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Abstract

Judgmental adjustments to statistically generated forecasts have
become a standard practice in demand forecasting, especially at a
stock keeping units level. However, due to the subjective nature of
judgmental interventions this approach cannot guarantee optimal use
of available information and can lead to substantial cognitive biases.
It is therefore important to monitor the accuracy of adjustments and
estimate persistent systematic errors in order to correct final forecast.

This paper presents an appropriate methodology for such analysis
and focuses on specific features of source data including time series
heterogeneity, skewed distributions of errors, and generally nonlinear
patterns of biases. Enhanced modelling and evaluation techniques
are suggested to overcome some imperfections of well-known standard
methods in the given context.

Empirical analysis showed that a considerable proportion of final
forecast error is formed by a systematic component which can be pre-
dicted. Proposed bias correction procedures allowed to substantially
improve the accuracy of final forecasts. In particular, one-factor mod-
els of the relationship between forecast error and adjustment were
found to be a simple, robust and efficient tool for the given purpose.

Keywords: demand forecasting, judgmental adjustments, judgment
under uncertainty, bias correction, accuracy measurement
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1 Introduction

Judgmental adjustments to statistically generated forecasts have become a
standard practice in demand forecasting, especially at a stock keeping units
(SKU) level (Sanders and Manrodt, 2003; Fildes et al., 2009). While provid-
ing adequate short-term extrapolations of general trends, statistical methods
cannot ensure efficient handling of special events due to the limitations of
historical data. Manually overriding baseline extrapolations is an easy and
fast way to incorporate additional information known to experts into a final
forecast. However, the disadvantage of this approach is that the highly sub-
jective nature of judgmental interventions can lead to biases and non-optimal
use of available information (Sanders and Manrodt, 2003).

Practically important tasks therefore are to monitor the accuracy of ad-
justed forecasts, to reveal the degree and the patterns of persistent systematic
errors, and to find ways of eliminating them in the given context.

The properties of errors of adjusted demand forecasts have been exam-
ined in a number of studies (Fildes et al., 2009; Fildes and Goodwin, 2007;
Nikolopoulos et al., 2005; Fildes et al., 2006; Nikolopoulos, 2008; Mathews
and Diamantopoulos, 1986, 1989, 1990, 1992). Most of publications showed
that adjustments on average lead to the improvements of accuracy, how-
ever the accuracy of final forecasts heavily depended on the sign and size of
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adjustment. As for the models for optimal correction of adjusted forecasts
the existing literature is represented by several works only (Fildes et al.,
2009; Fildes and Goodwin, 2007; Fildes et al., 2006) which were based on
the same sets of data. It was generally shown that adjusted forecasts suffer
from systematic errors and can be efficiently corrected by means of statistical
modelling techniques.

However, the results published to date contain mainly descriptive analysis
and are confined to the examined datasets only. Moreover, methodologically
analysis was carried out in different ways with different assumptions about
the statistical properties of the data. These reasons make it difficult to gen-
eralise existing results and to form a consistent and coherent set of practical
recommendations for companies.

The present paper focuses on common data features and suggests a gen-
eral methodology for handling judgmental adjustments in demand forecasting
systems. In particular, most important data features which were identified
and taken into account involve time series heterogeneity, non-negative do-
main of actual sales data and skewed distributions of forecasting errors, and
generally nonlinear patterns of biases.

One of important tasks arising with regard to adjustments data lies in
the comparison of forecasts across many SKUs. Though this topic is not
new (Hyndman and Koehler, 2005), analysis showed that the methodology
for error evaluation when applied to judgmental adjustments is still not suf-
ficiently developed and supported. Some of well-known error measures can
give misleading conclusions due to inadequate data transformations which
distort the original dependencies between variables. Other measures intro-
duce biases and outliers as a result of arithmetic operations per se. The
paper describes the appropriateness of some well-known measures and pro-
vides recommendations on constructing more reliable accuracy evaluation
schemes.

As for the bias correction task, the paper proposes enhancements to ex-
isting approaches in order to develop a more general, quick and robust way of
modelling systematic errors. Since theoretical model is not known, empirical
data was studied with the use of flexible non-parametric procedures such as
local polynomial smoothing (Cleveland and Devlin, 1988) in order to ade-
quately capture the relationship between variables. In addition, appropriate
non-linear parametric model was specified and evaluated.

The next section describes the process of using judgmental adjustments
along with introducing necessary terminology and notation. Subsequent sec-
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tions describe recommended procedures for accuracy evaluation and bias cor-
rection. The concluding section summarises the results achieved so far.

2 Source Data and Process of Making Judg-

mental Adjustment

The research employed data collected from two companies specialising on
distribution of fast-moving consumer goods (FMCG). The data contains ob-
served monthly values of actual demand at SKU level, corresponding one-
step-ahead statistical forecasts, and judgmentally adjusted forecasts. A dataset
for the first company (Company A) relates to 254 SKUs and includes 3012
cases of forecasts and corresponding actual outcomes pertaining to the period
from March 2004 to December 2005. For the second company (Company B)
the data relates to 413 SKUs, contains 7544 cases pertaining to the period
from January 2004 to December 2007. These datasets are used in the paper
to illustrate the identified features of data and to evaluate the performance
of the suggested procedures for the correction of systematic errors. It is
assumed throughout the paper that all forecasts have a fixed constant hori-
zon. Modelling and empirical analysis was based on one-step-ahead monthly
forecasts.

The employed data is representative for most FMCG manufacturing or
distribution companies. In such settings it is usually needed to deal with
a large number of time series of different lengths related to different prod-
ucts with different scales and units of measurement. In order to illustrate
the heterogeneity of SKU-level data Fig. 1 shows real series (Company B)
containing one-step-ahead statistical forecasts, corresponding adjustments,
adjusted forecasts, and actual observations.

Most typically, the process of making judgmental adjustment is performed
sequentially and only includes the two following steps (Fildes et al., 2009).

At first, for a given period in future t and a given product or SKU i
a statistical forecast F s

i,t is generated by means of a special software pack-
age. Usually it is accomplished by applying a simple univariate forecasting
method, and the source dataset for that method concerns only past values
of sales:

F s
i,t = f(past data).

After that the model-based forecast F s
i,t is reviewed by experts (repre-
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Figure 1: Examples of time series (Company B). The data contains observed
monthly values of actual demand at SKU level, corresponding one-step-ahead sta-
tistical forecasts, and judgmentally adjusted forecasts.
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sentatives from marketing, sales, logistics or production departments). As
a result of their revision, the statistical forecast may be adjusted in order
to take into account information about exceptional circumstances. The final
forecast becomes

F f
i,t = F s

i,t + ai,t,

where i – SKU index, t – a given period in future, ai,t – corresponding
adjustment.

If experts are fully satisfied with the statistical forecast and have no
additional knowledge about the environment, it is assumed that ai,t = 0.

The same procedure is repeated to prepare final forecasts for each SKU i.
This approach is currently very widely adopted because i) it is simple to

use, to understand and to implement, and ii) it allows to incorporate the
latest information rapidly (Sanders and Manrodt, 2003).

3 Accuracy Evaluation

The major difficulty in measuring the accuracy of judgmental adjustments is
caused by the heterogeneity of source data. Usually it is needed to compare
forecasting performance across many time series related to different SKUs.
Most of the well-known error measures cannot give reliable results in this
case because of special features of SKU-level data. In particular, popular
measures based on absolute percentage errors can occur inappropriate due to
the characteristics of distribution of forecast errors and their correlation with
the actual values. This section illustrates the imperfections of several most
widely used error measures and provides recommendations on constructing
more appropriate criteria and tests.

3.1 Appropriateness of Known Error Measures

A traditional way to compare the accuracy of forecasts across multiple time
series is based on using absolute percentage errors (Hyndman and Koehler,
2005). Let the forecasting error for a given time period t and SKU i be

ei,t = Yi,t − Fi,t,

where Yi,t – demand value for SKU i observed at time t, Fi,t – the forecast
of Yi,t.
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The percentage error (PE) is calculated as

pi,t =
100ei,t
Yi,t

.

The most commonly spread PE-based measures are mean absolute per-
centage error (MAPE) and median absolute percentage error (MdAPE) which
are defined as

MAPE = mean(|pi,t|),

MdAPE = median(|pi,t|),

where mean(|pi,t|) denotes the sample mean of |pi,t| over all available values,
and median(|pi,t|) denotes the sample median.

The disadvantage of these measures is that percentage errors cannot be
computed when Yi,t = 0 and have skewed distributions when Yi,t is relatively
small compared to ei,t (Hyndman and Koehler, 2005). Such situations oc-
cur quite commonly with SKU-level data and therefore PE-based measures
cannot be used efficiently for the given task.

Alternatively, instead of using actual value in the denominator the fore-
cast error can be divided by standard deviation of all known elements within
a time series (Billah et al., 2005). This approach was also used in (Fildes
et al., 2009) in order to transform data for modelling the features of adjust-
ments.

Prediction error as a proportion of the in-sample standard deviation of
actual values can be written as

gi,t =
100ei,t
si

, si =

√
1

ni − 1

∑
j∈Ti

(Yi,j − Yi)2,

where ni – length of observed time series for SKU i, Ti – a set containing time
indexes of observed series elements, Yi – sample mean of observed elements
Yi,j for a given SKU i.

Mean absolute prediction error as a percentage of the standard deviation
will be further denoted as

MAPES = mean(|gi,t|).

It was noted in (Hyndman and Koehler, 2005) that dividing by standard
deviation is not desirable because the denominator grows with the sample
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size in time series containing trend. Instead, it is recommended to scale errors
by in-sample mean absolute error (MAE) from some benchmark forecasting
method.

In case of using system forecast as a benchmark forecast such scaled errors
can be found as

qi,t =
ei,t

1

ni

∑
j∈Ti

∣∣Yi,j − F s
i,j

∣∣ ,
where F s

i,j – system forecast for SKU i, period j.
Absolute scaled error |qi,t| is interpreted as follows. If |qi,t| < 1 then error

ei,t arises from a better forecast than the average system forecast computed
in-sample, whereas |qi,t| > 1 means the opposite.

Analogously to previous measures mean absolute scaled error is defined as

MASE = mean(|qi,t|).

Scaled errors and scaled actual values can be used to illustrate some im-
portant properties of adjustments data (Fig. 2, Fig. 3). The shown data
relates to one of the companies and includes history of observations of about
two years. It can be seen that final forecast errors have truncated and skewed
distribution, correlate both with actual values and adjustments, and a sub-
stantial proportion of errors is comparable to actual demand values. Errors
arising from positive adjustments are on average negative and correspond to
low actual values of demand, while negative adjustments on average lead to
positive errors and relate to higher actuals. Transition to percentage mea-
sures magnifies the errors of positively adjusted forecasts (Fig. 3) due to low
values of actuals. Excluding observations with low values (for instance, less
than 10 as was done in (Fildes et al., 2009)) still cannot sufficiently improve
the properties of percentage errors since a large proportion of data resides in
the area where the actual value is less than absolute error.

While having advantages over percentage measures, calculating MASE
introduces a bias towards overrating the accuracy of a benchmark forecasting
method. It is a well-known fact that as a result of taking arithmetic mean of
ratios of loss functions the penalty for bad forecasting becomes larger than
the reward for good forecasting (Thompson, 1990). For example, suppose a
comparison of accuracy of two forecasting methods is performed across two
time series. For the first series the MAE ratio is r1 = 1/2 and for the second
series the MAE ratio is the opposite: r2 = 2/1. Averaging the ratios gives
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Figure 2: Dependencies between final forecast error, actual value, and sign of
adjustment. Absolute errors in the area below the dotted line are higher than ac-
tual demand value and therefore lead to substantial distortions of error properties
when using percentage measures (Fig. 3).
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MASE = 1
2
(r1 + r2) = 1.25, which indicates that two methods have different

accuracy and the benchmark method is superior regardless of the choice of
this method (since r1 = 1/r2). This bias was found to be substantial for
available datasets, especially in case of short series and large differences in
accuracies. Moreover, using MASE (as well as MAPE or MAPES) results in
unstable estimations as the arithmetic mean is severely influenced by extreme
cases arising from dividing by relatively small values. If such outliers are
present, the arithmetic mean can be very different from the mode or median.

To ensure correct additive properties of relative error measures it is pos-
sible to apply logarithmical transformations to ratios (Thompson, 1990).
A recommended algorithm based on log-transformed ratios of MAEs is de-
scribed in the next subsection.

Geometric mean of relative absolute errors (GMRAE) (Fildes, 1992) can
also be used to overcome the disadvantages of the arithmetic mean. If fore-
casts Fi,j are compared against benchmark forecasts F s

i,j then

GMRAE = k

√√√√ m∏
i=1

∏
j∈Ti

∣∣∣∣Yi,j − Fi,jYi,j − F s
i,j

∣∣∣∣, k =
m∑
i=1

ni,

where m – total number of series.
However, this measure shows only relative improvement not depending

on units of measurement even for the same SKU. Therefore GMRAE is not
sufficiently informative with regard to decision-making in the areas of opera-
tions management and planning. For example, the error ratio 1 unit/10 units is
treated in the same way as the ratio 100 units/1000 units, but the implications of
these quantities for decision-making process differ dramatically. Error differ-
ence in 9 units of a product could probably be acceptable, whereas accuracy
reduction of 900 units can lead to serious losses of investments. Thus, the
major disadvantage of GMRAE is the inability to take into account the ab-
solute error value at a level of an individual series. In addition, it cannot
cover cases of zero forecasting errors (if either Fi,t = Yi,t or F s

i,t = Yi,t), which
reduces the evaluation sample.

3.2 Recommended Accuracy Evaluation Procedure

To ensure the desirable properties of error measures instead of averaging
MAE ratios according to MASE scheme it can be recommended to use
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weighted mean of log-transformed MAE ratios. Alternatively, it is possi-
ble to find weighted geometric mean of MAE ratios. Weighting is necessary
for SKU-level data since lengths of time series can differ substantially.

Let the MAE ratio for a given time series i be

ri =

∑
j∈Ti

∣∣Yi,j − Fi,j∣∣∑
j∈Ti

∣∣Yi,j − F s
i,j

∣∣ ,
where Fi,j – forecast to be evaluated, F s

i,j – system forecast for SKU i and
period j, Ti – a set of time indexes for which actual values and forecasts are
known, Yi,j – observed demand value for SKU i and period j.

The recommended measure for forecast comparison is a weighted mean
of log-transformed MAE ratios (WLR):

WLR =

m∑
i=1

ni ln ri

m∑
i=1

ni

,

where m – number of SKUs, ni – the length of time series for SKU i.
A similar approach was proposed in (Thompson, 1990) where log mean

squared error ratios (LMR) were averaged across series. However, the recom-
mended here WLR measure allows the comparison of accuracy across series
of different lengths and changes quadratic loss to sums of absolute errors. In
general, measures for other loss functions can be defined analogously (unless
the loss function for a benchmark forecast over some series is zero).

Obtaining WLR < 0 means that the forecast being evaluated was better
than the benchmark forecast for the given dataset, WLR > 0 indicates the
opposite.

When applying other measures described above the following precautions
should be taken into account: i) results based on percentage errors can be mis-
leading due to correlation between errors, actuals, and adjustments, ii) mea-
sures based on arithmetic mean of ratios introduce biases and outliers arising
due to the calculation procedure per se.

11



3.3 Results of Empirical Data Analysis

To evaluate the efficiency of adjustments the described above measures were
applied to the dataset for Company A. Overall results are presented in Ta-
ble 1. Trimmed values of arithmetic means were calculated in order to elim-
inate the influence of outliers. To ensure robust estimations 1% of largest
errors were excluded.

Table 1: Evaluation results for nonzero adjustments data

System forecast Final forecast

MAPE, % (1% trim) 30.99 24.63
MdAPE, % 18.82 15.92
MAPES, % (1% trim) 77.19 62.67
MASE (1% trim) 0.97 0.87
GMRAE 1.00 0.84
WLR 0.00 -0.16

According to the results on average adjustments lead to improvements
according to all used measures with regard to the given dataset. This agrees
with some studies published previously (Fildes et al., 2009; Fildes and Good-
win, 2007; Nikolopoulos et al., 2005; Fildes et al., 2006; Nikolopoulos, 2008;
Mathews and Diamantopoulos, 1986, 1989, 1990, 1992) which relied mainly
on trimmed MAPE and MdAPE.

To assess the statistical significance of the improvements for various error
measures the following tests were applied. Following the approach reported
in (Fildes et al., 2009) the difference in MAPE was compared against zero
with the use of Wilcoxon’s signed paired rank test. The same test was ap-
plied to compare MASE measures in a similar fashion to (Hyndman and
Koehler, 2005). In all cases the improvements were found to be significant.
Importantly, the distribution of the difference between APEs (and the same
for absolute scaled errors) was far from Gaussian. This means that apply-
ing the t-test as done in (Nikolopoulos, 2008) is generally not advisable for
adjustments analysis.

A remarkable fact reported in some recent publications was that the ac-
curacy of adjustments differed depending on their direction. In particu-
lar, based on the comparison of pairs of APEs it was found that positive
adjustments did not lead to significant improvements (Fildes et al., 2009;
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Nikolopoulos, 2008).
Here the same analysis was carried out using additional measures not

dependent on actual values. Table 2 and Table 3 present results for subsets
of the given dataset.

Table 2: Evaluation results for positive adjustments data

System forecast Final forecast

MAPE, % (1% trim) 25.98 26.11
MdAPE, % 20.13 17.00
MAPES, % (1% trim) 77.80 66.49
MASE (1% trim) 0.97 0.92
GMRAE 1.00 0.85
WLR 0.00 -0.13

Table 3: Evaluation results for negative adjustments data

System forecast Final forecast

MAPE, % (1% trim) 34.25 20.74
MdAPE, % 16.87 14.96
MAPES, % (1% trim) 98.93 68.25
MASE (1% trim) 0.97 0.85
GMRAE 1.00 0.80
WLR 0.00 -0.22

It can be seen that positive adjustments did not improve accuracy in terms
of trimmed MAPE. In the same time, other measures including MdAPE
showed improvements yielded by adjustments of both types. Relying on
percentage errors in this situation can give misleading conclusions for the
following reasons.

Firstly, percentage errors can distort the original features of errors due to
dividing by actual values which are correlated with the direction of adjust-
ment (Fig. 2, Fig. 3). Essentially, errors arising from positive adjustments
become highly magnified, while errors of negative adjustments are dimin-
ished.

Secondly, the distribution of differences between APEs of final and system
forecast is skewed since such difference cannot be less than -100%, but has no
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upper limit. Applying tests against median becomes therefore problematic
due the asymmetry. Moreover, the difference between the MdAPEs is not
the same as the median of differences between APEs because errors of final
and system forecasts are highly correlated.

It is therefore more advisable to rely on distributions of differences of
scaled errors or logarithms of relative measures to assess the significance of
improvements in accuracy. For the given dataset MASEs of final and system
forecasts differed significantly for both types of adjustments, whereas APEs
could indicate significant improvements only for negative adjustments.

4 Correction for Biases

It is well-known that judgments under uncertainty are affected by various
types of biases. Particularly, this relates to adjustments employed in nu-
merical predictions (Tversky and Kahneman, 1974). Biases can arise due to
inadequacies of human information-processing and motivational factors. In
order to improve the quality of judgments it is possible to detect, predict,
and compensate systematic errors.

Revealing the influence and the patterns of judgmental biases should be
done on the basis of statistical analysis of available data. However, in the
current case the data includes many time series relating to different prod-
ucts with different measurement units. The amount of data within a single
time series is usually insufficient for finding consistent statistical estimations.
Thus, bias correction becomes complicated because of the same problem of
data heterogeneity which was addressed in the previous section.

In order to eliminate the differences in the levels of time series for sub-
sequent statistical analysis some works used relative measurements of source
variables (Fildes et al., 2009; Fildes and Goodwin, 2007; Nikolopoulos et al.,
2005; Fildes et al., 2006). In particular, a model used in (Nikolopoulos et al.,
2005) was based on dividing all source variables by system forecast to explore
dependencies between percentage errors and percentage adjustments. How-
ever, it can be shown that such modelling procedure leads to heteroscedastic
errors and distortions of original data features, which results in inefficient
and misleading estimations.

Another approach was based on normalising data using standard devi-
ation of actual values within each time series (Fildes et al., 2009). Linear
models were then built to describe dependencies between actual values, sys-
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tem forecast and adjustments. A major limitation here lies in assuming the
type of existing dependencies to be locally linear with arbitrary splitting data
into subsets. Choosing the standard deviation of time series elements as a
normalisation factor can also lead to inefficiencies and difficulties in inter-
pretation since the standard deviation grows with trend in non-stationary
time-series. Moreover, it was found that in this case for some datasets nor-
malised final forecast error becomes correlated with the normalisation factor.

This paper presents a more flexible way to model systematic error of final
forecast based on non-linear regression methods and scaling schemes with
better properties. In particular, it is suggested to perform scaling with the
use of system forecast MAE to avoid dependency between scale and trend.

The major factor that exerts influence on final forecast error was found
to be the value of adjustment. This dependency can be described by the
following general model:

Ei,t = f(Ai,t) + εi,t, (1)

where Ei,t – scaled final forecast error for SKU i, period t, Ai,t – scaled value
of corresponding adjustment, εi,t – error (noise) which has zero mean.

According to the chosen transformation procedure scaled variables are
found using the following formulae:

Ei,t =
ei,t
ηi
, Ai,t =

ai,t
ηi
,

ηi =
1

ni

∑
j∈Ti

|Yi,j − F s
i,j|,

where ei,t – the error of final forecast for SKU i and period t, ai,t – the value
of adjustment which corresponds to that final forecast, ηi – in-sample MAE
of system forecast for SKU i, ni – number of observations for SKU i, Ti – a
set containing time indexes of observed series elements, F s

i,j – system forecast
for SKU i and period j, Yi,j – corresponding observed demand value.

Empirical data reveals that this regression function has non-linear form
(Fig. 4). In order to find the required conditional expectations with minimal
assumptions made about the form of relationship it is possible to choose from
a range of nonparamtric smoothing techniques.

Here local polynomial estimators (Cleveland and Devlin, 1988) were used
to produce fitted values by locally weighted regression. According to this
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Figure 4: Observed errors of final forecast and estimations of systematic error
based on non-parametric smoothing.

method the polynomial is fitted using weighted least squares, giving more
weight to points near the point whose response is being estimated and less
weight to points further away. The results are shown in Fig. 4. The im-
plementation of this method is available in many statistical packages, the
current modelling was done using ’stats’ package for R language. Here de-
fault recommended span value of 0.75 was used with locally quadratic fit.
Confidence intervals for given data should be treated with caution as the
regressors are estimated with errors.

Model (1) and the same non-parametric estimation technique can be ex-
tended by including more factors such as the system forecast, the previous
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forecast error, scaling factor itself, and others.
Alternatively, it is possible to use a parametric approach to specify the

regression model. According to empirical data the following analytical ex-
pression can be used to approximate the relationship between systematic
error and adjustment:

f(Ai,t) =

{
β1(Ai,t)

γ1 Ai,t ≥ 0,

β2|Ai,t|γ2 Ai,t < 0,
(2)

where β1, β2, γ1, γ2 are model parameters to be estimated (as an option by
means of least squares method).

The systematic error is adequately described by model (2) as long as
forecast errors are relatively small compared to adjustments. However, it
was found that the regression function has an oblique asymptote Ei,t = −Ai,t,
which means that the absolute systematic error cannot be higher than the
absolute adjustment. Therefore the following more precise formula can be
used:

f(Ai,t) =


β1(Ai,t)

γ1+1

β1(Ai,t)γ1 + 1
Ai,t ≥ 0,

β2|Ai,t|γ2+1

β2|Ai,t|γ2 + 1
Ai,t < 0.

As it is seen from Fig. 4 for the given dataset the distribution of adjust-
ments is skewed. Positive adjustments result in higher average bias (and
consequently higher overall absolute error) since they on average are larger.
It is also notable that fitting a linear model for the data shown would produce
coefficients very close to the ’50% model, 50% manager heuristic’ proposed
in (Blattberg and Hoch, 1990).

The correction of the judgmental forecast for the presence of systematic
error is performed by adding the predicted systematic error to the final fore-
cast:

Ŷi,t = F f
i,j + ηiÊi,t,

where Ŷi,t is a new corrected forecast for SKU i, period t, F f
i,j – corresponding

judgmentally adjusted forecast (final forecast), ηiÊi,t – estimation of system-
atic error found using one of the aforesaid approaches.

The dataset for Company B was used to evaluate the forecasting perfor-
mance of the proposed procedure. For this purpose approximately 80% of
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sample was used for fitting the model, while the remaining part of the data
was used for out-of-sample evaluation. Results are shown in Table 4.

Table 4: Accuracy of forecasts before and after bias correction (out-of-sample)

Corrected final forecast

System Final Power Non-par.
forecast forecast regression smoothing

MAPE, % (2% trim) 25.96 25.64 22.57 22.22
MdAPE, % 17.88 16.01 14.86 14.44
MAPES, % (1% trim) 88.29 83.08 74.44 73.82
MASE (1% trim) 0.97 0.95 0.84 0.83
GMRAE 1.00 0.89 0.79 0.80
WLR 0.00 -0.07 -0.17 -0.18

According to the results a considerable proportion (approximately 10%) of
final forecast error was predictable. The proposed models allowed to estimate
and compensate such persistent errors thereby improving the quality of final
forecast.

5 Conclusions and Recommendations

The discovered properties of judgmental adjustments make it possible to
draw the following conclusions about the choice of appropriate means for
handling them in demand forecasting systems.

It was found that SKU-level data exhibit complex features which can ren-
der existing methods for forecast evaluation and correction inappropriate. In
particular, due to correlation between errors, actual values, and adjustments
it is unadvisable to evaluate adjustments accuracy only using percentage er-
rors such as MAPE or MdAPE. Measures based on relative errors such as
MASE and GMRAE occurred to be more suitable with regard to adjust-
ments data. However, it was shown that they can be either not sufficiently
informative, or lead to outliers and considerable biases. To ensure more ef-
ficient and robust comparison of forecasts an additional error measure was
introduced based on weighted average of ratios of forecasts MAEs. With re-
gard to available datasets the recommended accuracy evaluation procedure
showed improvements yielded by both positive and negative adjustments.
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Empirical evidence suggests that systematic error of final forecast depends
mainly on the value of adjustment. The revealed pattern suggests that both
for positive and negative adjustments the absolute value of systematic error
rises with the increase of the size of adjustment. Adjustments of negative
sign lead to positive bias and vice versa. For the given datasets a consider-
able proportion (approximately 10%) of final forecast error was formed by a
systematic and predictable component.

The proposed methods for bias correction involve flexible non-parametrical
procedures as well as their parametrical alternatives based on power func-
tions. The analysis carried out showed that such procedures can be recom-
mended as a quick and efficient tool for revealing and eliminating systematic
errors in final forecasts.
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