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In recent years, many traditional practitioners of revenue management such as airlines or hotels were con-

fronted with aggressive low-cost competition. In order to stay competitive, these firms responded by cutting

down fare restrictions that were originally meant to fence off customer segments, that is to prevent high-

yield customers from buying down. For the corresponding markets, unrestricted fares were introduced whose

essentially only distinctive feature is its price. Some markets, however, were unaffected and here restrictions

could be maintained as it was the case for long-haul flights, for example.

We develop choice-based network revenue management approaches for such a mixed fare environment that

can handle both the traditional opening or closing of restricted fare classes as well as handling pricing of the

unrestricted fares simultaneously. For any such unrestricted fare, we assume a fixed number of price points

to choose from. It is natural to ask then how these price points shall be chosen. To that end, we formulate

the problem as a dynamic program and approximate it with an efficient mixed integer linear program (MIP)

that selects the best n, say, price points out of a potentially large set of price candidates for each unrestricted

fare. We show both theoretically and practically that it is advantageous to recompute price points later in

the booking horizon using our approach. Furthermore, additional insight is gained from the fact that the

dual values associated with MIP provide an upper bound on the value of having an additional price point.

Numerical experiments illustrate the quality of the obtained price structure and that computational effort

is relatively low given that we need to tackle the large-scale MIP with column generation techniques where

each column pricing problem itself is NP-hard.

Key words : revenue management, restriction-free pricing, network, pricing structure

1. Introduction

Revenue Management (RM) is rooted in the airline industry where it emerged in the mid 1980’s as

an impressively effective means to fend off the low-cost carriers that entered the US market after

its deregulation. Driven by these successful implementations, many other industries such as hotel

chains, car rentals or trains (just to name a few) adopted RM practices. The idea was based on

effective customer segmentation according to price sensitivity, enabling the firm to offer competitive

rates while minimizing cannibalization of sales to less price-sensitive customers. This segmentation

occurs as a result of companies’ imposing restrictions on discounted tariffs, so for airlines or hotels
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2 Meissner and Strauss: Pricing Structure Optimization

these might be minimum lengths of stay, mandatory Saturday-night stays, advanced time limits for

booking or age-based discounts. However, in recent years an increasing number of firms successfully

implemented low-cost business strategies that operate without the complicated tariff structure that

combines discounted products with restrictions. Prominent examples are Ryanair or businesses

of the easyGroup who advance this concept in many industries, such as airline (easyJet), bus

(easyBus) and many more. By advertising unfavourable comparisons between their own tariffs and

the ones of the incumbents, many of the latter felt the need of also having to offer at least some

unrestricted products in order to counter the negative impressions created by such campaigns.

Currently we observe this trend most articulately in the airline business where traditional carriers

such as Lufthansa or British Airways experiment with offering both restricted and unrestricted

fares, but it begins to manifest also in other areas as the example of easyGroup with their cross-

sectoral restriction-free approach shows. Hence it is likely that soon we will frequently face similar

topics as there was on the agenda of the practitioner conference “eyefortravel Travel Distribution

Summit Europe” in 2005: “The rise of the ‘no frills’ hotel. Could this have the same effect on the

hospitality industry as low-cost carriers had on the airline sector?”.

The consequence of this development for RM of incumbent firms who respond to this aggressive

competition by offering a mix of restricted and unrestricted products is the partial invalidation of

the premises for customer segmentation, though there is still a substantial part of the market where

the segmentation works well. However, current RM systems build upon the traditional assumptions

of offering only restricted products and thus there is a need for research in the realm of mixed

restriction and restriction-free fares as illustrated in the recent practitioner article by Vinod (2006).

However, despite these appeals from the practitioners that have to face these issues, little academic

research has been carried out to date in the context of mixed fare environments.

In the following, for the sake of illustration we will present our approach in the airline context

and use airline terminology to stay in the picture, but we remark that the ideas transfer with few

adjustments to other industries that use multiple resources in their products as well. For example,

transfer to hotel industry is done by exchanging flight legs by room nights, that means a connecting

flight becomes then a multiple night stay etc.

We propose in this paper a revenue maximizing framework tailored to this new fare environ-

ment which does without proper customer segmentation. More specifically, the model distinguishes

between unrestricted and restricted fares, incorporates a finite set of price points for each unre-

stricted fare which can be obtained by a preprocessing method, and leads to customer choice-based

bid price heuristics by providing opportunity cost estimates. Modelling customer choice is of great

http://www.meiss.com/
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importance, in particular since unrestricted fares can be considered for purchase by different seg-

ments given that the restrictions meant to fence low fares off have been removed. A choice model

suited to this task is the Multinomial Logit (MNL) with overlapping consideration sets, see Bront

et al. (2007), for example. Some modifications allow us to use their approach to tackle the problem

at hand so that we can pursue the following main research issues:

• A network revenue management optimisation approach that can handle both traditional and

unrestricted demand such that it selects which fares to offer and (for the unrestricted ones) at

what price?

• How to pre-select price points for the unrestricted products, given that booking systems are

often limited in the number of price points they can manage and that it might not be possible to

change the available price points during the booking horizon?

• What is the worth of an additional price point?

Our main contributions lie within providing answers to these issues: First, we propose a choice-

based RM model from which control policies can be derived that work in mixed fare environments.

This model uses a finite set of price points for each unrestricted fare and treats each price points as

a separate, “virtual” fare under the condition that at most one such virtual fare may be offered at a

time for each unrestricted fare. Since the ability of booking systems to handle many fares is limited,

the question arises which price points shall be used. To this end, we contribute in developing a

dynamic programming model that represents the optimal policy in both selecting the best price

points and in controlling which set of products to offer at any point in time. It is of theoretical

interest only due to the curse of dimensionality but yields insights into pricing in this context,

namely, the later one commits to price points the better. In order to approximate this intractable

dynamic program, we develop a mixed integer linear program that provides us with a good feasible

price structure that can even be optimal as illustrated in the numerical experiments. As a by-

product we obtain upper bounds on the value of having an additional price points by means of the

optimal dual solution of the linear programming relaxation, which is again an interesting feature

in testing fare structures.

The paper is organized as follows: In the next section we briefly review the related literature,

then we present the modelling framework in Section 3 followed by the mixed fare environment

optimization model given fixed prices in Section 4. The related question of how to pre-select price

points is discussed in Section 5 including presentation of the underlying dynamic program and the

linear mixed integer program approximation. Numerical evidence for the performance of the price

point pre-selection is provided in Section 6 before we conclude in Section 7.
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2. Literature Review

Naturally, the first to identify the changes necessary in revenue management optimisation with

respect mixed fare environments was the practitioner community. A number of publications from

airlines, software providers and pricing consultancies appeared since 2003 that analysed the changes

in the business environment due to low cost competition. Academia followed with some delay in

providing potential answers to the outlined questions. Let us first turn to the practitioner reports

to frame the problem: Among the first was Foran (2003) from British Airways (BA), describing

their dramatic cut of restrictions at the time to simplify their fare structure. Many traditional

airlines had very refined market segmentations in place so that many network products ended

up almost never being purchased. BA decided to simplify fares and thereby accepting a loss of

ability to segment because the high fare complexity offset potential customers. This customer

behaviour was also stressed by Cary (2004), who further added that business customers became

unusually price-sensitive as compared to the 90ies. Low cost competition on the short-haul links

undermined the traditional carriers’ ability to price discriminate as noted by Tretheway (2004)

owing to the introduction of cheap one-way fares. Many other companies followed suit in cutting

restrictions, for example, GNER and Virgin Trains in 2005 in the United Kingdom. While some

firms even replaced their whole revenue management system by a one-way fare structure as, for

example, bmi (see Donnelly et al. (2004)), most chose to introduce low-cost fares along with the

traditional ones. Westermann (2005) stressed that often unrestricted fare structures need only to

be introduced on links facing low cost competition. On other markets, in particular connecting

traffic, traditional methods are still working well and should be kept since unrestricted fares usually

lead to revenue dilution. The resulting mix of restricted and unrestricted products is a major

challenge and should be addressed by the optimisation module in a origin and destination (O&D)

mechanism as Westermann (2005) pointed out. The underlying problems of such an approach are

touched on in the AGIFORS presentation of Weber and Thiel (2004) who speak of “augmented“

optimisation problems since input values such as prices are not fixed any more but rather also

decision variables. Models of customer choice become important in the presence of solely price-

orientated customers as illustrated by Boyd and Kallesen (2004). They observed that customers

tend to ignore fare restrictions and focus mostly on price such that demand is realised at the lowest

available fare. The credit crunch in 2008 and the subsequent economic downturn further aggravate

the situation in that demand for premium and business fares has broken down. For illustration,

in February 2009 demand for such products dropped by 21% relative to the same month the year

before, as announced by IATA (2009). Though there is still demand which can be addressed by



Meissner and Strauss: Pricing Structure Optimization 5

traditional means, a firm must be aware of this mix of demand types and adjust their forecasting

and optimisation systems accordingly, favourably in an O&D model since customer choice is best

being modelled in this context. Ratliff and Vinod (2005) and Vinod (2006) identify the issue of

optimising in a mixed fare environment as future important problems.

From an academic perspective, not much work has been done yet to address this problem. Gorin

and Belobaba (2004) reported results from a simulation study focussing on the effect of a new

low-cost competitor on the revenue management of an incumbent network carrier. One of the main

findings was that Origin-Destination (O&D) controls are very robust to changes in the competitive

environment as compared to leg-level RM. Such an O&D optimisation method was presented at

AGIFORS by Fiig et al. (2005) as an extension of the well-known displacement-adjusted virtual

nesting (DAVN), and was labelled DAVN-MR. They proposed to split demand into dependent

and independent demand, and then to transform dependent demand into independent demand.

This would be fed into a linear program that returns displacement costs. Fares are adjusted by

subtracting displacement costs to account for the cost of committing capacity, and, in addition, by

subtracting price elasticity costs that reflect risk of buy-down. Finally, booking limits are computed

using the standard expected marginal seat revenue (EMSR) method. An interesting approach was

presented more recently by Gallego et al. (2007) who built their model on DAVN-MR but also

included buy-up by using the multinomial-logit choice model, and Gallego et al. (2009), who focus

on the static single-leg RM problem. Their work is somewhat related to ours in that they also

use the MNL model to address both restricted and unrestricted airfare conditions. However, we

investigate dynamic multi-period network problems, and, furthermore, focus on how to optimize

the price structure of the unrestricted fares. Our model is based on the work of Bront et al. (2007)

who a consider choice-based network RM approach for the MNL model with overlapping segment

consideration sets, that means, there may be products that are considered for purchase by more

than one customer segment. This feature is exploited in our work to depict choice in mixed fare

environments. Meissner and Strauss (2009a) recently extended other RM approaches to allow for

overlapping consideration sets and we note that the model developed in this paper can be based

on these approaches as well. As our intent is to highlight ways to optimize the price structure in

mixed fare environments, we confine ourselves to the simpler model of Bront et al. (2007). The

essential ideas would remain the same, only the policy performance can be expected to be better

at the cost of significantly higher computational requirements.

http://www.meiss.com/


6 Meissner and Strauss: Pricing Structure Optimization

3. The Modelling Framework

In this section we first wish to present our ideas of how the above described situation of a mixed fare

environment can be modelled where we will stick to the example of an airline network throughout

for the sake of simplicity.

In general, our model admits both restricted and/or unrestricted fares on each flight leg or on

their combinations. For airline application, the practitioner reports Boyd and Kallesen (2004) and

Vinod (2006) suggest that on each flight leg of a traditional carrier that competes with a LCC

on this particular leg, the former typically has a fare structure similar to an unrestricted one. For

connecting flights, however, demand is little affected so that restrictions can be maintained. Thus

the examples given in this article assume that direct flights are only offered as an unrestricted

fare for whose price we control, and restricted fares on connecting flights where we control fare

availability. Further we assume that connecting flights cannot be substituted by buying tickets for

its several flight legs separately. However, the analysis of our model holds without these assumptions

as well.

The notation of our model in the network case is geared to the network RM model of van Ryzin

and Liu (2008) and Bront et al. (2007) .

Product

We consider a network consisting of m resources, for example, flight legs in the airline application.

Each resource i has a fixed capacity of ci, and the network capacity is given by the corresponding

vector c = [c1, . . . , cm]T . The capacity is homogenous, i.e. all seats are perfectly substitutable and do

not differ, hence allowing us to accommodate all kind of requests from the given general capacity

on a given flight leg. We need to find a common ground for the availability and pricing control,

respectively, and achieve this by treating every possible price for the unrestricted fare on a given

point-to-point flight i as a separate product. Hence, for each point-to-point flight i there is a set

of unrestricted “virtual fare products” Ui, each such product j ∈Ui in lieu for a specific price out

of a discrete price set. The entity of virtual fare products is denoted by U :=
⋃

i Ui. A restricted

product consists of a seat on one or several flight legs in combination with a fare class and departure

date. The set of restricted products is denoted by R, accordingly N := R ∪ U is the set of all

n = |N | products in the network. Every product j ∈ N has an associated revenue rj. By defining

aij = 1 if resource i is used by product j, and aij = 0 otherwise, we obtain the incidence matrix

A = (aij)∈ {0,1}m×n whose columns shall be denoted by Aj. Each column Aj gives us information

about which resources product j uses. Accordingly we write i ∈ Aj if resource i is being used by
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product j. The state of the system is given by the vector of unused capacity x = [x1, . . . , xm]T ,

and selling product j changes x to x−Aj . Defining A to be a binary matrix entails the implicit

assumption that no group requests are allowed. We emphasize that allowing aij > 1 does not change

the analysis, hence it is straightforward to include group requests in our model.

Customers and Choice Model

Customers arrive at random in the system (for example, on the website), subsequently decide what

to product to purchase depending on the available alternatives, or potentially do not buy at all.

The (non-)purchase decision is made on the basis of a choice model that we explain in the following

paragraph.

There are L customer segments in total, and each segment l ∈ {1, . . . ,L} has a certain set Cl ⊂N

of products that they consider for purchase. For all products j ∈ Cl, customers of this segment

have a preference value vlj. These values are derived by means of a random utility model, for and

introduction see, for example, Section 7.2.2 in Talluri and van Ryzin (2004). Utility for a certain

product j is the sum of a deterministic part ulj and a random error term ζj. A potential way

to estimate ulj would be to define a number of attributes that affect utility like price, service,

scheduled departure and arrival times etc. Sensitivities of segment l to these explanatory attributes

are represented in a vector βl, and ulj := βT
l x̃j, where x̃ denotes the vector of attribute values.

We assume that customers choose according to the Multinomial Logit (MNL) choice model that

is constructed by assuming that the random terms ζj are i.i.d. random variables with a Gumbel

distribution with zero mean and variance (µ̃π)2/6 with some scaling parameter µ̃. Preference values

are finally being obtained via vlj := exp(ulj/µ̃), and we set vlj equal to zero if the product j is not

in the consideration set Cl.

Despite some shortcomings such as the independence from irrelevant alternatives property, the

MNL model is very popular in practical applications because it is easy to use and very flexible. A

particular advantage is that we can allow consideration sets to overlap, reflecting the lacking means

of segmentation. Furthermore, we can adjust preferences for products according to the extent that

restrictions are being imposed on them, and any other attribute affecting customers’ perceived

utility. On the downside, note that we need to estimate preference values for all price points for

unrestricted fares, including those that might have never been offered before. To that end, we refer

to the literature on calibrating the MNL model, for example, the recent work of Ratliff et al. (2008)

or Vulcano et al. (2008).
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The booking horizon is divided into T periods that are small enough such that there is at most

one customer arrival according to a time-homogeneous Poisson process with arrival rate λ. Time-

varying arrivals can also be captured by our models in that we first partition the time horizon

into subintervals on which arrivals can be assumed time-homogenous, and then carry out the same

analysis for each subinterval. Decisions on which products to offer must be made at the beginning

of each time period.

Since the consideration sets overlap, the firm cannot distinguish with certainty between different

segments. Therefore, we can only attach a probability pl,
∑

l
pl = 1 to the event that a customer

belongs to segment l. We define Poisson processes with rate λl := plλ for every segment, so taken

together we have λ =
∑

l
λl. The probability that a segment l customer purchases product j when

the fare set S is offered is given by

Plj(S) =
vlj

∑

ι∈Cl∩S
vlι + vl0

for S ⊂N,∀i : |S ∩Ui| ≤ 1,

where vl0 is the preference for not buying anything. We remark that the latter quantity vl0 can

also be used to include the influence of competition on the decision in that it may reflect the

attractiveness of competitive products. The condition |S ∩ Ui| ≤ 1 for all direct flights i means

that at most one price for the unrestricted fare can be offered at a time. A major advantage of

this model is that every restricted or unrestricted fare which is considered by some segment l can

be compared to the others in consideration set Cl, and intuitive probabilities can be derived that

reflect preferences and offer set. That is, the segment’s preference vector essentially has the function

of shifting the purchase probabilities according to the offered set of fares.

Finally, the purchase probability for product j given the arrival of a customer is defined by

Pj(S) =
L

∑

l=1

plPlj(S).

4. Optimise price values given the price levels

In this section, we derive control policies that can be used in a mixed fare environment given a

finite set of fixed price points for each unrestricted fare. We begin with stating the optimal policy

in terms of a dynamic programming (DP) formulation. Unfortunately, the dimension of the state

space forces us to approximate the DP’s value function in some way. To that end, we draw on

the choice-based deterministic linear programming model (CDLP) in the version as investigated

by Bront et al. (2007). After some adjustments, CDLP can be used in a mixed fare environment

essentially because it allows segment consideration sets to overlap. Meissner and Strauss (2009a)

http://www.meiss.com/
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likewise extended other approaches to allow overlapping consideration sets, so these approximations

could likewise be used to model mixed fares. We stick to the simpler CDLP for the sake of clearer

illustration of the main ideas, and note the extension to other approximations is likely to yield

increased policy results at the cost of higher computational expense.

Given a set of price levels Ui for each unrestricted fare i, we wish to optimize the price values

along with optimal availability of restricted fare products. This problem can be formulated as the

following dynamic programme, where vt(x) denotes the expected revenue from having uncommited

network capacity vector x at time t:

vt(x) = max
S⊂N,∀i:|S∩Ui|≤1

∑

j∈S

λPj(S)
[

rj + vt+1(x−Aj)
]

+
[

1−λ+λP0(S)
]

vt+1(x)

= max
S⊂N,∀i:|S∩Ui|≤1

{

∑

j∈S

λPj(S)
[

rj −
(

vt+1(x)− vt+1(x−Aj)
)

]

}

+ vt+1(x), ∀ t, x.

The boundary conditions are given by vt(0) = 0 for t = 1, . . . , T , and vT+1(x) = 0 for all inventory

states x. Theoretically, it is possible to solve this problem quite easily via backward dynamic

programming, but the size of the state space makes it intractable for practical implementation. Thus

we need methods to approximate the optimal value function but which reduce the computational

load.

As announced earlier, we approximate the above dynamic programme using the approach

of Bront et al. (2007). Let us define the expected revenue from offering set S by R(S) :=
∑

j∈S
rjPj(S), the expected consumption of resource i by Qi(S) :=

∑

j∈S
aijPj(S), and Q(S) :=

[Q1(S), . . . ,Qm(S)]T . The modified CDLP is given by

zCDLP = max
∑

S⊂N,∀i:|S∩Ui|≤1

λR(S)t(S)

∑

S⊂N,∀k:|S∩Uk|≤1

λQ(S)t(S)≤ c,

∑

S⊂N,∀k:|S∩Uk|≤1

t(S) = T,

t(S)≥ 0, ∀S ⊂N,∀k : |S ∩Uk| ≤ 1.

The real-valued variables t(S) represent the total length of time that product set S should be

offered; under the assumption of time-homogeneous arrivals and choice probabilities, only total

duration is of importance and not in when it should be offered. Expected resource consumption is

constrained by capacity vector c, and we can only offer products throughout the length T of the

booking horizon. CDLP is identical to the one considered by Bront et al. (2007), the only necessary

adjustment relates to the fact that we may offer at most one price point for each unrestricted fare

at a time.
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CDLP can be solved via column generation and yields the optimal dual values π∗
i to the capacity

constraints as static estimates for the marginal opportunity cost of each resource i. With this

information one could define the approximation vt(x)≈
∑

i
π∗

i xk, but since it is static, we choose the

classic dynamic programming decomposition by the flight legs is used to refine the value function

approximation and to introduce time- and capacity-dependence as proposed by van Ryzin and Liu

(2008). The network is decomposed by the resource and the value function is approximated by

vt(x)≈ vi
t(xi) +

∑

k 6=i
π∗

kxk, where vi
t(xi) is computed by the single resource dynamic program

vi
t(xi) = max

S⊆N,∀i:|S∩Ui|≤1

∑

j∈S

λPj(S)

[

rj −
(

vi
t+1(xi)− vi

t+1(xi − 1)−π∗
i

)

1{i∈Aj} −
∑

k∈Aj

π∗
k

]

+vi
t+1(xi), ∀ t, xi,

with vi
T+1(xi) = 0 for all xi and vi

t(0) = 0 for all t on the boundary. Bront et al. (2007) proposed

a linear mixed integer program to solve the dynamic programming subproblem and, alternatively,

a polynomial time heuristic. Once we have obtained all functions vi
t(·) we approximate the value

function with vt(x)≈
∑m

i=1 vi
t(xi).

We use a policy that relies on this estimate of the value function and seeks to maximize the

(approximately) displacement adjusted revenue within the given time period by

max
S⊂N(x),|S∩Ui|≤1∀i

[

∑

j∈S

λPj(S)(rj −
∑

i

∆vi
t+1aij)

]

, (1)

where ∆vi
t+1 := vi

t+1(xi)−vi
t+1(xi−1) is the marginal value of resource i in time t+1. The problem

(1) has a similar structure like the column generation subproblems that arise in solving CDLP,

hence again the problem can again be solved either by a mixed integer linear program or by a

greedy heuristic.

5. Pre-Selection of Price Points

In practice, the number of potential price points is often limited by technical constraints of the

booking system. Consequently, a natural question to ask is which price points out of a finite set

would be the best to include in our price structure given a constraint on the total number of price

points per unrestricted fare. Furthermore, practitioners are interested in the value of an additional

price point, in particular, which price point should be included if we could implement one additional

price point.

This section proposes methods that seek to optimize the pricing structure. First, we consider

a dynamic programming formulation that represents an optimal policy and is of interest from a

theoretical point of view, but that is again computationally intractable. For practical purposes,

we propose a heuristic in the form of a linear mixed integer program that is shown to provide an

upper bound on the optimal expected revenue over all feasible pricing structures.
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5.1. Dynamic Programming Formulation

Let us denote the maximum expected revenue to be obtained over time period t up to the end of

the booking horizon when we have capacity x still uncommitted by V (t, x, y), where y is a binary

vector that indicates whether a price point j ∈ U of an unrestricted fare is in the price structure,

that is, yj = 1 in this case. The set of all feasible states S is defined by

S :=

{

(t, x, y) :
∑

j∈Uk

yj ≤Lk

}

,

namely the set of all states where no more than the limit Lk price points have been offered for

each unrestricted fare k. The transition function for the y state is defined for all j ∈ U by

ŷj(S,y) :=

{

yj if j /∈ S,

1 if j ∈ S.

The dynamic program that can determine the optimal price points to pre-select can be stated as

follows:

V (t, x, y) = max
S:|S∩Uk|≤1∀k

∑

j∈S

λPj(S)

[

rj +V (t+1, x−Aj, ŷ(S,y))

]

+(1−λ+λP0(S))V (t+1, x, ŷ(S,y)) ∀(t, x, y)∈ S, (2)

V (t,0, y) = 0 ∀(t,0, y)∈ S,

V (T +1, x, y) = 0 ∀(T +1, x, y)∈ S,

V (t, x, y) =−∞ ∀(t, x, y) /∈ S.

We are interested in a vector y that maximizes V (1, c, y) such that, for any unrestricted fare k, we

are only using Lk price points, but direct solution is again not computationally intractable. The

following theoretical result shows that up-front commitment to specific price points potentially

reduces the expected revenue compared to a situation where we only need to commit to price

points once we offer them.

Proposition 1 For any y1, y2 ∈ {0,1}|U| with y1 � y2, it holds that V (t, x, y1)≥ V (t, x, y2) for all

t and x.

L et y1, y2 ∈ {0,1}|U| with y1 � y2. It is clear from the boundary condition that V (t, x, y1) ≥

V (t, x, y2) holds for t = T +1 since the only possible values are either both 0 in the case that y1 and

y2 are feasible, both −∞ in case that both are infeasible or V (t, x, y1) = 0 and V (t, x, y2) =−∞ in

case that only y2 is infeasible.

Suppose now t≤ T and the assertion holds for t+1. For any offer set S we have ŷ(S,y1)� ŷ(S,y2)
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by definition of the transition function ŷ. It follows that V (t + 1, x − Aj, ŷ(S,y1)) ≥ V (t + 1, x−

Aj, ŷ(S,y2)) and V (t + 1, x, ŷ(S,y1)) ≥ V (t + 1, x, ŷ(S,y2)). Using the Bellman equation (2) for

V (t, x, y1) and exploiting the latter inequalities yields the desired result.

Essentially, by fixing the price points at the outset we restrict our pricing flexibility over the

remaining time horizon. The result indicates that it would be beneficial for the firm to re-optimize

their price structure to account for the demand information that has become available in the

meantime. While it might not be possible to implement more than a certain number of price points

in a booking system, it might be possible to change the price points available in the system at least

once or twice during the booking horizon.

Suppose now we could increase the limit on the number of price points of an unrestricted fare.

As we increase the limit, the marginal gain in expected revenue decreases, that is, the function

mapping the number of price points into the maximum expected revenue from these many price

points is concave.

5.2. Linear Programming Approach

The main idea for the construction of a heuristic to tackle the DP (2) is that the objective of CDLP

is an upper bound on the optimal expected revenue for a fixed pricing structure, and therefore

can be used as a measure of its quality. Though we do not know how close the bound is to the

optimal value, we still can expect from numerical evidence that an increase in the bound reflects an

increase in optimal expected revenue. Essentially, we maximize this upper bound over all feasible

price point combinations. This idea gives rise to the following linear mixed integer program, where

N := {S ⊂N : |S ∩Uk| ≤ 1∀k}:

(MIP) max
t,z

∑

S∈N

λR(S)t(S) (3)

∑

S∈N

t(S) = T, (4)

∑

S∈N

λQ(S)t(S)≤ c, (5)

∑

j∈Uk

zj ≤Lk ∀k, (6)

∑

S∈N :j∈S

t(S)≤ Tzj ∀j ∈Uk∀k, (7)

zj ∈ {0,1} ∀j ∈Uk∀k, (8)

t(S)≥ 0 ∀S ∈N . (9)

The linear program (3,4,5,9) is identical to the one proposed by van Ryzin and Liu (2008). We

introduced an additional binary variable zj for every price point j ∈ U of any unrestricted fare k
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which indicates whether j is being used or not. Constraint (6) forces the total number of used price

points to be less or equal to the prescribed limit for the corresponding unrestricted fare k, and

constraints (7) ensure that zj = 1 as soon as price point j is being used for any positive amount of

time; note that
∑

S⊂N :j∈S
t(S) represents the length of time that j is offered.

In order to solve this large-scale linear mixed integer program we employ column generation. To

that end, we consider the dual of the relaxation of (MIP) and derive the reduced cost formula for

the column corresponding to t(S) from it. In our experiments, we generated all column belonging

to zj at the outset so that we focus only generating t(S) columns only. We associate Lagrangian

multipliers σ, πi, µk, ξj and øj with the constraints (4), (5), (6), (7) and zj ≤ 1∀j. The dual is given

by

(D) min
σ,π,µ,ξ,ø

Tσ + cT π +LT µ+
∑

j∈Uk∀k

øj

λQ(S)T π +σ +
∑

j∈Uk∀k

ξj1{j ∈ S} ≥ λR(S) ∀S ∈N ,

µk −Tξj +øj ≥ 0 ∀j ∈Uk∀k,

σ free, π,µ, ξ,ø≥ 0.

The reduced cost of the column corresponding to t(S) is therefore λR(S) − λQ(S)T π − σ −
∑

j∈Uk∀k
ξj1{j ∈ S}. Starting from a pool of columns, we would like to know which column next

to generate and to add to the master problem. We select them in a greedy fashion by maximizing

the reduced cost over all feasible offer sets, that is

max
u∈{0,1}n

∑

j∈U

[

(rj −AT
j π)Pj(u)− ξj

]

uj +
∑

j∈R

[

(rj −AT
j π)Pj(u)

]

uj −σ

∑

j∈Uk

uj ≤ 1 ∀k. (10)

Constraints (10) ensure that each unrestricted fare k can be offered at most at one price point.

The term Pj(u) stands for the probability that a customer arrives and purchases product j if we offer

products as indicated by the binary vector u, and is given by Pj(u) :=
∑

l
λlvlj/(

∑

ι∈Cl
vlιuι + vl0)

as discussed earlier. This column generation subproblem is similar to the one solved by van Ryzin

and Liu (2008) and can be tackled with the same ideas. In particular, we can reformulate this

problem as a mixed integer linear program that can be solved either directly, or by using a greedy

heuristic as presented for a similar problem in Bront et al. (2007).

Another interesting feature of our approach is that it yields the value of a price point in the

form of the Lagrangian multipliers ξj corresponding to the constraints (7). Suppose we have an

optimal solution (t, z) to (MIP), and zj = 0 for some j. If ξj > 0, increasing the right-hand side
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of the constraint (7) by one time unit would enable us to offer price point j for one time period

and increase our revenue by ξj. It is for this reason that we can interpret ξj as the marginal value

of a price point with respect to time. We can also state an upper bound for the value of having

the limit on the number of price points of an unrestricted fare relaxed by 1: The dual value µk of

constraint (6) gives us the increase in revenue due to this enhanced flexibility, however, it is an

upper bound and not the exact value of revenue increase because we consider the relaxed linear

program.

So far, we assumed arrivals and customer preferences to be time-homogeneous. In reality, how-

ever, time dependent purchase behavior has a great impact on which prices to offer. As indicated

earlier, we can approach this more general situation by dividing the booking horizon into suf-

ficiently small parts where we can assume time-homogenety. We illustrate how to optimize the

pricing structure with the following example.

Example 1 For the sake of simplicity, suppose arrivals and preferences are homogenous through-

out the first three quarters of the time horizon and then only change once, that is, we have Poisson

processes with rates λ1 and λ2 for the first and second part of the booking horizon, respectively.

Likewise, expected revenue R1(S) and expected resource consumption Q1(S) change to R2(S) and

Q2(S) at time period 3/4T . The mixed integer linear problem is then:

(MIP)′ max
t,z

∑

S∈N

[

λ1R1(S)t1(S) +λ1R2(S)t2(S)
]

∑

S∈N

t1(S) =
3

4
T,

∑

S∈N

t2(S) =
1

4
T,

∑

S∈N

λ1Q1(S)t1(S)≤ c,

∑

S∈N

λ2Q2(S)t2(S)≤ c−
∑

S∈N

λ1Q1(S)t1(S),

∑

j∈Uk

zj ≤Lk ∀k,

∑

S∈N :j∈S

(

t1(S) + t2(S)
)

≤ Tzj ∀j ∈Uk∀k,

zj ∈ {0,1} ∀j ∈Uk∀k,

t1(S), t2(S)≥ 0 ∀S ∈N .

Note that this problem is not considerably more difficult to solve than (MIP) because there are

only m + 1 more constraints. Clearly, each additional inhomogeneity will result in additional m +

1 constraints. We conclude that incorporating time-dependence is possible, though the more the

booking horizon needs to be split up the more run time the computations will require.
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5.3. Stochastic Program

Formulating the stochastic program that underlies the model is insightfull because it can be shown

that (MIP) constitutes an upper bound on the optimal expected revenue. Note that optimality

is over all policies that admit no more than the given limit Lk for each unrestricted fare k. This

result is not surprising since CDLP provides an upper bound for a fixed feasible pricing structure,

and (MIP) essentially maximizes the CDLP objective over all feasible pricing structures.

We need some additional notation in order to formulate the stochastic program. Denote by

Sν(t,ω) the control under policy ν at time t for a sample path ω. The n-dimensional binary random

vector N(Sν(t,ω)) indicates which product is purchased in time t under policy ν and sample path

ω.

Definition 1 A policy ν is called admissible if it is non-anticipating, the capacity constraints are

almost surely not violated, Sν(t,ω) does not allow more than one price point per unrestricted fare

k and uses at most Lk price points in total for all k. The set of admissible policies M is

M :=
{

ν :ν non-anticipating,
T

∑

t=1

AN(Sν(t,ω))≤ c (a.s.),

Sν(t,ω)∈N ,
∑

j∈Uk

1{∃t,ω : j ∈ Sν(t,ω)} ≤Lk∀k.
}

The stochastic program is:

V S = max
ν∈M

E

[ T
∑

t=1

rT N(Sν(t))

]

.

Proposition 2 V S ≤ V MIP

L et Sν∗(t,ω) be the optimal control for the stochastic problem where ω represents dependence

on the sample path. As shown in Proposition 1 in van Ryzin and Liu (2008), a vector t(S) can

be defined by t(S) := E
[

∑T

t=1 1{Sν∗(t,ω) = S}
]

that satisfies the capacity constraints (5) and that

yields the same objective value. With zj defined as zj := 1{∃t,ω : j ∈ Sν∗(t,ω)}, the solution (t, z)

is feasible to (MIP) because z satisfies the price point constraint (6) on the basis that ν∗ ∈M is

an admissible policy, and the remaining constraints are likewise easily verfied.

6. Numerical Results

We test our new method for pricing structure optimization in mixed fare environments on several

problem instances that shall illustrate the method’s performance with respect to quality and run-

time. By quality we refer to the closeness of the expected revenue obtainable under the pricing

structure resulting from (MIP) compared to the best-possible expected revenue over all feasible



16 Meissner and Strauss: Pricing Structure Optimization

Figure 1 Identification of the best price structure.
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pricing structure, where feasibility is with respect to the number of price points not violating the

upper limits and them being chosen from the finite set of “virtual fares”. As an evaluation of the

dynamic program is too expensive even for small instances, we instead consider in a network pricing

problem that is small enough to allow for full enumeration and testing of all price constellations by

means of simulation. In this paper, we are more interested in the good choice of the pricing structure

than in the choice of a good policy: We chose to use the CDLP based dynamic programming

decomposition policy of van Ryzin and Liu (2008) for all simulations because it is the generally

accepted current benchmark. Keeping this policy fixed we can investigate the impact of altering

the pricing structure, however, we remark that recently other policies have been proposed that can

achieve higher revenues at higher computational expense, see, for example, Zhang and Adelman

(2007), Meissner and Strauss (2009b), Kunnumkal and Topaloglu (2008) or Zhang (2009). These

approaches can combined with our pricing method with accordingly improved revenue results.

Naturally, the run-time required to solve (MIP) calls for an investigation since we face a mixed

integer program with exponentially many columns for which it has been shown that the column

generation subproblem is already NP-hard (see Bront et al. (2007)). To that end, we solve (MIP)

on a set of hub and spoke network instances that correspond to the largest ones used in the

aforementioned work.

6.1. Small Network Example

Let us first consider the quality of the price selection via (MIP): We run the method on a network

with two flights only, as depicted in Figure 2, that is small enough to allow us to run simulations

for each feasible price combination so as to provide us with the optimal price set. In this example,

http://www.meiss.com/


Meissner and Strauss: Pricing Structure Optimization 17

we assume that the firm offers an unrestricted fare U for short-haul (direct) flights and traditional

fares for the long-haul (connecting) traffic with fare classes Y, M and Q. For both direct flights we

have 5 potential price points, however, we are limited to only 3 price points each that may form

our price structure. Each origin-destination combination has two segments associated with it, one

with high and the other with low price sensitivity. Restrictions on the traditional fares effectively

fence off the lower fares for the connecting traffic, however, on the direct flights business customers

are able to buy down, resulting in overlapping segments. We summarize the product and segment

definitions in Table 1 and 3. In the following, when we refer to a price point j = 3, for example, we

mean the price point that is described by the virtual product 3 in Table 1. The capacity of leg 1

and 2 is 50 and 70, respectively, and we consider a time horizon of 1000 time periods.

For each direct flight, there are 5!/(2!3!) = 10 possible sets with three price points, so totally 100

price combinations in the network (note that restricted fares are always included in the pricing

structure). Of course, we do not need to consider subsets with less than three price points per

direct flight since we may choose never to offer an unrestricted fare at a certain price point. For

each one out of the 100 pricing structures, we solve the CDLP as presented in Section 4 and run

simulations using the dynamic programming decomposition policy based on CDLP’s dual values

of the capacity constraints to obtain a close approximation of the optimal expected revenue. The

simulation is stopped once the relative error is less than 0.7% with 95% confidence, which is usually

reached after about 200 simulations of the booking process for this problem. We report the results

in Figure 1 that clearly demonstrates that the upper bound provided by the CDLP can reflect

the relative behavior of the simulated mean revenue very well. This is encouraging because (MIP)

essentially maximizes CDLP over all potential price combinations subject to the price point limits.

For this network our method provides price points {3,4} for leg 1 and {7,8} for leg 2 as the optimal

solution. Note that we allowed for three price points per direct flight, however, (MIP) asserts

that these two price points per flight are sufficient which might be somewhat counterintuitive since

more price points would give us potentially more flexibility. However, when looking up the 15 price

combinations that maximize the simulated mean revenue (listed in Table 2) we observe that indeed

these two price points are included with any possible third point on each leg. We ran the simulation

with the price points proposed by (MIP) and obtained the same mean revenue, that is, the third

price point can indeed be chosen arbitrary and does not further increase revenue.

Therefore, an optimal pricing structure has been identified by our method and, furthermore,

the dual values of the constraints on the number of price points indicated that the worth of an

additional price point is zero. We conclude that the quality achievable by our method being can

be very good indeed.
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Table 1 Products, Segments and Prefer-

ence Values for Small Network.

Product Resources OD Class Fare

1 1 A → H U 100

2 1 ” U 120

3 1 ” U 140

4 1 ” U 160

5 1 ” U 180

6 2 H → B U 100

7 2 ” U 120

8 2 ” U 140

9 2 ” U 160

10 2 ” U 180

11 1,2 A → B Q 300

12 1,2 ” M 350

13 1,2 ” Y 500

“Resources” indicates the resources which the

respective product utilizes.

Figure 2 Small network example.

A H B
Leg 1 Leg 2

6.2. Hub & Spoke Network

Solving (MIP) is not a trivial task since it is a mixed integer program with 1+2m+ |U| constraints

and an exponentially growing number of variables, where m is the number of flight legs the network

and |U| is the total number of price points in the network belonging to unrestricted fares. We assume

that there is exactly one unrestricted fare for each direct flight that is to be priced at one out of p

price points, giving a total of |U|= mp price points, while the airline can maintain restrictions on

connecing traffic. We demonstrate that (MIP) can be solved efficiently using standard optimization

software such as CPLEX. To that end, in the following we solve (MIP) for the largest network

example of Bront et al. (2007) and analyze run time with respect to network capacity and number

of price points.

The Hub & Spoke Network Example consists of eight flights as depicted in Figure 3, each with

capacity 200 that we scale up or down with a parameter α ∈ {0.6,0.8,1,1.2,1.4} to account for

different load factors. Products are defined in Table 6: There are 48 restricted fares for connecting



Meissner and Strauss: Pricing Structure Optimization 19

Table 2 List of all 15 pricing structures that maxi-

mize simulated mean revenue.

Leg 1 Leg 2

1 2 3 6 7 8

1 2 3 7 8 9

1 2 3 7 8 10

1 3 4 6 7 8

1 3 4 7 8 9

1 3 4 7 8 10

2 3 4 6 7 8

2 3 4 7 8 9

2 3 4 7 8 10

1 3 5 6 7 8

1 3 5 7 8 9

1 3 5 7 8 10

2 3 5 6 7 8

2 3 5 7 8 9

2 3 5 7 8 10

3 4 5 6 7 8

3 4 5 7 8 9

3 4 5 7 8 10

The restricted products are always in the structure and

therefore have been omitted.

Table 3 Segments and consideration sets for Small Network Example.

# Segment Consideration set Pref. vector λl (%) vl0

1 A → H, high price sensitivity {1,2,3} [6,4,2] 15 10

2 A → H, low price sensitivity {1,2,3,4,5} [5,4,3,2,1] 6 10

3 H → B, high price sensitivity {6,7,8} [6,4,2] 15 10

4 H → B, low price sensitivity {6,7,8,9,10} [5,4,3,2,1] 6 10

5 A → B, high price sensitivity {11,12} [5,3] 3 10

6 A → B, low price sensitivity {13} [5] 2 10

traffic, and one unrestricted fare for each direct flight. For example, Product 1 is a ticket BOS to

LAX in class Y for $575 using legs 2 and 4, Product 4 is BOS to LAX in class Q for $139 and

Product 5 is LAX to BOS in class Y using legs 1 and 3. The restricted products are identical to

those in Example 3 in Bront et al. (2007), for the restricted products on direct flights, however,

we substituted in unrestricted fares that shall be priced at one out of maximal Lk = 4 price points

for all legs k.We chose this limit because in the restricted environment we have four fare classes,
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Figure 3 Hub & Spoke Network example.
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so for technical reasons (regarding the booking system) there might be only four “price slots”

available to which we need to commit at the beginning of the booking horizon. The model (MIP)

needs to choose the best four prices out of a set of p prices for each flight on a uniform grid

defined over the interval given in Table 6. For example, the candidate price points for ATLBOS

are {69,69 +∆, . . . ,310} with the price step ∆ = (310− 69)/(p− 1).

We have two customer segments per origin-destination combination, a high-yield (H) and a low-

yield (L) one, the former being less price sensitive than the latter. Preference values for the prices

of Y, M, Q and B class similar to those in Bront et al. (2007) were used to inter- and extrapolate

those on the uniform grid with cubic splines, the related information being given in Table 4 and 5.

The underlying rationale is that customers increasingly ignore restrictions, particularly on short-

haul flights, and focus on price instead (see, e.g., Boyd and Kallesen (2004)). Hence we interpret

the preference values in the restricted context as being purely motivated by price, giving rise to

the idea of extrapolation to other price points in this example to obtain a mixed fare environment

under similar customer behavior. Despite the fact that our method can also be used to compare

policies in restricted versus mixed fare environments, our purpose is here to illustrate the compu-

tational performance. The tests were carried out under the assumption that we seek to identify

four price points out of a uniform grid with p∈ {2,4,8,16,32,64} candidates for each direct flight

simulataneously. For each p, we vary the scaling parameter α to reflect different load factors.

All computations were done in Matlab with CPLEX using the Tomlab interface on a 3GHz

PC. At each iteration in the column generation procedure, we solve the LP relaxation to obtain

dual variables that are needed for the column pricing. We used the MILP formulation of the column

pricing problem which was acceptable for this problem size. For considerably larger networks, a

heuristic similar to the one in Bront et al. (2007) or Meissner and Strauss (2009a) is not difficult



Meissner and Strauss: Pricing Structure Optimization 21

to extend to this case and will reduce run times. The algorithm was terminated when the reduced

cost was smaller than (current objective + reduced cost) times 10−6.

We report CPU times for solving the master problems and column pricing problems associated

with solving an instance of (MIP) along with the number of generated columns in Table 7. Run

times are very small for the cases of high capacity (α ∈ {1.2,1.4}) since the capacity does not

contrain the problem any more. But even for the more interesting cases of tight capacity it took

in the worst scenario less than 9 minutes to solve (MIP), a problem with 1 + 16 + 8 · 64 = 529

constraints and 248 · (64 + 1)8 real and 8 · 64 = 512 binary variables. Given that we only need to

solve this problem once at the outset of the booking horizon, this seems acceptable for practical

implementation.

7. Conclusion

We proposed a choice-based network revenue management model that can be used to optimize the

pricing structure in unrestricted or mixed restricted/unrestricted fare environments. In addition,

the model provides upper bounds on the value of an additional price point. It was also shown on

a small network example that the method can identify good solutions (indeed, the optimal pricing

structure had been identified), and runs quick despite the complexity having to solve a large-scale

mixed integer linear program as tested on larger hub & spoke networks. An optimal solution can be

obtained by a dynamic programming formulation which, though being computationally intractable,

is of theoretical interest. For example, we can derive from it the insight that late commitment to

price points can potentially increase expected revenues. This could be exploited by resolving our

proposed model several times throughout the booking horizon, and changing the pricing structure

accordingly. Naturally, this will be constrained by the cost of price changes and technical obstacles.

As for future research, our model could be used to perform simulation studies to examine under

which circumstances entirely unrestricted product structures to be preferred over mixed ones, or

how the pricing structure changes in response to changes in the customer’s purchase behavior. The

pre-selection of price points can also be paired with recent achievements in tightening the upper

bound on the optimal expected revenue, see, for example, Talluri (2008). Such an approach can be

expected to yield potentially even better results because we use the upper bound as the objective

to maximize over all possible pricing structures, and accordingly a tighter bound should yield a

more accurate objective.
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Fiig, T., K. Isler, C. Hopperstad, R. Cléaz-Savoyen. 2005. DAVN-MR: A unified theory of O&D optimization

in a mixed network with restricted and unrestricted fare products. Reservations and Yield Management .

AGIFORS.

Foran, J. 2003. The cost of complexity. Journal of Revenue and Pricing Management 2 150–152.

Gallego, G., L. Li, R. Ratliff. 2007. Revenue management with customer choice models. AGIFORS RMD

and Cargo Study Group, South Korea.

Gallego, G., Lin Li, Richard Ratliff. 2009. Choice-based EMSR methods for single-leg revenue management

with demand dependencies. Journal of Revenue and Pricing Management 8 207–240.

Gorin, T., P. Belobaba. 2004. Revenue management performance in a low-fare airline environment: Insights

from the Passenger Origin-Destination Simulator. Journal of Revenue and Pricing Management 3

215–236.

IATA. 2009. Remarks of Giovanni Bisignani at a press conference in Moscow. URL http://www.iata.org/

pressroom/speeches/2009-04-16-01.htm.

Kunnumkal, S., H. Topaloglu. 2008. A refined deterministic linear program for the network revenue mange-

ment problem with customer choice behavior. Naval Research Logistics 55 563–580.

Meissner, J., A. Strauss. 2009a. Choice-based network revenue management under weak market segmentation.

Working Paper, Lancaster University Management School.

Meissner, J., A. K. Strauss. 2009b. Network revenue management with inventory-sensitive bid prices and

customer choice. Working Paper, Lancaster University Management School.

Ratliff, R., B. Vinod. 2005. Airline pricing and revenue management: A future outlook. Journal of Revenue

and Pricing Management 4 302–307.

Ratliff, R.M., B.V. Rao, C.P. Narayan, K. Yellepeddi. 2008. A multi-flight recappture heuristic for estimating

unconstrained demand from airline bookings. Journal of Revenue and Pricing Management 7 153–171.

Talluri, K. 2008. On bounds for network revenue management. Working Paper, Universitat Pompeu Fabra.

http://www.meiss.com/
http://www.meiss.com/


Meissner and Strauss: Pricing Structure Optimization 23

Talluri, K., G. J. van Ryzin. 2004. Revenue management under a general discrete choice model of consumer

behavior. Management Science 50 15–33.

Tretheway, M.W. 2004. Distortions of airline revenues: why the network airline business model is broken.

Journal of Air Transport Management 10 3–14.

van Ryzin, G. J., Q. Liu. 2008. On the choice-based linear programming model for network revenue man-

agement. Manufacturing & Service Operations Management 10 288–311.

Vinod, B. 2006. Advances in inventory control. Journal of Revenue and Pricing Management 4 367–381.

Vulcano, G., G. van Ryzin, R. Ratliff. 2008. Estimating primary demand for substitutable products from

sales transaction data. URL http://pages.stern.nyu.edu/\~{}gvulcano/PrimaryDemandEM.pdf.

Working Paper.

Weber, K., R. Thiel. 2004. Methodological issues in low cost revenue management. Reservations and Yield

Management Study Group Annual Meeting. AGIFORS.

Westermann, D. 2005. Integrated O&D revenue management & pricing for unrestricted fare structures.

Reservations and Yield Management . AGIFORS.

Zhang, D. 2009. An improved dynamic programming decomposition approach to network revenue manage-

ment. Working Paper.

Zhang, D., D. Adelman. 2007. An approximate dynamic programming approach to network revenue man-

agement with customer choice. URL http://faculty.chicagogsb.edu/daniel.adelman/research/

network.pdf. Working paper, University of Chicago Graduate School of Business.



24 Meissner and Strauss: Pricing Structure Optimization

Table 4 Segments and consideration sets for the Hub & Spoke Network Example.

Segment Cl vl λl Segment Cl vl λl

BOSLAX H {1,2,3,4} {5,5,7,10} 0.01 MIASAV H {41,42,43,44} {6,7,8,10} 0.01

BOSLAX L {3,4} {9.10} 0.032 MIASAV L {43,44} {9,10} 0.025

LAXBOS H {5,6,7,8} {5,5,7,10} 0.01 SAVMIA H {45,46,47,48} {6,7,8,10} 0.01

LAXBOS L {7,8} {9,10} 0.032 SAVMIA L {47,48} {9.10} 0.025

BOSMIA H {9,10,11,12} {6,7,10,10} 0.008 ATLBOS H {49,. . . ,48+p} interp 0.015

BOSMIA L {11,12} {8,10} 0.03 ATLBOS L {49, . . . ,48 + p} interp 0.035

MIABOS H {13,14,15,16} {6,7,10,10} 0.008 BOSATL H {49 + p, . . . ,48+ 2p} interp 0.015

MIABOS L {15,16} {8,10} 0.03 BOSATL L {49 + p, . . . ,48+ 2p} interp 0.035

BOSSAV H {17,18,19,20} {5,6,9,10} 0.01 ATLLAX H {49 + 2p, . . . ,48+ 3p} interp 0.01

BOSSAV L {19,20} {8,10} 0.035 ATLLAX L {49 + 2p, . . . ,48+ 3p} interp 0.04

SAVBOS H {21,22,23,24} {5,6,9,10} 0.01 LAXATL H {49 + 3p, . . . ,48+ 4p} interp 0.01

SAVBOS L {23,24} {8,10} 0.035 LAXATL L {49 + 3p, . . . ,48+ 4p} interp 0.04

LAXMIA H {25,26,27,28} {5,6,10,10} 0.012 ATLMIA H {49 + 4p, . . . ,48+ 5p} interp 0.012

LAXMIA L {27,28} {9,10} 0.028 ATLMIA L {49 + 4p, . . . ,48+ 5p} interp 0.035

MIALAX H {29,30,31,32} {5,6,10,10} 0.012 MIAATL H {49 + 5p, . . . ,48+ 6p} interp 0.012

MIALAX L {31,32} {9,10} 0.028 MIAATL L {49 + 5p, . . . ,48+ 6p} interp 0.035

LAXSAV H {33,34,35,36} {6,7,10,10} 0.016 ATLSAV H {49 + 6p, . . . ,48+ 7p} interp 0.01

LAXSAV L {35,36} {9,10} 0.03 ATLSAV L {49 + 6p, . . . ,48+ 7p} interp 0.03

SAVLAX H {37,38,39,40} {6,7,10,10} 0.016 SAVATL H {49 + 7p, . . . ,48+ 8p} interp 0.01

SAVLAX L {39,40} {9,10} 0.03 SAVATL L {49 + 7p, . . . ,48+ 8p} interp 0.03

p is the number of potential price points per leg, interp indicates that the preference values have been interpolated

based on the data in Table 5.

Table 5 Preference values for at given prices that were

used for inter-/extrapolation over the uniform

price grid.

Segment Prices Preferences

ATLBOS/BOSATL H [310,290,95,69] [6,7,9,10]

ATLBOS/BOSATL L [95,69] [8,10]

ATLLAX/LAXATL H [455,391,142,122] [5,6,9,10]

ATLLAX/LAXATL L [142,122] [9,10]]

ATLMIA/MIAATL H [280,209,94,59] [5,5,10,10]

ATLMIA/MIAATL L [94,59] [8,10]

ATLSAV/SAVATL H [159,140,64,49] [4,5,8,9]

ATLSAV/SAVATL L [64,49] [7,10]
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Table 6 Product definition for the Hub & Spoke Network

Example.

O-D Market Legs Revenue

Y M B Q U

BOSLAX/LAXBOS 4,2/1,3 575 380 159 139 -

BOSMIA/MIABOS 4,7/8,3 403 314 124 89 -

BOSSAV/SAVBOS 4,5/6,3 319 250 109 69 -

LAXMIA/MIALAX 1,7/8,2 477 239 139 119 -

LAXSAV/SAVLAX 1,5/6,2 502 450 154 134 -

MIASAV/SAVMIA 8,5/6,7 226 168 84 59 -

ATLBOS/BOSATL 3/4 - - - - [69,310]

ATLLAX/LAXATL 2/1 - - - - [122,455]

ATLMIA/MIAATL 7/8 - - - - [59,280]

ATLSAV/SAVATL 5/6 - - - - [49,159]

Table 7 Computational times (in seconds) for for Hub & Spoke Net-

work Example.

p α Master ColGen #GC p α Master ColGen #GC

2

0.6 2.2 13.5 30

16

0.6 2.9 59.2 40

0.8 1.8 10.3 21 0.8 2.2 44.2 29

1.0 1.7 8.8 15 1.0 1.7 15.1 10

1.2 1.3 1.2 2 1.2 1.4 2.8 1

1.4 1.3 1.2 2 1.4 1.4 2.8 1

4

0.6 3.1 47.2 71

32

0.6 4.2 138.2 40

0.8 2.4 28.2 40 0.8 2.7 100.3 29

1.0 2.0 15.6 24 1.0 1.8 30.5 9

1.2 1.6 6.7 10 1.2 1.4 5.2 1

1.4 1.6 6.5 10 1.4 1.4 5.2 1

8

0.6 2.6 34.1 42

64

0.6 26.4 512.2 41

0.8 2.3 27.4 31 0.8 5.0 359.4 31

1.0 1.7 8.5 10 1.0 2.0 86.2 9

1.2 1.3 1.5 1 1.2 1.4 13.9 1

1.4 1.4 1.5 1 1.4 1.4 14.0 1

p refers to the number of prices points from which at most four may be

chosen, and #GC denotes the number of generated columns.


