted list of potential savings opportunities Ω
1: Given: Set of order periods Θ(n) = {1, ℓ2, . . . , ℓn}
2: new list Ω
3: for i = 1 : 1 : n− 1 do

4: if a(li)+H(li, li+1) < a(li+1) then

5: Insert new element in Ω: (li+1, li, a(li+1)− a(li)−H(li, li+1), x(li+1))
6: else

7: if a(li)+H(li, li+1) > a(li+1) then

8: if X(li)−D(li+1 − 1) < x(n, li) then

9: Insert new element in Ω: {li, li+1, a(li)+H(li, li+1)− a(li+1), x(li)}
10: else

11: Insert new element inΩ: {li, li+1, a(li)+H(li, li+1)−a(li+1),X(li)−D(li+1−1)}
12: end if

13: end if

14: end if

15: end for

a variable step size which is the minimum value of ǫ in the active savings candidate list

Φ. The value of the current capacity adding a step size will be a breakpoint of capacity

increasing. Upon reaching one of the breakpoints, the savings opportunity has been ex-

hausted and is removed from the calculation. We have two options, either we stop when

one order period had reached zero, with the reasoning that we can reach a similar solution

in a run with n−1 setups or, since there is no harm from the point of view of complexity,

we can also proceed until our list is empty.

According to the heuristic procedure described above, we have Lemma 2 below. The

Proposition 1 is resulted from the heuristic procedure. A outline of proof is provided to

help illustrate the algorithm and proposition.

Lemma 2 For a fixed setup number n, the lot sizing cost function Kn(C) is piecewise-linear

non-increasing in capacity and convex.

Proof : The lot sizing cost function is Kn(C) = Fn(C) + nf . Since fixed setup cost is

constant, if the total production and inventory cost function Fn(C) is piecewise-linear de-

creasing in capacity. Given a production plan
{
xℓ1

, . . . , xℓn

}
, the production and inventory

cost function is

14



Algorithm 3 Calculation of cost function with increased capacity

1: M = size (Ω)

2: new binary array Ξ[T] := 0

3: for i = 1 : 1 :M do

4: if Ξ(Ω[i] → ℓ−) = 1 then

5: delete element Ω[i]
6: M :=M − 1

7: else

8: Ξ(Ω[i] → ℓ+) := 1

9: Ξ(Ω[i] → ℓ−) := 1

10: end if

11: end for

12: delete Ξ[T] := 0

13: N = 0

14: new binary array Ξ[T] := 0

15: new list Φ
16: new variable Savings := 0

17: for i = 1 : 1 : M do

18: if Ξ(Ω[i]→ ℓ+) 6= 1 then

19: Φ = Φ∪Ω[i]
20: Savings = Savings + Ω[i]→ δ
21: Ω = Ω\Ω[i]
22: Ξ(Ω[i]→ ℓ+) = 1

23: N = N + 1

24: end if

25: end for

26: M = M - N

27: new list Γ
28: repeat

29: ǫmin =mini=1,...,N Φ[i]→ ǫ
30: Append element to Γ : (ǫmin, Savings)
31: Update {xt , yt, It}
32: for i = 1 : 1 : N do

33: Φ[i]→ ǫ = Φ[i]→ ǫ − ǫmin
34: if Φ[i]→ ǫ = 0 then

35: Savings = Savings - Φ[i]→ δ
36: for j = 1 : 1 :M do

37: if Ω[j]→ ℓ+ = Φ[i]→ ℓ+ then

38: Φ = Φ∪Ω[i]
39: Savings = Savings + Ω[i]→ δ
40: Ω = Ω\Ω[i]
41: end if

42: end for

43: Savings = Savings - Φ[i]→ δ
44: Φ = Φ\Φ[i]
45: end if

46: end for

47: until Φ = ∅

15



Fn(C) =
n∑

i=1


aℓixℓi +

ℓi+1∑

j=ℓi+1

hj
(
X(j)−D(j)

)

 . (9)

In order to prove that Fn(C) is piecewise-linear decreasing in capacity, the following

three properties of the function need to be proved respectively (all discussion below is

based on a fixed setup number n):

(1) Fn(C) is non-increasing in capacity;

If capacity increases to be C
′
, the production plan {xℓ1

, . . . , xℓn} is still feasible, and

the decision space is broader, therefore, we have at least Fn(C
′
) ≤ Fn(C).

(2) Fn(C) is piecewise–linear in capacity;

According to the initial solution from Algorithm 1 and Algorithm 2, search all cost

saving opportunities and record them in array Ω which allows the capacity to vary in the

range [Cnmin,D(T)].

Furthermore, by Algorithm 3, we deal with the saving opportunities array Ω. According

to the heuristic procedure, the computation includes a finite number of iterations based

on different capacity levels.

In each iteration, we define and calculate an active cost saving array Φ = {φm, m =

1,2, . . . ,M}, where φm = {ℓ−, ℓ+, δm, εm}. For the detailed steps please refer to the algo-

rithm.

From the array Φ, we determine a capacity increase quantity ∆C = min ǫm with the

unit cost saving
∑M
m=1 δm. Thus, cost function Fn(C) is linear non-increasing in capacity

interval (C,C +∆C]. Capacity level (C +∆C) is a new breakpoint of capacity increase.

(3) Fn(C) is continuous.

In the heuristic algorithms, a new breakpoint of capacity increase is always calculated

based on the capacity level of the previous one iteration. In addition, the solution of

the production plan of an iteration is always the initial solution of the next iteration.

Therefore, we see that the cost function Fn(C) is continuous. Moreover, since the slope of

the function Fn(C) results from picking various elements from Ω, the convexity is a direct

result of our picking elements in decreasing order of their savings. 2
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For an illustration of Lemma 2, see Figure 1 selected from a numerical example dis-

cussed in Section 5.
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Figure 1: An example of cost variation with the capacity increase under a fixed setup

number

4.4 Calculation of the optimal capacity

Upon obtaining the piecewise-linear functions for each individual setup number n, we cal-

culate the optimal capacity to acquire by finding the appropriate breakpoint. According to

the Lemma 2, and finite possible setup numbers, the optimal solution is obtained by com-

paring the minimal costs of all possible setup numbers. The optimal capacity corresponds

to the optimal setup number. To this stage, the entire heuristic procedure is completed in

polynomial time as shown in the following section.

4.5 Complexity

To assess the complexity of the algorithm, first, the individual complexity of the major

algorithm steps are described. Note that the steps taken to solve the problem have to

be repeated T times, once for each potential setup n. Then in each iteration under fixed
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setup n, finding the minimal feasible capacity can be done in O(T); next, finding the initial

solution takes O(T) for the first phase and O(T) for the final initial solution; Third, in the

update procedure of initial solution with the capacity increase, finding potential savings

again takes O(T), since n pairs at most have to be evaluated. After obtaining the list of

potential savings, this list has to be sorted once, which takes O(TlogT) using Quicksort

or a similar algorithm. Finally, searching the list for potential savings to determine each

breakpoint can be done in O(T). Given that there are at most n breakpoints, this leaves us

with a complexity of O(T) to update the solution from the previous lower capacity level.

Considering the relationships (paralleled or hierarchical) between the steps, the inte-

grated algorithm complexity is as follows. For each setup, we find the minimum capacity,

find the initial solution, optimize the initial solution, and finally compare the optimal so-

lution for each setup number which cause a complexity of O(T 3). Based on each initial

solution under Cnmin, the improvement procedure including the determination of Ω with a

complexity of O(T), the sorting of potential savings adding another O(TlogT) and updat-

ing of solution adding O(T) again. Doing this totally introduces a complexity O(T logT).

The final comparison of each solution of each setup number gives a complexity of O(T 2).

Taking everything into account, we have a complexity of O(T 3) + O(T 3logT) + O(T 2).

Without loss of the generality, the overall heuristic algorithm terminates in O(T 3logT).
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5 Numerical Example

In this section, we present computational examples for our heuristic. Using the heuristic

algorithm we developed for the best response problem, capacity acquisition and lot sizing

problem, a numerical study is carried out first to show the robust performance of the

algorithm. It is assumed that the firm faces a planning horizon of T = 54 periods with

varying seasonal demand. The demand behaves according to:

dt = βt ∗ (d̄)∗U[0.5; 1.5] (10)

We consider six different seasonality patterns {βt : t = 1, . . . ,54} as follows:

(I) Time-invariant demand functions: βt = 1 ; t = 1, . . . ,54

(II) Linear Growth: βt = 0.25+ 1.5 (t−1)
53 ; t = 1, . . . ,54

(III) Linear Decline: βt = 1.75− 1.5 (t−1)
53 ; t = 1, . . . ,54

(IV) Holiday Season at the Beginning of the Planning Horizon:

βt =





54
114 +

540
570(t − 1) , t = 1, . . . ,6

594
114 −

540
570(t − 7) , t = 7, . . . ,12

54
114 , t = 13, . . . ,54

(11)

(V) Holiday Season at the End of the Planning Horizon:

βt =





54
114 , t = 1, . . . ,42

54
114 +

540
570(t − 43) , t = 43, . . . ,48

594
114 −

540
570(t − 49) , t = 49, . . . ,54

(12)

(VI) Cyclical Pattern:
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βt =





0.25+ 0.75(t − 1) , t = 1, . . . ,3

1.75− 0.75(t − 4) , t = 4, . . . ,6

βtmod6 , t = 7, . . . ,54

(13)

where tmod6 denotes t modulo 6. The first pattern reflects a situation where demand

functions are time-invariant and the second (third) pattern one with linear growth (de-

cline). The fourth and fifth patterns represent a planning horizon with a single season of

peak demands either at the beginning or at the end of the planning horizon. The last pat-

tern (VI) is cyclical with a cycle length of six periods, such that demands in the two middle

periods of each cycle are 7 times their value in the first and last period, while βt = 1 in

the remaining two periods of the cycle.

We pick ct = 15; ht = 5 and do our analysis for three different setup cost levels con-

sidering the assumption of no speculative inventory in firms. In addition, in order to calcu-

late the capacity acquisition cost, we choose constants Λ = 200 and θ = 1. We determine

the fixed setup cost indirectly by first choosing the EOQ-cycle time “Time-between-Orders

(TBO)” =
√

2κ
hd and determine the κ value from this identity. The TBO value is generated

from a uniform distribution on the interval [1,3] for low TBO values, the interval [2,6] for

medium TBO values and [5, 10] for high TBO values.

Using different combinations of demand pattern, TBO, and an average demand of 50

units, we generate a number (18) of hypothetical test problems. The heuristic algorithm

are coded using Matlab 7.0. The optimal (benchmark) solutions are obtained by calling

CPLEX 9.0 solver using Tomlab classes in Matlab environment. The problem instances are

solved on a Pentium 4 PC with 512 RAM. Applying the cost and demand data described

above and running the code 10 times, we calculate the average gaps between the heuristic

and optimal solutions. The results are presented in Table 1.

The results indicate that our heuristic algorithm performs quite well. First, the gaps

between the heuristic and the optimal solutions are very small with an overall average

gap of 2.71%; this is acceptable given the extremely short computational times of around
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TBO=Low TBO=Medium TBO=High

Demand CPU (s) CPU(s) CPU(s) Average

Pattern Gap Opt Heur Gap Opt Heur Gap Opt Heur Gap

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

DP1 1.01% 1590 1.2 0.76% 4012 1.1 0.88% 3013 1.1 0.88%

DP2 1.50% 1214 1.2 1.59% 3620 1.2 2.35% 3969 1.2 1.82%

DP3 1.79% 1164 0.8 1.69% 3247 0.8 1.05% 1669 0.8 1.51%

DP4 2.46% 3154 0.6 5.23% 3815 0.6 6.11% 1766 0.6 4.60%

DP5 4.76% 2264 1.3 5.09% 4140 1.2 4.47% 3896 1.3 4.77%

DP6 2.05% 388 1.1 3.56% 1326 1.1 2.49% 1333 1.3 2.70%

Average 2.26% 1629 1.0 2.99% 3360 1.0 2.89% 2607 1.0 2.71%

Table 1: The average gaps between the heuristics costs and optimal costs and CPU com-

putation times

Test TBO Demand Heuristic Solutions Optimal Solutions

Problems Pattern Costs Setups Capacity Costs Setups Capacity

(1) (2) (3) (4) (5) (6) (7) (8) (9)

1 DP1 58588 33 110 58061 34 106

2 DP2 58801 35 128 57881 33 114

3 Low DP3 53000 45 127 52956 45 127

4 DP4 66140 28 380 65156 26 285

5 DP5 66025 24 268 62548 23 231

6 DP6 69273 27 143 68209 26 151

7 DP1 73425 21 173 73028 23 145

8 DP2 103880 14 239 102550 13 314

9 Medium DP3 108210 11 304 105170 11 322

10 DP4 66507 24 227 65720 22 220

11 DP5 95820 13 306 92865 12 327

12 DP6 79911 14 234 78049 15 234

13 DP1 131600 9 325 130140 9 355

14 DP2 176880 6 490 172980 7 487

15 High DP3 174200 6 504 173640 6 504

16 DP4 135420 6 536 127760 6 562

17 DP5 135840 7 441 130370 7 495

18 DP6 152530 9 353 151600 9 349

Table 2: The comparison of the heuristic solutions and the optimal solutions
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one second. Second, under the different demand patterns, the average gap does not vary

dramatically. For the time-varying demand scenario, the average gap is the least, about

1% or less. For the holiday demand scenarios, the average gap remains below 5% (see

column 11 in Table 1). Additionally, comparing with the optimal solutions, the heuristic

solutions are reasonable since the heuristic algorithm also suggests similar setup numbers

and capacity levels (see table 2).
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6 Conclusion

In this paper we consider a single resource acquisition and lot sizing problem considering

capacity competition. We solve this problem by a comprehensive and efficient heuris-

tic algorithm. The algorithm solves the capacity acquisition, production, inventory deci-

sions simultaneously with a similar computation complexity of O(T 3 logT) as the clas-

sical single-item capacitated lot sizing problem. This is an important improvement on

existing methods. Our numerical study shows that our heuristic performs well while us-

ing substantially less time compared to a solution where the potential capacity space is

discretized, while losing only a modest amount of accuracy.

While this study solves the capacity acquisition and lot sizing problem effectively, it

is based on the deterministic demand and constant capacity assumptions. Considering

demand uncertainty and time varying capacity would be important directions to extend

current results. In addition, it would also be very interesting to look into the capacity

acquisition and lot sizing problem under a competition or coordination operations envi-

ronment as future research.
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