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Abstract 
 
Iterated Local Search (ILS) is a popular metaheuristic search technique for use on combinatorial 
optimisation problems.  As with most such techniques, there are many ways in which ILS can be 
implemented.  The aim of this paper is to shed light on the best variants and choice of parameters 
when using ILS on a complex combinatorial problem with many objectives, by reporting on the 
results of an exhaustive set of experimental computer runs using ILS for a real-life sports scheduling 
problem.   
 
The results confirm the prevailing orthodoxy that a random element is ended for the ILS "kick", but 
also concludes that a non-random element can be valuable if it is chosen intelligently.  Under these 
circumstances it is also found that the best ILS acceptance criterion to choose appears to depend upon 
the length of the run; for short runs, a high-diversification approach works best; for very long runs a 
high-intensification approach is best; while between these extremes, a more sophisticated approach 
using simulated annealing or threshold methods appears to be best. 
 
Key Words: Iterated Local Search, scheduling, sports, metaheuristics, parameter choice 
 
 
 
Introduction – Iterated Local Search 
 
Iterated Local Search (ILS) is a form of metaheuristic search for solving combinatorial optimisation 
problems.  ILS has been shown to be useful in producing good solutions for a variety of problems – 
see Lourenço et al. (2003) for a survey. 
 
It is not clear exactly when or by whom the term was defined to take its current meaning, but it is an 
idea that has been around for some time.  As Lourenço et al. (2003) point out, "This simple idea has a 
long history, and its rediscovery by many authors has led to many different names for iterated local 
search like iterated descent, large-step Markov chains, iterated Lin-Kernighan, chained local 
optimization …".  Indeed, many other previously established methods such as simple forms of Tabu 
Search (Glover, 1990), Variable Neighbourhood Search (Mladenović and Hansen, 1997), Tabu 
Thresholding (Glover, 1995) and Strategic Oscillation (Kelly et al., 1993) could be regarded as 
variations of ILS, as well as more complex procedures such as those reported in Martin and Otto 
(1996) and Wright (1994). 
 
ILS can be regarded as a journey through local optima.  Once a local optimum (LO) is reached, then 
"something happens", followed by a journey to another LO, and so on.  More formally, the steps 
involved in any ILS implementation can be described as follows. 
 
Step 1:  Create an initial solution 
Step 2:  Using a predetermined definition of a solution neighbourhood, carry out local improvement 

(LI) until an LO is reached 
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Step 3:  "Kick" (perturb) the solution in some way – normally random or partly random.  
Step 4:  Carry out another LI until an LO is reached (perhaps with some tabu rule to prevent cycling) 
Step 5:  Using a predetermined decision criterion, either accept the new LO or return to the previous 

one (or, in some implementations, maybe to one encountered earlier than that).  
Step 6:  If a predetermined stopping criterion is satisfied, the program terminates.  Otherwise return to 

Step 3. 
 
ILS, in common with most other neighbourhood search techniques, can be implemented in a variety 
of ways, but there is no clear consensus as to whether any of these variations is better than any other.  
Some of the decisions involved in running ILS – how to create an initial solution, how 
neighbourhoods should be defined, the stopping criterion – are common to all neighbourhood search 
techniques (see Wright(2003)).  The choice of LI method is also a well-worn issue.  However, there 
are at least two extra decisions specific to ILS, to do with the exact rules for Steps 3 and 5.  How 
should a solution be "kicked", and what should the acceptance criterion be?  
 
Regarding Step 3, Hoos & T Stützle (2005) note that "weak perturbations usually lead to shorter local 
search phases than strong perturbations", but also note that "if the perturbation is too weak, however, 
the local search will often fall back into the local optimum just visited, which leads to search 
stagnation".  As noted by de Campos et al. (2003), "this number of transformations is a parameter of 
difficult adjustment". 
 
Regarding Step 5, Stützle and Hoos (2002) say that it is "common knowledge" that a new local 
optimum should be accepted only if it is better than the previous one, but then go on to say that 
"occasionally an improved performance has been reported when using acceptance criteria that accept 
worse solutions with a small probability".  Moreover the same authors (Hoos and Stützle, 2005, pp 
396-397) later present results showing that the "common knowledge" approach is outperformed by 
other approaches for Travelling Salesman Problems, and Stützle (2006) reports rather mixed results 
for Quadratic Assignment Problems, with different criteria proving best for different instances. 
  
This lack of consensus is illustrated in the table below, which very briefly summarises some of the 
most recent ILS applications reported in the literature. 
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Table 1 – Summary of some recently reported uses of Iterated Local Search 

 
 
In addition, some authors have used slightly more complex variations of ILS.  For example, Thierens 
(2004) and van der Vonder et al. (2007) use a population-based approach, while Zhang and Sun 
(2006) have incorporated an approach they call "guided mutation". 
 
 
The aims of this paper 
 
This paper, without claiming to give a definitive answer as to the best way to implement ILS (this 
would be much too ambitious for a single paper) therefore seeks to shed some light on this issue by 
means of an extensive set of experiments on a single problem.  Using a single problem ensures that 
sufficient experimentation can be carried out to ensure very robust conclusions to be drawn for that 
problem, though of course they will need to be confirmed at a later date for other problems.  The 
problem used is a complex and difficult one, in order to ensure good discrimination between methods, 
and is a real-life problem, ensuring practical relevance for any conclusions. 
 
While in some respects the work may partly duplicate work already reported by other authors, there is 
an important respect in which it goes further.  This is that the focus is on achieving as good a solution 
as possible within a predetermined amount of computational effort (defined as number of iterations 
rather than computer time for reasons of consistency, since the experiments were run on several 
computers under different conditions).  Too often we see results reported which are very difficult to 
interpret because different approaches are allowed to run for different lengths of time, or numbers of 
iterations. 
 

Author(s) Year Step 3 Step 5 Comments 
de Campos et 
al. 

2003 A small number of 
random moves  

Always accept Not clear how many moves used 

Lourenço et 
al 

2003 One random move Various criteria Random move cannot be reversed 
by a single LI perturbation 

Umetani et 
al. 

2003 An unclear number 
of random moves 

Always accept  

Watson et al. 2003 Between 1 and 5 
random moves  

Always accept Two random moves found to work 
best for problems tested 

Bandelt et al. 2004 One random move Always accept  
Cowling and 
Keuthen 

2005 One random move Always accept Random move cannot be reversed 
by a single LI perturbation 

Cordon and 
Damas 

2006 One random move Accept only if better  

Stützle 2006 One random move Various criteria tried Random move cannot be reversed 
by a single LI perturbation 

Tang and 
Luo 

2006 One random move Always accept  

Tang and 
Wang 

2006 One random move Accept if costs less or < 15% 
more, but return to best found if 
not improved after three cycles 

No explanation of why 15% used, 
or why three cycles 

Blum 2007 One to three partly 
random moves 

Accept always if better, 
sometimes if not 

 

Deroussi et 
al. 

2007 Three random 
moves 

Accept only if better  

Fox et al 2007 Unclear Unclear May not be ILS at all in fact 
Ribeiro and 
Urrutia 

2007 One random move Accept if better or not more than 
0.1% worse 

Combined with GRASP 



 Page 4 of 11 

Short runs and (fairly) long runs were both used to see whether any conclusions would depend on the 
length of a run – and indeed some of them did, which is probably the most interesting feature of the 
results.  It is not intuitively surprising that the best strategy for any search procedure may depend 
upon the length of time, or number of iterations, available, but most previous research has not 
examined this in a direct way.  
 
Another novel aspect of the work is that it considers variations which are applicable specifically for 
problems with many objectives, as well as to those with just one objective.  This involves the "kick" 
stage, which was allowed to be partly non-random as well as maintaining a random element; the 
number of random and non-random moves in each kick formed part of the investigation.  The way in 
which non-random moves were chosen was also examined; this used information about subcosts as 
well as the overall cost in the manner of Wright (2001). 
 
In addition, it is important to avoid a search which keeps returning to the same local optimum.  Some 
researchers, e.g. Stützle (2006), recommend that this should be done by making the "kick" 
sufficiently complex that it can not be reversed by a single perturbation, but it seems more natural to 
use the same method as is used in Tabu Search – see Glover (1990) – which is to make such a 
reversal tabu for a certain length of time. 
  
 
The experiments 
 
The series of experiments reported here necessarily considers only fairly simple variations of ILS, 
implemented on a real-life scheduling problem with many objectives.  This involved the scheduling 
of cricket umpires to a league – see Wright (2007) for fuller details.  52 umpires needed to be 
allocated to 135 matches on nine different dates subject to there being two umpires for every match 
and no umpire having more than one match on any given date.  The number of objectives to be 
incorporated into the cost function was 13, involving the amount of work done at different levels by 
umpires, how often they were paired with each other, how often they encountered particular teams, 
travel distances, etc. 
 
This problem was chosen because it is complex and difficult enough to present a challenging test for 
the methods implemented (otherwise there is a danger that the optimal solution may be frequently 
reached, which then reduces the discrimination between variations), while not being so large as to 
make rigorous experimentation impossible. 
 
All of the experiments used initial solutions that were constrained to be feasible but which were 
otherwise entirely random, and the same LI procedure, a "first-found descent" method with 
perturbations consisting of  either the replacement of one umpire by another for a specific match or 
the swapping of two umpires between two matches.  Perturbations were examined in a fixed order, 
being accepted if they decreased overall cost but rejected otherwise, and this was then repeated until 
all perturbations had been examined since the last change was accepted. 
 
In order to allow for a large number of experiments to be carried out, care was taken to implement the 
LI procedure efficiently, by using the equivalent of "don't look bits", a concept used for speeding up 
the implementation of LI for the Travelling Salesman Problem (see for example Voudouris and Tsang 
(1998)), and which has probably been used in one way or another by countless researchers over the 
years for many different types of combinatorial optimisation problem.  The essence of this concept is 
that if a perturbation is tried and found not to improve the solution, the same perturbation is not tried 
again until and unless something else subsequently changes which could affect its outcome.  In the 
case of these experiments, the don't look bit relating to a specific perturbation was switched on when 
it was rejected and subsequently switched off if a different perturbation was accepted which involved 
one of the same umpires, clubs, divisions or dates. 
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Possible "kicks" were defined in the same way as the perturbations for the local improvement, rather 
than n in a more complex manner as suggested by Stützle (2006).  A reversal of a "kick" move was 
tabu for three loops through the set of possible perturbations, or until the next local optimum was 
reached, whichever came sooner.  This ensured that successive local optima were almost certainly 
different. 
 
For the first set of experiments, five parameters were varied: 

• I, the number of iterations for each run – this was either 200,000 (short) or 2,000,000 (long).  
To put these figures in context, the initial LI stage generally took between 25,000 and 30,000 
iterations, while subsequent LIs took between about 3,000 and about 15,000 iterations, 
depending upon the "strength" of the kick.  In fact, the stopping criterion was always invoked 
at the end of an LI, so that the number of iterations was always a little greater than I, but not 
so much as to affect the validity of any results. 

• M, the number of random perturbations involved in each kick – these perturbations were of 
the same type as those used in the LI stages of the search, and was set at 1, 2 or 3 (M = 0  was 
tried initially as well, but it soon became clear that this was producing vastly inferior 
solutions, so this line of enquiry was not pursued further). 

• N, the number of non-random perturbations involved in each kick – this varied between 0 and 
8 for short runs and between 0 and 5 for long runs. 

• η, a parameter relating to the way in which the non-random perturbations were selected (and 
thus not required when N = 0).  The perturbations were chosen which minimised (C – ηB), 
where C is the increase in overall cost and B is the highest decrease in any single subcost 
(usually positive).  This is an idea put forward by Wright (2001) which was shown to 
improve solutions for certain problems.  The following values of η were considered: 0, 0.25, 
0.5, 1 and 2.  Thus a combination of M = 0, N = 1 and η = 0 is equivalent to a simple form of 
Tabu Search. 

• κ, a parameter which determined the rules for acceptability of a new LO.  κ denoted the 
probability of accepting a new LO whose cost was worse than or equal to that of the previous 
LO: an LO with lower cost was always accepted whatever the value of κ .  The values used 
for κ  were 0 (a kind of meta-local-improvement), 1 (a kind of meta-random-walk) and 0.5 
(something between).  More complex acceptance rules were considered in the second set of 
experiments. 

 
100 runs were made for each combination of parameter values.  There were thus 36,900 short runs 
and 23,400 long runs, generating over 50 billion iterations, and producing over 60 thousand "best" 
solutions (the cost recorded for each run was the cost of the best solution encountered, not necessarily 
the final solution).  It is possible that all of these best solutions were different – certainly the best of 
all was encountered only once, and it is not known whether it is an optimal solution. 
 
The experiments were run at various times on three computers with different processing speeds, but 
typically a short run took about 20 seconds and a long run about 200 seconds.  Thus the total amount 
of computer time used was a little over two months.  Such exhaustive experimentation could be 
regarded as overkill, but it was at least sufficient to ensure that all results produced were statistically 
sound. 
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Results of first set of experiments 
 
First we show the results for κ = 0, i.e. when a new local optimum is accepted if and only if its cost is 
lower than the cost of the current local optimum.  The mean costs for each combination of parameters 
are summarised briefly in Tables 2 to 4. 
 
 

 Value of N – short runs (200K) Value of N – long runs (2 million) 
 

η ↓ 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 
0 394 404 406 405 414 405 408 412 414 308 315 318 321 321 328 
0.25  403 393 401 403 408 410 410 410  309 311 318 317 328 
0.5  391 394 397 395 404 406 408 409  306 311 312 316 329 
1  391 388 400 398 413 412 416 410  307 312 318 323 338 
2  393 397 404 407 414 421 414 422  313 320 329 339 347 

Table 2 – mean costs over 100 runs for M = 1 and κ = 0 
 
 

 Value of N – short runs (200K) Value of N – long runs (2 million) 
 

η ↓ 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 
0 397 401 404 407 411 413 408 411 414 311 319 319 326 326 327 
0.25  398 401 404 403 406 411 411 413  317 318 321 323 328 
0.5  399 395 400 407 412 412 415 411  313 316 321 324 328 
1  398 402 405 405 416 412 410 417  312 317 328 335 338 
2  393 406 411 412 413 419 423 427  318 326 330 347 353 

Table 3 – mean costs over 100 runs for M = 2 and κ = 0 
 
 

 Value of N – short runs (200K) Value of N – long runs (2 million) 
 

η ↓ 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 
0 403 401 409 408 411 413 413 415 418 319 325 323 329 328 337 
0.25  406 404 406 406 411 411 417 412  314 318 327 332 334 
0.5  395 406 406 409 408 413 411 413  317 320 327 327 335 
1  397 406 403 411 414 412 411 418  321 326 329 338 343 
2  404 410 409 413 416 424 423 424  324 331 338 344 355 

Table 4 – mean costs over 100 runs for M = 3 and κ = 0 
 
 
Next we show the results for κ = 0.5, i.e. when a new local optimum is accepted if it has lower cost 
than the current local optimum, and is accepted with a probability of 50% otherwise.  The mean costs 
for each combination of parameters are summarised briefly in Tables 5 to 7.   
 
 

 Value of N – short runs (200K) Value of N – long runs (2 million) 
 

η ↓ 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 
0 403 412 410 410 404 409 408 408 402 322 320 320 326 321 325 
0.25  398 398 401 405 397 397 404 398  321 315 322 321 322 
0.5  397 392 391 392 398 397 399 393  313 317 317 319 317 
1  390 391 393 390 392 398 394 405  313 315 321 321 322 
2  391 392 397 397 400 404 406 410  320 323 327 335 339 

Table 5 – mean costs over 100 runs for M = 1 and κ = 0.5 
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 Value of N – short runs (200K) Value of N – long runs (2 million) 
 

η ↓ 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 
0 408 407 412 409 410 406 408 413 409 326 328 326 329 331 333 
0.25  399 399 397 405 402 405 405 400  332 321 324 328 326 
0.5  398 401 398 401 401 400 403 400  320 320 322 327 329 
1  397 400 395 392 396 402 399 403  323 324 326 326 329 
2  403 396 407 403 405 407 411 412  327 331 337 341 342 

Table 6 – mean costs over 100 runs for M = 2 and κ = 0.5 
 
 

 Value of N – short runs (200K) Value of N – long runs (2 million) 
 

η ↓ 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 
0 409 410 404 408 411 408 409 417 412 333 332 333 331 330 335 
0.25  404 408 403 403 406 401 403 408  326 331 328 330 333 
0.5  401 402 401 397 404 406 403 411  329 331 329 335 332 
1  401 400 404 403 405 403 405 404  328 331 331 334 336 
2  397 401 406 412 414 410 415 414  334 338 344 342 349 

Table 7 – mean costs over 100 runs for M = 3 and κ = 0.5 
 
 
Finally we show the results for κ = 1, i.e. when every new local optimum is accepted.  The mean costs 
for each combination of parameters are summarised briefly in Tables 8 to 10.  
 
 

 Value of N – short runs (200K) Value of N – long runs (2 million) 
 

η ↓ 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 
0 421 415 417 414 408 409 412 412 411 333 334 336 333 328 332 
0.25  409 402 404 404 403 396 397 394  328 323 323 322 319 
0.5  398 397 399 396 393 391 393 393  318 231 324 316 317 
1  397 386 381 384 380 388 388 390  320 317 316 317 315 
2  390 392 390 388 398 396 396 398  326 325 329 331 331 

Table 8 – mean costs over 100 runs for M = 1 and κ = 1 
 
 

 Value of N – short runs (200K) Value of N – long runs (2 million) 
 

η ↓ 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 
0 414 410 415 412 411 410 412 414 408 339 337 336 333 331 334 
0.25  405 401 402 396 402 403 399 400  333 330 327 328 329 
0.5  396 400 395 394 398 398 396 398  325 327 327 327 325 
1  394 391 390 392 391 394 394 394  326 327 324 323 325 
2  401 395 396 398 404 401 400 402  333 331 334 334 338 

Table 9 – mean costs over 100 runs for M = 2 and κ = 1 
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 Value of N – short runs (200K) Value of N – long runs (2 million) 
 

η ↓ 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 
0 414 417 413 411 410 407 412 413 403 342 342 339 337 339 339 
0.25  410 406 405 400 405 404 407 402  336 333 332 331 336 
0.5  404 402 398 396 400 399 406 405  335 331 333 329 333 
1  401 397 394 395 393 396 395 403  334 330 329 333 337 
2  400 398 396 401 402 402 405 405  335 339 339 342 346 

Table 10 – mean costs over 100 runs for M = 3 and κ = 1 
 
 
Standard deviations for the more successful combinations were mainly between 25 and 30 for the 
short runs, and between 15 and 25 for the long runs.  Therefore means are significantly different at a 
level of more than 99% if they are apart by about 10 or more, using normality assumptions which 
appear to be reasonable.  Results within 10 of the best mean found have therefore been highlighted in 
the tables. 
 
 
Second set of experiments 
 
The second set of experiments considered more complex forms of acceptance criterion, as follows. 

• Simulated annealing (SA) method:  a new local optimum was accepted if it was less costly 
than the previous local optimum, otherwise it was accepted with a probability e – ∆C / T , where 
∆C is the increase in cost compared to the previous local optimum and T is a varying 
temperature parameter.  This uses the idea presented by Martin et al. (1996). 

• Threshold acceptance (TA) method:  a new local optimum was accepted if it was less costly 
than the previous local optimum, otherwise it was accepted if and only if ∆C < T , where ∆C 
is the increase in cost compared to the previous local optimum and T is a varying threshold 
parameter.  This method is thus very similar to SA in nature except that it is deterministic.  It 
accepts a new local optimum if and only if it would have been accepted under the SA method 
with a probability in excess of e – 1 , i.e. about 0.37, using the same value of T. 

 
For each method, T decreased geometrically between a starting value of 10t and a finish value of t, 
where t = 1, 2, 5, 10 or 20. 
 
Both short and long runs were carried out as before; however, for these experiments the other 
parameters were fixed at values that proved successful in the first set of experiments, i.e. N = 3, M = 
1, η = 1 and κ = 1.  The results are shown in Table 11. 
 

 

 Value of t – short runs (200K) Value of t – long runs (2 million) 
 

 1 2 5 10 20 1 2 5 10 20 
SA 391 392 386 383 386 303 300 303 306 312 
TA 392 391 386 381 384 308 301 294 304 310 

 
Table 11 – mean costs over 100 runs for second set of experiments 

 
 
For the long runs, these results are considerably better for most values of t – the best result from the 
first set of experiments was 306.  Standard deviations are similar: between about 25 and 30 for the 
short runs, between about 15 and 20 for the long runs.  Thus it certainly seems to be worth using a 
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more complicated criterion than either always accepting a new local optimum (κ = 1) or accepting it 
only if it is better (κ = 0). 
 
However, for the short runs, most of these results are only about the same as the best results from the 
first set of experiments, which are achieved when κ = 0.  Since a significant drawback of these more 
complex methods is that the parameter t needs to be set (even though results are not very sensitive to 
its value over a wide range), it is probably better for short runs just to use κ = 0. 
 
Some very long runs, with 10 million iterations each, were also carried out: 

1. 100 runs with N = 3, M = 1, η = 1 and κ = 0, i.e. only accepting better solutions 
2. 100 runs with N = 3, M = 1, η = 1 and the simulated annealing acceptance criterion with 

temperatures starting at 100 and ending at 10. 
 
The results were not significantly different, averaging 281 and 282 respectively.   
 
 
Conclusions 
 
Putting together all the results, we can reach the following tentative conclusions.  They have of course 
been shown to apply only for one instance of one type of problem; while it is reasonable to suppose 
that our conclusions may hold more widely, this can only be speculation until further experiments are 
carried out for other problems. 
 

• M = 1 appears to work significantly better than M = 2 or 3;  in other words, the kick should 
only contain one random element.  It may be, however, that if a tabu condition had not been 
included then there might have needed to be a little more randomness in the kick, or else the 
kick would have needed to be more complex, as suggested by Stützle (2006) and others. 

• η = 0 is a relatively poor option, especially for short runs, and η =  0.5 or 1 is probably best;  
maybe a value of 1 is overall slightly better than a value of 0.5.  Thus, if the kick is to include 
a non-random element, the subcost-guided approach does appear to be valuable (obviously 
only for a problem with many subcosts). 

• The results (perhaps surprisingly) are not very sensitive to the value of N when η > 0, though 
perhaps values between 1 and 5 are best; so it is probably worthwhile to include some 
carefully selected non-random element in the kick. 

• For short runs, a good approach is to set κ = 1 (accepting all new local optima), since it is at 
least as good as other methods considered and has the merit of being simpler, without any 
need for tuning of parameters.  This can perhaps be explained by the fact that short runs need 
extra diversification which is supplied by accepting all new local optima.  κ = 0 appears not 
to do well in these circumstances, and κ = 0.5 falls between the two. 

• For longer runs, where the very length of a run provides further diversification, the best tactic 
appears to be to use a more complex acceptance criterion such as SA or TA.  This however 
does have the drawback that the value of t needs to be tuned in advance, though the results 
show that a very wide range of values of t will give good results.  Otherwise κ = 0 (only 
accepting better local optima) appears to work better than κ = 1 (always accepting), with 
again κ = 0.5 falling between the two. 

• For very long runs, it appears to be just as good to adopt the policy of only accepting better 
local optima (κ = 0) as to employing a more complex technique such as Simulated Annealing. 

• If η is constrained to be zero, as of course would be the case for a single-objective problem, N 
= 0 is best; giving a wider interpretation to this, the results suggest that, if there is to be a non-
random element to the kick, it should consist of something more than just choosing the 
perturbation(s) that increase cost by the least. 

• If indeed η is constrained to be zero, it seems that κ = 0 works best, for both short and long 
runs. 
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Overall, these results highlight the potential benefits to be drawn from treating short runs and long 
runs separately – the best policies may well be different. 
 
The conclusions concerning the best conditions for a simulated annealing approach appear to back up 
the results of Marett and Wright (1996), who claimed that "the relative superiority of simulated 
annealing increases as the complexity of the combinatorial problem increases and as the number of 
perturbations allowed decreases". 
 
 
Future research 
 
These experiments need to be repeated for other problems to see whether or not similar conclusions 
hold.  Other areas of potential interest could include: 

• the effects of different acceptance criteria, including dynamic methods whereby the precise 
criterion depends upon the progress of the search to date; 

• the effects of different ways of choosing non-random elements of a kick – perhaps there 
could be a dynamic element to this also; 

• the relative effectiveness of using a simple random element with a tabu condition compared 
with using a more complex random element without. 
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