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Abstract. We estimate a variety of models to evaluate costs in US higher education institutions. A 

novel feature of our approach involves the estimation of latent class and random parameter stochastic 

frontier models of the multiproduct cost function. This allows us fully to accommodate both the 

heterogeneity of institutions and the presence of technical inefficiencies. Our findings suggest that 

global economies could be achieved by effecting a reduction in the number of institutions providing 

undergraduate instruction, while increasing the number of institutions engaged in postgraduate activity.  
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1. Introduction 

Multi-product organizations have been the subject of much research since the seminal 

contribution of Baumol et al., (1982). Like countries, such organizations enjoy 

different resource endowments and so specialize in the production of different 

outputs. The structure of costs in these organizations likely differs across firms, and 

this heterogeneity gives rise to some interesting issues surrounding the evaluation of 

organizational performance.    

 

In this paper, we focus on one industry in which data on multi-product organizations 

are readily available, namely higher education. We ask the question: do similar 

universities have the same cost structure? This is a crucial question for both 

theoretical and practical reasons. The policy implications of the answer are 

dramatically important for policy makers, especially in periods when pressures on 

public funds call for reflection on the organization and financing of such strategic 

sectors as higher education. For instance, different cost functions imply different scale 

and scope effects, which can justify the application of different policies to clusters of 

institutions in the sector, and hence the application of different funding models. For 

instance, the efficiency of institutions in using available resources matters for 

decisions about the distribution of public funds. Moreover, if the cost functions 

attached to different institutions are different, then this has implications for the 

evaluation of their efficiency.  

 

This topic is particularly relevant with reference to the higher education (HE) system 

in US, where there is a multitude of institutions of higher education (IHEs), with 

different missions, activities, strategies, and organizational structure. For instance, De 

Groot et al. (1991) state that they “account for research productivity differences 

between institutions” (p.424). Harter et al. (2005) study the costs of 4-years US 

colleges, and acknowledge that “expenditures per student showed significant 

variance across institutions having the same mission and control” (p. 371). This issue 

is so evident that Sav (2004) has conducted a specific analysis to check whether there 

is a difference between the cost structure of public and private universities, finding 

that actually there are some quite remarkable differences.  

Heterogeneity across IHEs has been a a major focus of research also in Europe. In this 

context, universities are often deemed to be similar in character to one another, and a 
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strong differentiation across institutions (typical of the US system) does not occur. In 

a break with this tradition, Johnes et al. (2005) study the higher education sector in 

UK, and they detect significant differences across different subsectors. However, it is 

only recently that the problem of correctly identifying the heterogeneity across 

universities’ cost functions has been systematically tackled using newly developed 

estimation technology. The idea proposed by Johnes and Johnes (2009) is that 

heterogeneity occurs not only (or not necessarily) between universities in different 

subsectors, but also it is possible between universities that belong to the same 

subsector of higher education. This analysis has been made possible by using the new 

techniques proposed by Tsionas (2002) and Greene (2005); these involve a random 

parameter specification of models, which will be discussed later in this paper. After 

this study, similar analyses were conducted for other European countries: Italy 

(Agasisti and Johnes, forthcoming), Spain (Johnes and Salas-Velasco, 2006), and 

Germany (Johnes and Schwarzenberger, 2007). In all these countries, the higher 

education institutions are conventionally thought of as being very similar to one 

another, while the analysis showed that relevant differences actually exist.  

Recent empirical work conducted by Bonaccorsi and Daraio (2007) focused on 

different strategies pursued by European universities, and they exploit several 

differences across institutions. They conceptualized the concept of university strategy 

as “(…) an emergent pattern of configuration of university outputs that depend on 

(relatively) autonomous decisions making by universities, supported by appropriate 

combinations of resources (inputs)” (Bonaccorsi and Daraio, 2007; p. 11). 

 

Coming back to the main focus of this paper, the HE sector in the US is traditionally 

characterized by a perception of strong differences across institutions. Part of the 

difference is due to different unit costs. Harter et al. (2005) conducted an analysis on 

four-year public colleges for the period 1989-1998, showing a great variation of cost 

per student - where students have been measured on a FTE (full-time equivalent) 

basis. Their analysis showed that, for colleges with an enrolment of between 3,000 

and 10,000 FTEs, the range in real unit costs in 1989 was between $8,144 for 

comprehensive public colleges without a medical school and $17,538 for research 

colleges with medical schools. Another source of difference is in the output mix, that 

is the vector of outputs produced: some universities are more focused on research, 

others on undergraduate teaching, others on postgraduate teaching. Since 1970 the 
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Carnegie Foundation, aware of such heterogeneity of IHEs’ mission, has proposed a 

classification of colleges according to different dimensions 

(http://www.carnegiefoundation.org/classifications/): Undergraduate Instructional 

Program, Graduate Instructional Program, Enrollment Profile, Undergraduate Profile, 

Size and Setting. A basic classification is also proposed considering the following 

categories of colleges: associate’s colleges, doctorate-granting universities, masters 

colleges and universities, baccalaureate universities, special focus institutions, tribal 

colleges. Recently, differences across institutions (in terms of performance, output 

levels and reputation) have become key in determining the choice of students and 

families, not least because of the proliferation of public rankings of institutions such 

as the US News and World Report. The 2009 Report states: “(…) the rankings 

provide an excellent starting point because they offer the opportunity to judge the 

relative quality of institutions based on widely accepted indicators of excellence. (…) 

Schools are categorized by mission, based on the basic Carnegie classification and, 

in some cases, by region” (p. 82). It is reasonable to assume that such an accepted 

heterogeneity across institutions could impact also on their cost structure – as a pure 

analysis of unit costs indeed confirms.   

 

The goal of this paper is to analyze the cost structure of HE sector in the United 

States. It represents a particularly interesting case study, given the high number of 

universities and colleges that are playing in the market and the huge differences 

amongst them – in terms of dimension, types of education and research provided, 

ownership, subject mix, and so on. We propose to employ here empirical approaches 

that exploit institutional heterogeneity in the calculation of the parameters of the cost 

function. Thus, the empirical analysis which follows uses and compares three 

different estimators of the universities’ cost functions: (1) the traditional stochastic 

frontier cost model, (2) the latent class stochastic frontier model and the (3) random 

parameter stochastic frontiers specification. The methodology adopted in this paper 

allows us jointly to analyze costs and efficiency. This is the straightforward way to 

proceed, as the cost function represents the boundary that describes the lowest cost at 

which it is possible to produce a given vector of outputs. In this context, frontier 

estimations permit us to describe the cost structure and to compute efficiency scores 

simultaneously. The estimation is focused upon the cost function, rather than the 
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production function, because IHEs potentially produce several outputs at the same 

time.  

 

The paper is organized as follows. In the next section, a literature review is provided. 

Section 3 describes the background for the subsequent analysis. Section 4 concerns 

the data and methodology used for this study. Section 5 presents the results and a 

discussion. Section 6 concludes.  

 

2. Literature review 

Recent theoretical work has shown that universities, in a context of limited resources 

and competition, tend to specialize (Del Rey, 2001), and that the equilibrium of the 

HE market converges towards different steady states, where mass production of both 

research and learning is just one of four possible strategies of universities. The others 

are: full-time teaching, full-time research, selective teaching and research. Similar 

results have been obtained by De Fraja and Valbonesi (2008). In light of these 

findings, it is natural to suppose that a number of different types of HEI might exist, 

and that these should be characterized by distinct cost structures. 

 

The empirical investigation of the cost structure of universities is not a new theme in 

the United States. Early work is surveyed by Brinkman and Leslie (1986), and points 

to the existence of widespread scale effects. The first paper to introduce the concept 

of universities as multiproduct organizations, and hence to focus upon more 

sophisticated measures of economies of scale and scope, is due to Cohn et al.(1989). 

After this pioneering work, several contributions aimed to provide further empirical 

evidence about the cost structure of the higher education sector.  

In general terms, the approach adopted in this field is to estimate a cost function of the 

following type: 

 

TCi = f(xi)      (1) 

 

where TCi is the total cost for the ith university, and xi is a vector of outputs. It is 

widely recognized that universities typically produce three kinds of output: teaching, 

research and social service (the last of these typically taking the form of knowledge 

transfer, organization of cultural events, consultancy, and the like). Nevertheless, 
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given the difficulty of identifying proper measures for the “third mission” work of this 

kind, estimated cost functions usually include only measures of teaching and research; 

indeed only a very few attempts have been made to include proxy for the “third 

mission” (an exception is Johnes et al., 2005). 

The contribution of Cohn et al., (1989 employs a multi-output cost function 

measuring both teaching and research outputs. In practice, they measure full-time-

equivalent enrolments as teaching output, and use measures of research grant income 

as a proxy for research output. Faculty salaries are included as a price factor. Their 

sample comprises 1,887 IHEs. The results of this pioneering study are that: (i) 

institutions can benefit from scope economies by raising the output level; (ii) 

comprehensive institutions are less costly than specialized ones; and (iii) very-small 

institutions are more costly than average ones. All of these findings suggest that an 

important role is played by scale economies in the higher education sector.  

De Groot et al. (1991) considered 147 doctorate-granting universities. The variables 

considered are FTE enrolments of undergraduate and graduate students, and the 

number of research publications. Their results indicate the presence of sizeable 

economies of scale for the average institution, as well as scope economies associated 

with the joint production of undergraduate and graduate education. At the same time, 

they did not find evidence of any significant impact of ownership and state regulation 

on costs. The results have been validated also through a sensitivity analysis by 

substituting enrolments with degrees awarded.  

Koshal and Koshal (1999) focus on comprehensive institutions. Their sample contains 

158 private and 171 public IHEs. FTE enrolments and dollars spent for research 

activity are used as indicators for teaching and research output. Their analysis is 

unusual as they included a measure of quality for the teaching and learning domain, 

that is the average total scores on the Scholastic Aptitude Test (SAT) of entering 

freshmen.1 Product-specific economies of scale are detected for undergraduate 

education but are absent in the case of graduate education; the authors also find that  

economies of scope remain unexploited.  

Laband and Lentz (2003) work on the Cohn et al. (1989) framework, estimating cost 

functions for 1,492 private and 1,450 public IHEs. They use enrolments and 

                                                        
1  Johnes et al. (2005) also include a quality measure in their work. Collinearity problems often 
preclude this. 



This draft – March 2009 

  7

externally funded research as proxies for teaching and research output, respectively. 

The results report a significantly different cost structure for private and public 

institutions. There are two common features across these two sectors: the presence of 

economies of scale, and diseconomies of scope. The straightforward policy 

implication of such findings is that global unit costs could be reduced by increased 

specialization of institutions, while raising output levels in each university.   

Sav (2004) conducted a study on an extensive sample of 2,189 universities and 

colleges. In his cost function, he includes inter alia a wage variable as a factor price, 

and a dummy for the presence of a medical school. Teaching output is captured by a 

measure of teaching hours, for undergraduate, graduate and professional courses; 

research output has been measured through the research grants. The author reports ray 

economies of scale in private, but not in the public, sector. The private sector also 

benefits from economies of scope. Moreover, both private and public universities 

show product-specific economies of scale attached to research activity. The paper 

derives some strong and important policy implications: that “(…) instead of trying to 

be everything to everyone or all taxpayers, large state-supported research institutions 

might move to more specialized production” (p. 613). Also regional differences are 

detected, by suggesting a possible differentiation of cost functions due to the socio-

economic differences of the regions (in particular, the wage factor could be affected 

by such differences).  

Laband and Lentz (2004) devote further attention to the differences between private 

and public sectors, by analyzing a sample of more than 2,700 universities and 

colleges. Also this paper uses FTE enrolments as teaching output and research grants 

as research output, and a measure of faculty compensation has been included as a 

price factor. The results confirm the hypothesis that the two subsectors actually are 

quite different in terms of the cost structure of the institutions. More specifically, 

“(…) the public IHEs produce more cheaply than the private, not-for-profit IHEs at 

almost all scales of output” (p. 438).  

 

3. Background 

The use of random parameters for modeling the cost function of universities is quite 

recent, even tough it was already utilized for empirical analyses in UK (Johnes and 

Johnes, 2009), Italy (Agasisti and Johnes, forthcoming), Spain (Johnes and Salas-

Velasco, 2006), and Germany (Johnes and Schwarzenberger, 2007). The idea behind 
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these studies is that colleges tend to be different, and so they each face a cost function 

that is distinct. In the same spirit, recent work by Bonaccorsi and Daraio (2007) 

demonstrates that, even if is there such presumption of homogeneity, universities 

already are very different in terms of productivity, performance and efficiency. More 

specifically, they developed the idea of “strategy” of different universities, that is 

each university tends to specialize (voluntarily or not) towards the activity in which it 

has a competitive advantage.  

 

In the US popular perceptions on topic are quite different, as it is widely accepted that 

universities behave in a different manner from one another, with some well defined 

segments of the market leading to a number of ‘types’ of institution, each of which 

specializes to a greater or lesser extent on the provision of certain types of output. A 

clear source of heterogeneity in institutions’ behavior is in the specialization towards 

teaching or research, and, within teaching, they might specialize in undergraduate or 

graduate activities.  

While technology might explain how specialization can lead to allocative efficiencies, 

it is difficult in a world where IHEs face homogeneous cost structures to see how 

some institutions choose to specialize in the production of some outputs while others 

do otherwise. A possible way out of this conundrum is to acknowledge the possible 

existence of heterogeneity in the cost structure of universities. In other words, it 

would be possible that institutions differ not only in terms of size – with the implied 

differences in scale and scope effects – but also because of inter-institutional 

differences in structural factors that affect their performance.  

 

In much of the received literature, cost functions have been estimated in a parametric 

setting that assumes that all institutions face the same cost function. Yet we know 

from theory, and from studies that have started from the identification of prescribed 

categories of institution, that they do not. Put another way, the economic literature has 

pointed out that we should expect there to be heterogeneity across institutions, and 

that this should be captured in the institution-specific effects associated with their 

operations. So our models should allow for the possibility that different institutions 

have different cost functions. A fairly crude way of representing this is to use fixed 

effects models. However, the recent development of estimators proposed by Greene 

(2005) and Tsionas (2002) allow us to identify variation not only in the constant, but 
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also in the parameters of the cost equation, so that each HEI faces a different cost 

function – all within the context of a frontier model. This approach resembles in key 

respects the nonparametric approach of data envelopment analysis, where the weights 

attached by an institution to each input and output are allowed to differ from those 

applied by other institutions. The random parameters approach is well explained by 

Tsionas (2002, p. 128): “(…) production possibilities are expected to differ in a cross-

section of firms, and a set of different technologies may simultaneously coexist at any 

given time. If that is the case, efficiency measurement cannot proceed under the 

assumption of common technology. (…) The relative difference in output reflects 

technological differences, not inferior practice”.  

This argument is particularly convincing for the HE sector. While it is reasonable to 

assume the same functional form for the cost function of all institutions, it is less 

reasonable to impose the assumption that the parameters are constant across 

institutions. Use of panel data allows a random parameter specification to be modeled. 

From a methodological point of view, such an approach benefits from generality in 

the ability of modeling heterogeneity – in other words, “many of the models already 

considered (such as fixed-effects of random-effects specifications) are special cases” 

(Greene, 2005; p. 288). The assumption of the same technology for all institutions 

results in a “(…) confusion between technological differences and technology-specific 

inefficiency” (Tsionas, 2002; p. 128).  

As we expect that there actually are relevant technologies differences and behavioral 

differences across colleges in their production processes of teaching and research, we 

estimate cost functions using a random parameter approach, and we compare the 

derived results with other more classical approaches (the traditional frontier model 

and latent class models).  

 

4. Data and methodology 

All the data come from the Integrated Postsecondary Education Data System (IPEDS) 

dataset, provided by the National Center for Educational Statistics (NCES), and refer 

to three academic years: 2003-04, 2004-05, and 2005-06. All the financial variables 

are collected on a financial year basis, and they are matched with the academic year 

that starts in this year. Hence costs in year t have been matched with students in the 

academic year that straddles t and t+1.  
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Our sample comprises all the universities classified as four (or more) year degree-

granting institutions, both public and private, making a total of some 2,318 

institutions. For the purposes of empirical analysis, however, we drop all the 

observations for which there are missing data for any variables in any one of the three 

years considered. This results in dropping 1,364 institutions, and the final sample 

includes 954 institutions for which we have three complete years of data, that is a 

total of 2,862 observations.  

The dependent variable (COSTS) is defined as total amount of expenses, in the sense 

of “outflow or other using up of assets or incurrence of liabilities” (IPEDS 

definition).2  

The independent variables related to the teaching and learning activities are defined as 

follows: 

• the number of bachelor (b) degrees. A qualification at bachelor level 

represents the first completed level of higher education, which includes 

degrees obtained after 4 or (less usually) 5 years of study; 

• the number of postgraduate (p) degrees. It includes the number of students 

who obtained a first professional degree (in, for example, medicine), a masters 

degree, or a doctorate.  

These qualifications are clearly different from one another – first professional degrees 

are somewhat akin to unusually long bachelors programmes, taking students from 

entry to higher education through exit at higher degree level. Masters programmes are 

typically of relatively short duration – one or two years. Doctorates, meanwhile, 

combine a taught component with a requirement for substantive research activity, and 

typically take several years to complete. In early work, we separated out these various 

types of qualification, but as a result of multicollinearity problems we have merged 

them into a single ‘postgraduate’ variable for the purposes of the present paper. While 

many studies use the number of students (a stock) as an indicator for teaching activity, 

here we use the number of graduates (an outflow) because it better represents the final 

output of the teaching. In comparing the results provided by our study with other 

previous contributes, this difference should be kept in mind.    

                                                        
2 The definition is slightly different, albeit equivalent, for public universities on the one hand and 
private universities on the other. This is because accounting principles for the former follow the 
guidelines of the Governmental Accounting Standards Board while those for the latter follow the 
guidelines of the Financial Accounting Standards Board. 
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As a proxy for research activities we use the value of grants received for conducting 

research. More precisely, this variable is the sum of “all operating expenses 

associated with activities specifically organized to produce research outcomes, and 

commissioned by an agency either external to the institution or separately budgeted 

by an organizational unit within the institution” (IPEDS website). The issues 

surrounding the use of this type of indicator as a proxy for research output are known 

and debated (De Groot et al., 1991; Johnes and Johnes, 1993); while grants may be 

regarded as an input, they offer several advantages as a measure of research activity. 

Notably they provide a quality adjusted measure of the volume of research that is 

done, and they offer a contemporaneous measure that has advantages over more 

retrospective alternatives such as citations and publication counts. Grants have 

therefore been used to proxy research in a number of earlier studies, amongst which 

are Cohn et al. (1989), Laband and Lentz (2004) and Sav (2004). Summary statistics 

for our sample of institutions are reported in Table 1, and clearly show strong 

heterogeneity among universities – the standard deviation is higher than the mean for 

all the variables considered.  

 

<Table 1> around here 

 

This heterogeneity can also be observed when some simple bivariate scatterplots are 

constructed. Figure 1 plots the number of bachelor students against the value of 

research grants earned by institutions in the sample. At least three patterns emerge: 

(1) a group of colleges focused on teaching activities, with a well below average level 

of research output; (2) a group of colleges with high levels of both teaching and 

research activity; and (3) a group of colleges strongly focused on research, with low 

levels of bachelor enrolments. Similar evidence of institutions with heterogeneity of 

missions derives from the plot of the number of bachelor students against 

postgraduates show in Figure 2. Again, three groups can be identified: (1) a group of 

colleges with a “balanced” level of bachelor and postgraduate students; (2) a group 

with above-average levels of bachelors and below-average levels of postgraduates; (3) 

a group of colleges focused on postgraduate teaching.  

 

<Figures 1,2> around here 
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Noting this heterogeneity, we proceed to employ an appropriate modeling technology, 

specifically, using new panel data techniques developed by Tsionas (2002) and 

Greene (2005) in the context of the evaluation of a stochastic cost frontier. The 

traditional frontier estimation, as developed by Aigner et al., (1977), specifies an 

equation like the following (in a panel setting): 

 

yit = α i + β ' xit + vit + uit       (2) 

 

where vi denotes a normally distributed residual and ui is a non-normal residual which 

is supposed to capture technical inefficiency. The distribution of ui must be specified 

a priori, and is usually assumed to be half-normal or exponential.  

An elementary way to consider heterogeneity across institutions is to cluster 

observations into different groups or classes, which have some common 

characteristics that might explain the cost differentials. Where there are no strong a 

priori grounds on which to base the construction of these classes, or when there is a 

preference to ‘let the data speak’, the approach should be to estimate a latent class 

model (LCM) (Orea and Kumbhakar, 2004). This approach divides observations, on 

the basis of maximum likelihood, into m classes (where m is prescribed by the 

analyst), and estimates distinct parameter vectors for each of the m classes. The 

specification of a LCM is: 

 

mitmititmitit uvxy ,, +++= βα       (3) 

 

It is important to note that the calculation of efficiency is not conducted with respect 

to the whole sample, but conditionally on the basis of the class to which the unit 

belongs.  

An extreme case of the LCM is one in which m equals N, the number of institutions; 

in this case, each institution has its own distinct cost function. Here, the vector of 

coefficients is random across institutions – the case of a random parameters model 

(RPM). In this case, parameter heterogeneity is modeled as follows: 
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(α i,βi) = (α ,β ) + Γα ,β wα,βi

μi = μ + Γμwθi

θi = θ + Γθ wθi

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 

      (4) 

 

The random variation appears as the vector wj,i where j denotes the constant or the 

slope parameter. The terms μ and θ represent the moments of the inefficiency 

distribution. It is possible to model the RPM either with half-normal residuals for 

each institution constrained to be constant across time, or with these residuals 

unconstrained. In the work that we report below the residuals are unconstrained, but 

we note that this makes little difference to our results. In the sequel we estimate (i) a 

traditional frontier model, (ii) a LCM in which the number of classes is constrained to 

be 2, and (iii) a RPM. The results are reported and discussed in the next section.  

 

A choice must be made about the functional form of the cost equation. The 

development of a theory about the functional form in the case of multiproduct 

organizations is due to Baumol et al. (1982) who argue that the cost function of a 

multi-product firm should meet a number of requirements. Firstly, it must be 

nonnegative, nondecreasing, concave and linearly homogenous in input prices. In our 

analysis, we do not use input prices as an explanatory variable since earlier 

contributions to the literature have shown that the influence of such factor prices is 

typically not or weakly significant (Cohn et al., 1989; Laband and Lentz, 2003, 2004). 

We argue that allowing heterogeneity across universities’ cost structures better 

captures such differences given their limited impact. Secondly, cost functions must 

allow sensible predictions to be made for the costs of institutions that produce zero 

levels of some outputs. Thirdly, the function must not be linear, because it should 

allow for economies of scale or scope. Following these considerations, and in line 

with much of the literature in this area (Cohn and Cooper, 2004), we employ a 

quadratic form. More specifically, the cost function that has been estimated is: 

 

y = α + Σβ ixi + ΣiΣ jϕ ijxix j + v + u      (5) 
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where y is the IHE’s cost, xi and xj are the outputs of type i and j, respectively. The 

quadratic terms allow for scale economies; the interaction terms allow for scope 

effects.  

 

Finally, in our approach we use measures of average costs, marginal costs, scale and 

scope effects that are coherent with the multiproduct nature of the institutions. 

Baumol et al. (1982) define the average incremental cost (AIC) associated with 

product k as 

 

[ ] kkKKk yyCyCyAIC )()()( −−=      (6) 

 

where C(yK) is the cost of producing the outturn output vector, and C(yK-k) is the cost 

associated with producing the outturn values of all outputs other than the kth output, 

and where the output of type k is zero. Defining Ck(y) as the marginal cost of the kth 

output, we can then define product-specific returns to scale associated with the kth 

output as  

 

)()()( yCyAICyS kkk =       (7) 

 

This definition is therefore analogous to the ratio of average to marginal costs that is 

often used as a measure of scale economies in single product contexts. A value of 

Sk(y) that exceeds unity reflects product-specific returns to scale that are increasing, 

and vice versa.  

Ray returns to scale (SR), which capture scale effects associated with a simultaneous 

and proportional change in all outputs, may be calculated as 

 

∑
=

k
kk

R yCy
yCS

)(
)(        (8) 

 

A value of SR exceeding unity indicates that a simultaneous proportional increase in 

the production of all output types results in economies of scale, while a value less 

than one indicates decreasing returns to scale.  

Global economies of scope are calculated using the formula 
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)()()( yCyCyCS
k

kG ⎥
⎦

⎤
⎢
⎣

⎡
−= ∑      (9) 

 

where C(yk) is the cost of producing only the outturn value of kth output, with zero 

output of all other types. This formula therefore compares, in the numerator, the cost 

of producing the outturn output vector in a single institution with that of producing 

the same output in several different, single-product, institutions. If SG is positive, then 

it is cheaper to produce jointly than not, and so economies of scope are said to exist. 

Conversely, SG < 0 implies diseconomies of scope.  

 

Product-specific returns to scope associated with output of type k can analogously be 

defined as 

 

[ ] )()()()( yCyCyCyCSC kNki −+= −     (10) 

 

 

5. Results and discussion 

Table 2 contains the regression results. The table contains four columns: in the first, 

we report the estimates for the traditional frontier model; in the second and third, the 

estimates for the LCM (here, two sets of coefficients have been reported due to the 

assumption of two classes); in the final column, the mean parameters of the RPM 

model are presented.  

 

<Table 2> here 

 

The regression results are difficult to interpret owing to the nonlinear nature of the 

model. A more useful picture emerges from the analysis of Average Incremental 

Costs (AIC), Marginal Costs (MC) and product-specific scale effects calculated by 

using the formulae discussed in the previous section. These results are reported in 

tables 3, 4 and 5. The calculations have been made for an average institution – that is 

considering the means of outputs reported in table 1 as the hypothetic output vector – 

and for institutions that produce 75% and 125% mean output levels. 



This draft – March 2009 

  16

 

<Tables 3, 4 and 5> here 

 

Several features of the results are worth commenting upon. First, the average 

incremental cost estimates for postgraduates are (with the exception of large 

institutions under the RPM) estimated to be lower than those for undergraduates. This 

may reflect in part the long duration of bachelors programs in comparison with 

masters programs, and also the fact that the cost attached to the production of doctoral 

graduates is mitigated by the fact that students at this level often contribute to a 

university by providing teaching assistance.  

The costs attached to postgraduate education vary markedly with the estimation 

technology. They are lowest (implausibly low, we think) in the stochastic frontier 

model, which does not allow for any parameter variation across institutions, and are 

highest in the random parameter stochastic frontier model. As might be expected in 

view of the fact that it resembles a methodological halfway house, the results for the 

latent class model lie somewhere between the two extremes. The sensitivity of 

average incremental costs of postgraduate provision with respect to estimation 

method is likely due to the fact that many institutions produce few or no 

postgraduates, and these institutions bias the coefficients on postgraduates in the fully 

parametric specification.  

Further results of interest include the findings that there are scale economies for 

undergraduate teaching (particularly in the RPM specification) while there are 

diseconomies of scale associated with postgraduate provision. Economies of scale 

associated with research activity, meanwhile, are virtually exhausted. A note of 

caution is needed here, however, in that all the calculations have been made 

considering an “average” institution, which is a college producing mean values of the 

output vector. Such an institution does not exist, because the reality is a sector very 

differentiated where colleges tend to be more specialized towards a certain output. 

This being the case, our results must be interpreted as illustrating the scale effects for 

an average institution, while recognizing that differences from the average are the 

norm.  

 
A further interesting result concerns the estimation of efficiency scores. The 

traditional frontier model postulates the existence of one efficiency frontier, and the 
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efficiency of each college is computed as the distance from it. The latent class 

specification employed here considers the presence of two frontiers, one for each 

group of institutions. We expect in this case that the average efficiency of the sector 

should be higher than is the case where a single cost function is assumed to apply to 

all institutions, since the reference frontier is, under the latent class method, calculated 

with respect to similar competitors. Finally, the RPM assumption is that colleges must 

be compared with their own (potential) cost performance, and then the efficiency 

mean should be even higher than in the latent class case. In figures 1, 2 and 3 the 

frequency distribution of efficiency scores are reported, and they confirm our 

expectations3.  

 

<Figures 3, 4 and 5> around here 

 

The distribution is widespread across scores in the first case (traditional frontier 

model), suggesting that when considering a unique frontier many colleges result are 

deemed to be highly inefficient. The concentration of scores below 0.5 confirms this. 

Moreover, the number of highly efficient institutions is very limited. The picture 

dramatically changes when we turn to the latent class specification. Allowing each 

college to compare its efficiency with the frontier for its own group markedly 

improves the overall measured performance of institutions. Indeed, in this case 

efficiencies are concentrated between 0.6 and 0.9, suggesting a good efficiency level 

of the market. The latent class specification accounts for a structural difference 

between two subsectors of HE market. Looking at mean output in the two classes, the 

difference may be primarily due to different scales of operation. Table 6 helps in 

explaining this point: large universities (with outflows of more than 2,000 

undergraduates and 1,000 postgraduates, and with research income in excess of 

$100m) belong to the one group (group 1), while the remaining universities belong to 

the other. Thus, estimated costs are not radically different across institutions within 

each group, and the scale effects are also similar. What is different is the scale of 

operation: both groups have now found their dimension for their activities – as the 

estimated scale effects demonstrate – but now the two segments of the market are 
                                                        
3 Some colleges’ efficiency scores have been estimated as <0, due to their distance from the frontier. 
Obviously, it is a traditional shortcoming for a parametric approach to these topics. We eliminated 
scores <0 to derive our main results. 



This draft – March 2009 

  18

consistently separated, so it makes sense to compare each institution’s efficiency with 

its counterparts in the submarket.  

 

<Table 6> around here 

 

The last case to be analyzed is that of RPM specification. Here the distribution 

indicates a concentration of efficiencies above 0.8, though there remain significant 

numbers of institutions with lower levels of measured efficiency. It is worth noting 

here that the comparison of each college’s cost efficiency is not conducted with its 

competitors in a submarket, but within the whole market.    

 
It is interesting to analyze whether the efficiency scores reflect subsectors of the HE 

market. For this purpose, we consider four different types of colleges: (1) private 

institutions with medical schools, (2) private institutions without medical schools, (3) 

public institutions with medical schools, and (4) public institutions without medical 

schools. The aim of such categorization is to investigate whether different 

institutional characteristics have an impact on the average efficiency. Table 7 reports, 

in the first row, some descriptive statistics for the entire sample, while the subsequent 

rows illustrate corresponding descriptive statistics for the subgroups. This analysis 

focuses only on efficiency scores calculated from the RPM, and these scores refer 

only to year 2005.  

 

<Table 7> around here 

 

The picture that emerges is that the presence of a medical school is associated with 

higher efficiency scores. Meanwhile, private ownership of the college is related to 

lower scores. The differences emerging from this analysis confirm the presence of 

heterogeneity in performance across subsectors of the HE market.  

Johnes et al. (2005), when studying the cost structure and efficiency profile of the 

higher education sector in England, pointed out that efficiencies were highest in the 

top 5 universities and lowest in the colleges of higher education. Analogously, here 

we try to find out such a pattern in the HE market. We followed two strategies for this 

purpose: (1) a look at the efficiency scores for “high intensive research” universities – 

as defined by the Carnegie classification, and (2) an analysis of efficiency scores for 
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the best universities as classified by the US News and Report ranking (2009 edition). 

The last row of table 7 gives evidence that supports our hypothesis that research 

universities are relatively efficient. These universities are typically characterized not 

only by higher average efficiency, but also by a very small standard deviation – in 

other words, performances of this group of colleges are very similar across 

institutions. The distribution of efficiency scores, presented in figure 6, gives intuitive 

evidence of the structural difference that characterizes this group of universities with 

respect to the general distributions of scores (see figures 3-5) above.  

 

<Figure 6> around here 

 

Table 8 reports the efficiency scores for the first 20 universities listed in the US News 

and Report ranking (2009 edition). Here, the efficiency scores are those for all the 

three years considered (2003-05). Again, what emerges is a very high efficiency 

score, well above the average of the sector.  

Several things could explain this finding. One possible interpretation is that 

efficiency, productivity and research and teaching excellence are highly correlated 

measures of performance. 

 

<Table 8> around here 

 

Ray returns to scale, derived using the RPM, are reported, for the average institution, 

in Table 9.  

 

<Table 9> around here 

 

The general picture that emerges is that there remain some scale economies to be 

exploited, albeit only at a modest level. There are, however, no unexploited 

economies of scope - especially at the higher levels of output. The interpretation of 

this story is quite straightforward and compelling: there are too many colleges overall 

(if the minimization of global costs is the objective), and, in particular, the provision 

of undergraduate education is not adequately concentrated. The other side of the coin 

is that there are too few colleges providing postgraduate education. Our findings on 

returns to scope serve to confirm this analysis – that increased specialization and 
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concentration could lead to greater allocative efficiency across the higher education 

system.  

 

6. Conclusion 

The higher education system of the United States has been the subject of much 

research over the years, but the present paper represents the first attempt to apply 

recently developed econometric methods as a means of evaluating costs, returns to 

scale, returns to scope and efficiency in the context of a framework which allows for 

the heterogeneity of institutions. Our results confirm our view that American 

institutions of higher education are indeed heterogeneous. Those that have high 

profile as research institutions tend also to operate at high levels of efficiency. There 

is, however, a tail of less efficient institutions.  

From the perspective of cost efficiency, there is evidence to suggest that there are too 

many higher education institutions in the US. To some extent, this may be due to 

geography – to cater for the needs of students who are unwilling or unable to travel 

far for tertiary education, there needs to be widespread geographical coverage. 

Nonetheless, global costs could be reduced by increased concentration of provision of 

undergraduate education. Meanwhile, scope economies in some institutions could be 

improved if postgraduate provision were extended to a greater number of institutions.  

It is instructive to compare these results with those obtained for the higher education 

systems of some other countries. In Germany and Spain, studies have found evidence 

to suggest that product-specific economies of scale remain unexploited for all outputs 

of higher education institutions (Johnes and Schwarzenberger, 2007; Johnes and 

Salas-Velasco, 2007); in the case of Italy, meanwhile, Agasisti and Johnes (2008) 

have found the opposite.  Perhaps the most intriguing comparison, though, is with 

England, where, in sharp contrast to the United States, Johnes and Johnes (2009) 

found increasing product-specific returns to scale for postgraduate education and 

decreasing returns to undergraduate provision. These findings suggest that there is 

much that can be learned from the comparison of systems across countries, and we 

suggest that further work on international data should be a priority for future research. 
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Table 1. Descriptive statistics 

 
 Mean St. deviation Min Max 
Costs 259.006 482.855 .462 4,200.00 
Bachelor 1,162.20 1,449.35 .000 9,840.00 
Postgraduate 571.809 851.284 .000 6,985.00 
Research 36.318 98.766 .186E-03 995.00 
Private .446 .497 .000 1.000 
Medical .164 .369 .000 1.000 
 
Notes: Costs and Research have been reported in millions $.  
Number of observations: 2,862.  
 
 
Table 2. Regression results 
 
 Frontier LC Model 

(group 1) 
LC Model 
(group 2) 

RPM Model 

Constant -53.550 -101.497 -6.829 -17.998 
 (4.309) (19.492) (.750) (1.242) 
Bachelor .070 .065 .067 .059a 
 (.004) (.014) (.001) (.001) 
Postgraduate -.004 -.029 .025 -.015a 
 (.008) (.027) (.002) (.002) 
Research 2.367 3.293 2.005 5.097a 
 (.094) (.234) (.033) (.018) 
Bachelor2 -.010 -.031 -.021 -.074 
 (.009) (.024) (.003) (.003) 
Postgraduate2 .133 .159 .050 .146 
 (.019) (.077) (.006) (.007) 
Research2 -10.648 -19.046 -9.190 -6.703 
 (1.017) (3.079) (1.693) (.306) 
Bachelor x -.074 .020 -.024 .334 
Postgraduate (.025) (.062) (.010) (.008) 
Research x 3.376 2.731 2.040 3.201 
Postgraduate (.296) (.738) (.356) (.076) 
Bachelor x -.579 -.617 -.179 -5.879 
research (.137) (.304) (.130) (.035) 
     
Log-likelihood -18,216.49 -15,299.56 -15,299.56 -15,788.64 
 
Notes: a mean of random parameters. 
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Table 3. AIC, MC and product-specific scale effects – traditional frontier model 
 

AIC bachelor postgraduate research 
1 62,432 7,125 2.45 

0.75 48,244 3,243 1.82 
1.25 75,672 12,408 3.10 
MC bachelor postgraduate research 

1 61,224 14,739 2.42 
0.75 47,565 7,525 1.80 
1.25 73,785 24,304 3.03 
Scale bachelor postgraduate research 

1 1.020 0.483 1.016 
0.75 1.014 0.431 1.012 
1.25 1.026 0.511 1.020 

 
 
Table 4. AIC, MC and product-specific scale effects – latent class model 
 
GROUP 1       

AIC bachelor postgraduate research 
1 53,871 28,489 3.28 

0.75 42,567 10,442 2.46 
1.25 63,733 53,820 4.10 
MC bachelor postgraduate research 

1 47,262 49,116 3.05 
0.75 38,850 22,045 2.33 
1.25 53,406 86,049 3.74 
Scale bachelor postgraduate research 

1 1.140 0.580 1.076 
0.75 1.096 0.474 1.056 
1.25 1.193 0.625 1.097 

GROUP 2 
AIC  bachelor postgraduate research 

1 63,914 27,264 2.05 
0.75 48,466 20,096 1.53 
1.25 79,008 34,667 2.58 
MC  bachelor postgraduate research 

1 62,112 29,031 2.04 
0.75 47,452 21,090 1.52 
1.25 76,192 37,428 2.56 

Scale  bachelor postgraduate research 
1 1.029 0.939 1.005 

0.75 1.021 0.953 1.004 
1.25 1.037 0.926 1.006 

 
 
 
 



This draft – March 2009 

  26

 
 
Table 5. AIC, MC and product specific scale effects – Random Parameter model 
 

AIC bachelor postgraduate research 
1 48,086 43,708 4.57 

0.75 38,128 21,745 3.53 
1.25 56,668 73,030 5.55 
MC bachelor postgraduate research 

1 39,314 52,086 4.55 
0.75 33,194 26,457 3.51 
1.25 42,963 86,120 5.51 
Scale bachelor postgraduate research 

1 1.223 0.839 1.005 
0.75 1.149 0.822 1.004 
1.25 1.319 0.848 1.007 

 
 
 
Table 6. Mean levels of output, LC model 

 bachelor postgraduate research 
($million) 

Group 1 2,151 1,295 122 
Group 2 864 353 10.6 
 
 
 
Table 7. Efficiency scores (random parameters model) – descriptive statistics 
 
College Type Mean St. Dev.  Min Max # 
Overall 0.5776 0.2556 0.0013 0.9988 898 
Medic Private 0.7728 0.2505 0.0330 0.9872 60 
Medic Public 0.8384 0.1839 0.0043 0.9988 93 
Nomedic Public 0.5997 0.2151 0.0013 0.9891 425 
Nomedic Private 0.4359 0.2304 0.0022 0.9796 320 
Research universities 0.9132 0.0480 0.7213 0.9988 95 

 
Notes. All the efficiency scores refer to year 2003. Research universities included in 
the last row are those classified as “very high research” universities by the Carnegie 
Classification.  
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Table 8. The efficiency of best colleges – as classified by the US News and Report 
2009 Edition 
 
College 2003 2004 2005 Mean 
Harvard University 0.9933 0.9722 0.9024 0.9560 
Princeton University 0.9180 0.9416 0.9340 0.9312 
Yale University 0.9846 0.9652 0.9446 0.9648 
MIT 0.9959 0.9774 0.9413 0.9715 
Stanford University 0.9590 0.8901 0.9571 0.9354 
California Institute of 
Technology 0.8571 0.8545 0.8642 0.8586 
University of Pennsylvania 0.9979 0.9821 0.9512 0.9771 
Columbia University 0.9961 0.9067 0.9109 0.9379 
Duke University 0.9710 0.9726 0.9833 0.9756 
University of Chicago 0.9225 0.8474 0.8747 0.8815 
Dartmouth College 0.9414 0.9561 0.9224 0.9400 
Northwestern University 0.9900 0.9584 0.9585 0.9689 
Washington University St. Louis 0.9594 0.9600 0.9673 0.9622 
Cornell University 0.9879 0.9870 0.9489 0.9746 
John Hopkins University  0.9531 0.9970 0.9613 0.9705 
Brown University 0.9340 0.9130 0.8417 0.8962 
Rice University  0.8935 0.8742 0.8307 0.8661 
Emory University  0.9103 0.9056 0.9514 0.9225 
University of Notre Dame 0.9297 0.9187 0.9060 0.9181 
Vanderbilt University  0.9883 0.9472 0.9220 0.9525 
University of California Berkeley 0.9733 0.9811 0.9264 0.9603 

 
Notes. The efficiency scores have been derived using the random parameter 
modeling.   
 
 
 
Table 9. Ray economies of scale and scope economies, random parameter stochastic 
frontier model 
 
Ray economies of scale 

1 1.0716 
0.75 1.0566 
1.25 1.0851 

Scope economies 
1 -0.3248 

0.75 -0.0139 
1.25 -0.5051 

 
Notes. The mean values considered are the means of the output vector.  
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Figure 1. The output mix of US colleges’ – bachelor vs research grants 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes. The observations refer to all the three years (each college is included three 
times in the figure).  
 
 
 
Figure 2. The output mix of US colleges – postgraduate vs undergraduate education 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes. The observations refer to all the three years (each college is included three 
times in the figure).  
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Figure 3. Distribution of the efficiency scores – traditional frontier model 
 

 
 
Notes. The efficiency scores refer to all the three years (each college is included three 
times in the figure).  
 
 
Figure 4. Distribution of the efficiency scores –latent class frontier model 
 

 
 
Notes. The efficiency scores refer to all the three years (each college is included three 
times in the figure).  
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Figure 5. Distribution of the efficiency scores – random parameter frontier model 
 

 
 
Notes. The efficiency scores refer to all the three years (each college is included three 
times in the figure).  
 
 
Figure 6. Distribution of efficiency scores for “research intensive” universities – 
random parameter frontier model 

 
 
Notes. All the efficiency scores refer to year 2003. Research universities are classified 
as “very high research” universities by the Carnegie Classification.  


