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Abstract 

Methods for forecasting intermittent demand are compared using a large data-set from 

the UK Royal Air Force (RAF). Several important results are found. First, we show 

that the traditional per period forecast error measures are not appropriate for 

intermittent demand, even though they are consistently used in the literature. Second, 

by comparing target service levels to achieved service levels when inventory 

decisions are based on demand forecasts, we show that Croston’s method (and a 

variant) and Bootstrapping clearly outperform Moving Average and Single 

Exponential Smoothing. Third, we show that the performance of Croston and 

Bootstrapping can be significantly improved by taking into account that each lead 

time starts with a demand. 

 

Keywords: Forecasting, Inventory, Intermittent demand
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1. Introduction 

This study is motivated by the aim to increase the accuracy of forecasting and 

inventory control of service parts at the Royal Air Force (RAF) in the UK. As is 

typical of a service environment, most of the items in stock are slow-moving. The 

bulk of the items are demanded less than five times per year and often much less. The 

key problem in this case, and for inventory control of service parts in general, is that 

of forecasting the mean and standard deviation of lead time demand. These forecasts 

are needed to set the parameter(s) of the inventory control policy.  

 

Forecasting lead time demand is complicated for slow-moving items, since limited 

non-zero demand data is available. Figure 1 shows a typical example of the demand 

pattern for the RAF. Note that even for a time bucket as large as a quarter of a year 

(the RAF uses one month), the demand series often contain more zeros than positive 

demands. Moreover, the positive demands vary considerably in size. Such an 

intermittent demand pattern generally characterises slow-moving items. 

Demand for an example item
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Figure 1. Typical monthly demand pattern for a slow-moving item 

 

Because of these characteristics several authors, starting with Croston (1972), have 

argued that the traditional forecasting methods such as moving average (MA) and 

single exponential smoothing (SES, currently used by the RAF) are inappropriate and 

lead to sub-optimal stocking decisions. In Section 2, the alternative methods proposed 
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by these authors and the results of comparative studies are discussed in detail. The 

main methods proposed are: Croston’s original method, variants of Croston’s method, 

and Bootstrapping. The results from comparative studies in the literature are 

inconclusive. Though most studies conclude that the alternative methods perform 

better on average, they often identify settings where the traditional methods perform 

better. Some studies even find that the average performance of the traditional methods 

is better. 

 

In this paper, we show that these mixed findings originate (at least in part) from the 

use of inappropriate performance measures. The most commonly used ‘per period 

forecast error’ (again see Section 2 for details) is not informative for demand series 

that consist of many zeros and few positive demands. Indeed, we will show, using a 

large data-set from the RAF, that for this performance measure neither the traditional 

nor the alternative methods outperform a simple benchmark method that always 

forecasts zero. To the best of our knowledge, we are the first to include such a 

benchmark and use it to show that per period forecast errors are inappropriate to 

evaluate the performance of forecasting methods for intermittent demand. 

 

A better way of comparing forecasting methods for slow-moving items is to analyse 

their effect on inventory control parameters and to compare resulting inventory and 

service levels. As described in Section 2, some authors have taken such an approach, 

but their exact way of doing so sometimes hampers comparison. In this paper, we 

develop a specific approach for comparing target service levels to actual service 

levels. 

 

We conclude from our comparison that, for the RAF data-set, the alternative methods 

clearly outperform the traditional methods. Furthermore, we show how the alternative 

methods can be significantly improved by exploiting the fact that a lead time always 

starts with a positive demand. Although this seems straightforward, to the best of our 

knowledge it has not been noticed and utilised in the literature.  

  

The main body of the paper is organised as follows. In Section 2, the literature is 

reviewed. In Section 3, details of the RAF case study are provided. In Section 4, we 
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compare per period forecast errors of the benchmark method, traditional methods, and 

Croston’s original method plus variants. In Section 5, we propose a bootstrap method 

that is simpler and more practical than those previously suggested. In Section 6, we 

compare the accuracy of all methods in attaining the target service level, and propose 

a further improvement based on initial results. In Section 7, we end with conclusions. 

 

 

2. Literature review on intermittent demand forecasting 

As the focus of this paper is on forecasting, we do not review the literature on 

inventory control rules for slow-moving items. Interested readers are referred to 

Archibald and Silver (1978), Ward (1978) and Williams (1994). 

 

Croston (1972) was the first to suggest that traditional forecasting methods such as 

moving average (MA) and single exponential smoothing (SES) may be inappropriate 

for slow-moving items. He demonstrated that they can lead to sub-optimal stocking 

decisions and proposed an alternative forecasting procedure that separately updates 

the demand interval and the demand size (exponentially, and with the same smoothing 

constant for both), and only does so in periods with positive demand. The forecast for 

the demand per period is then calculated as the ratio of the forecasts for demand size 

and demand interval. 

 

Modifications of the original Croston method were later proposed by several other 

authors. Syntetos and Boylan (2001) argue that the original method is biased and 

correct it by multiplying the forecast for the demand per period with 1 2− α / , where 

α  is the smoothing constant. Levén and Segerstedt (2004) use the Croston approach 

of only updating when there is a positive demand, but update the forecast for the 

demand per period directly using the ratio of demand size and interval. They remark 

that this method avoids the bias in the original Croston method as identified by 

Syntetos and Boylan. Snyder (2002) introduces more complex variations of the 

Croston method, which involve bootstrapping. 

 

Bootstrapping has also been proposed by Porras Musalem (2005) and Willemain et al. 

(2004). The main advantage of bootstrapping is that (the mean and variance of) the 
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lead time demand distribution is forecasted directly by repeated sampling from 

realised demands. This technique is in contrast to all previously discussed methods, 

which first forecast the demand per period, and take this as the mean while the 

variance is based on past forecast errors. There are many variants of the bootstrapping 

method. Interested readers are referred to Bookbinder and Lordahl (1989) and Efron 

(1979). A disadvantage of many is that they are rather complex. This also holds for 

the bootstrapping method proposed by Willemain et al. (2004). It involves estimating 

transition probabilities in a Markov model and using that model to generate a 

sequence of zero/non-zero demand values. The bootstrapping method proposed by 

Porras Musalem (2005) is simpler. Moreover, it can capture demand autocorrelation 

by restrictive sampling. However, that does imply that it cannot ‘maximise the use’ of 

the limited available data. Since there is no significant autocorrelation for the RAF 

case, we use a different bootstrapping method in this study (see Appendix A for a 

detailed description). 

 

Comparative studies

The traditional forecasting methods have been compared to (variants of) the Croston 

method in a number of studies (Eaves, 2002; Eaves and Kingsman, 2004; Ghobbar 

and Friend, 2003; Johnston and Boylan, 1996a; Johnston and Boylan, 1996b; Levén 

and Segerstedt, 2004; Regattieri et al., 2005; Sani and Kingsman, 1997; Syntetos and 

Boylan, 2005; Willemain et al., 1994). Essentially, two types of performance 

measures are used. The first type is the most common and compares per period 

forecast errors, usually measured by the mean absolute deviation (MAD), mean 

square error (MSE), or mean absolute percentage error (MAPE). The second type 

transforms the forecasts into the stock control parameter(s) and compares the average 

inventory and/or service levels. 

 

The second type of performance measures can be implemented in many different 

ways. In fact, all papers that use this type, implement it in a different way. Eaves and 

Kingsman (2004) initially set the safety stock to zero and determine the maximum 

backlog for the corresponding reorder level. They then raise the reorder level by the 

maximum backlog amount so that a 100% service level is achieved, and calculate the 

implied average inventory level. Obvious disadvantages of this method are that (i) the 
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lead time variance forecast plays no role and (ii) a 100% service level can never be 

achieved in practice. Sani and Kingsman (1997) calculate the percentage increase in 

average inventory/service level of a method compared to the method with the lowest 

level. The disadvantage here is that a low inventory level automatically implies a high 

service level, and hence that no clear decision is possible on which method performs 

best. Levén and Segerstedt (2004) propose calculating a combination of average 

service level and inventory level for many different reorder levels and compare the 

inventory-service curves. These curves do allow a clear decision if one curve is closer 

to the axis than another. However, they do not show the difference between the target 

service level and the actual service level. 

 

Although the exact implementation of the second type of performance measure 

sometimes hampers comparison (as discussed above), most results indicate that 

Croston-type methods outperform traditional methods. The comparative studies 

(mainly) based on per period forecast errors have led to a mixed bag of results. 

Almost no study finds consistent superior performance (for all considered settings) 

from either Croston-type or traditional methods. Most studies do conclude that 

Croston-type methods perform better on average, but some find the opposite.  

 

As for the performance of bootstrapping methods, Willemain et al. (2004) conclude 

that their method produces more accurate forecasts of lead time demand (based on 

assessing the uniformity of observed percentiles, pooled across items, in a rather 

complex way) than exponential smoothing and Croston’s original method. The results 

of the same comparison by Snyder (2002), for his complex variations of the Croston 

method involving bootstrapping, are unclear, partly due to the small number of items 

in his data-set. Porras Musalem’s (2005) comparison is restricted to bootstrapping 

methods. He compares two variants of his own method, fitting a normal distribution 

to the empirical mean and variance or using the ‘full’ empirical distribution, to 

themethod of Willemain et al. He concludes that both variants outperform the method 

of Willemain et al. and that the normal distribution variant performs best. 
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3. Case study (data) details 

The data are sampled from demand for consumable spare parts – i.e. spare parts with 

no associated repair activity - as used by the RAF.  The items are all classified as 

intermittent and lumpy – that is, they show demand patterns such as that in Figure 1.  

The spare parts include, for example, valves, diodes, screws and cables. 

 

The data-set included 5000 items and covered 6 years (1997-2002). Items are selected 

randomly from those that had at least one demand in this time period. The lead time 

for each item, including the production lead time and the administration lead time, is 

available. Both lead time components are fairly constant, and therefore the lead times 

are assumed to be deterministic. Relevant characteristics of the data are summarised 

in Table 1. 

 

 Minimum Average Maximum 

Demand size 1 16 1330 

Number of demands per year 0.5 1 3 

Lead time 1 months 9 months 24 months 

Price 0.3p £108 £4962 

Table 1. Information about the data-set for the first four years. 
 

A distinction between slow-moving, intermittent and irregular demand, as suggested 

by Eaves and Kingsman (2004), was considered, but was not made because the data 

was not found to divide naturally or usefully into any such categories.  In slow-

moving demand forecasting it is also usual to assume the absence of any seasonality 

or complicated trends, due to the lack of any evidence for these factors in series with 

many zeroes. 
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4. Methods that are included in the comparative study 

The methods that we include in our study are listed below, with the abbreviations 

used for them and journal and textbook references in which they are described.   

 

Name of method Abbrev. Reference 

Zero forecast ZF n/a 

Simple moving average MA Makridakis et al, 1998, pp142 

Exponential smoothing ES Makridakis et al, 1998, pp147 

Croston’s method CR Croston, 1972 

Syntetos-Boylan variation of Croston’s method  

(elsewhere referred to as the Approximation 

method) 

CR_SB Syntetos and Boylan, 2001 

Eaves and Kingsman, 2004 

Levén-Segerstedt variation of Croston’s method CR_LS Levén and Segerstedt, 2004 

Bootstrapping BS Bookbinder and Lordahl, 1989 

 

 

The Zero Forecast method is the benchmark technique against which all others are 

compared.  For this method a demand prediction of zero is made for each month.  

This method is expected to be the worst technique, since such a forecast is of no value 

for inventory control.  To the best of our knowledge, the inclusion of a benchmark 

method has not been considered in the literature. As the next section will show, it 

enables firmer comparisons to be drawn.  

 

For practicality, the bootstrapping method that we use is much simpler than that 

proposed by Willemain et al. (2004). For the same reason, we do not include the 

complex Croston variants proposed by Snyder (2002). 

 

Details of all other methods are provided in Appendix A. There, we also describe why 

we set the smoothing constant to 0.15 for all methods that use smoothing (though we 

sometimes perform a sensitivity analysis to check robustness of results). 
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5. Traditional performance measures 

This section illustrates that traditional performance measures of forecast error per 

period cannot be used for comparing methods of forecasting intermittent demand, 

even though that has repeatedly been done in the literature, as discussed in Sections 1 

and 2.  

 

Figure 2 shows the results for the Mean Absolution Deviation (MAD) and the Mean 

Squared Error (MSE), which were used in previous studies on intermittent demand 

(Eaves and Kingsman, 2004; Regattieri et al., 2005; Sani and Kingsman, 1997; 

Syntetos and Boylan, 2005). Note that, for ease of presentation, Figure 2 displays the 

Root Mean Squared Error (RMSE) instead of the MSE. 

 

Results for MAD and RMSE for all appropriate methods
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Figure 2. MAD and RMSE error measures. 

 

A sensitivity analysis, where the smoothing constant is varied within the 0.1-0.2 

range, reveals that these results are robust. The smoothing constant does have some 

effect on the performance of methods, but this effect is small in comparison to the 

difference in performance between the various methods.  

 

Similar results are obtained (but not reported in detail here) for the Relative 

Geometric Root Mean Squared Error (GRMSE). This less well-known measure is 
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recommended by Eaves and Kingsman (2004) and used by Syntetos and Boylan 

(2005), following research by Fildes (1992). 

 

The Mean Absolute Percentage Error (MAPE) is not employed, despite some studies’ 

use of it (Eaves and Kingsman, 2004).  The argument against MAPE, as explained by 

Willemain et al. (2004), is that the calculation requires division by the demand, and 

for slow-moving demand the series will include a large number of zero demand 

points.  

 

Discussion of results

The main, and striking, result is that the Zero Forecast comes out as the best of all the 

methods. Though surprising at first, this result is logical and is illustrated by the 

following simple example. If demand is 0 for nine out of ten months and the average 

demand size is 10 when a demand does occur, then the zero-forecast will have an 

MAD of , whereas the ‘correct’ per period forecast 

of 1 will have an MAD of 

( ) ( )(9 0 0 1 10 0 10× − + × − =/) 1

( ) ( )( 8.110/1101019 ) =−×+−× . All methods except ZF 

attempt to get the correct per period forecast, but are punished for doing so in the 

MAD calculation. This argument also explains why the Croston-type methods have 

higher MADs than MA and SES, since the traditional methods adjust the forecast 

towards zero after each period of zero demand. The same arguments hold for the 

(R)MSE and GRMSE, although to a lesser extent. 

 

This result does not imply that the MA and SES are preferable to Croston-type 

methods, and certainly does not imply that it is even better to use the ZF.  It means, 

rather, that per period forecast errors are not appropriate error measures in this area. 

 

In the context of inventory control, what matters is whether a forecast and 

corresponding forecast error result in the distribution of lead time demand being well 

approximated. In the next section, we therefore transform these distributions to 

inventory decisions and compare methods in their ability to approximate the target 

service level.  
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6. Service Level Accuracy 

The general logic of looking at the Service Level Accuracy is to compare a target 

service level to the actual service level achieved when inventory control parameters 

are based on the demand forecasts from given forecasting methods. It can be used for 

any type of inventory policy and any definition of service level, as long as there is a 

way of calculating control parameters from the forecasts.  

 

We focus on the order-up-to policy, which is used by the RAF and generally accepted 

as an appropriate method for controlling slow-moving inventory. The cycle service 

level definition is used, i.e. the service level is equal to the fraction of orders that 

arrives on time. We further assume that lead time demand is normally distributed. As 

shown in Appendix B, the normal distribution provides a reasonable fit for the RAF 

data-set. Using the forecasts for the mean and standard deviation of lead time demand 

(generated by selected methods, see below), the calculation of the order-up-to level is 

by straightforwardly using the inverse normal distribution function. 

 

Bootstrapping (BS) directly produces forecasts for the mean and standard deviation of 

lead time demand by repeatedly and randomly drawing L (lead time) realisations of 

past monthly demand (see Appendix A for details). 

  

All other methods produce a forecast for the demand per period and the associated 

forecast error. Using these outputs, the mean lead time demand is determined as the 

product of the per period forecast and L, and the standard deviation can be calculated 

as the product of the Root Mean Square Error (RMSE) and L . This is the common 

approach for transforming per period forecasts into lead time forecasts. 

 

We remark now that later on in this section, we will propose modified approaches for 

the BS, as well as the other methods, based on initial results. We further remark that 

Levén and Segerstedt provide an alternative variance estimator, which we do not use, 

in order to get a clear comparison. 

 

Recall from Section 3 that the RAF data-set covers a six year period. For each 

forecasting method, the first four years are used to determine the mean and standard 
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deviation of lead time demand, where the initial year is used for initialisation for all 

methods (except bootstrapping where no initialisation is necessary). This initialisation 

needs some further explanation, as it is not always straightforward. For MA and SES, 

the initial demand forecast is the average monthly demand over the initial year. For 

the Croston-type methods, (i) the initial forecast of the demand size is the 

straightforward average if at least one demand has occurred, and is otherwise set to 1; 

(ii) the initial forecast of the demand interval is the straightforward average if at least 

two demands (and hence one interval) have occurred, and is otherwise set to 12 

months. This is in line with proposals from Eaves (2002) and Willemain et al. (2004). 

 

The latter two years of the data-set are then used to evaluate whether the order-up-to-

levels lead, approximately, to the required service level (starting with no items on 

order at the start of this two year period). It is important to note that we can only 

expect a close approximation as an average over a large group of items. To see why, 

consider an item for which 3 orders are placed over the evaluation period. For that 

item, the cycle service level over the evaluation period can only be 0%, 33%, 67% or 

100%. A target service level of, say, 95% could therefore never be too closely 

approximated for this single item. 

 

Results

In a military context, loss of service level is entirely inappropriate and high service 

levels are required. Therefore, only service levels above 90% are chosen for testing.  

Despite this decision, testing the accuracy of the predicted distributions could, in 

principle, be carried out with any service levels.  

 

The results are summarised in Figure 3. We remark that a sensitivity analysis showed 

these results to be robust to changes in the smoothing parameter. Note that the actual 

service level increases with the target service for Zero Forecast (and all other forecast 

methods), because the safety stock level increases. 
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Figure 3. Comparison of Service Level Accuracy for the different forecasting 

methods. Results are averaged over all items. 

 

Zero Forecast is definitely the worst method – as anticipated. Moving Average and 

Single Exponential Smoothing perform fairly similarly to each other. Bootstrapping 

performs better, but is in its turn outperformed by all Croston-type methods.  Among 

the Croston-type methods: the Levén-Segerstedt variation has the best performance, 

followed by original method that performs slightly better that the Syntetos-Boylan 

variation. 

 

Another important result is that all methods lead to service levels that are significantly 

below their targets (as shown by comparison to the Ideal series). A reason for this 

could be that the normal distribution provides a very poor fit for lead time demand, in 

particular that it underestimates the pth quantile for the entire range  

considered. However, as is shown in Appendix B for two randomly selected items 

(other items show similar results) using the results of bootstrapping, this is not the 

case. In fact, the p

]1,9.0[∈p

th quantile is overestimated for values up to about 0.95. 

 

So, if the non-normality is not the (main) cause for actual levels being consistently 

below their targets for all methods, then apparently the mean and/or variance of lead 

time demand are consistently underestimated. Indeed, careful consideration offers the 
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following explanation: all methods ignore the fact that an order is triggered by a 

demand, and therefore ignore that a lead time starts with a demand. Obviously, doing 

so can lead to a serious underestimation of the mean lead time demand. In the next 

section, we will therefore propose a modification to the calculation of that mean and 

show that this indeed significantly improves the performance. 

 

Adjusting the mean lead time demand

As explained above, we want to adjust lead time demand to take into account of the 

fact that each lead time starts with a demand. For bootstrapping (see Appendix A for 

details), this is done by requiring the first of L draws to be chosen from those months 

with positive demand. For Croston’s original method and the Syntetos-Boylan 

variation, the adjusted mean lead time is equal to the demand size forecast for the first 

month plus L-1 times the demand per period forecast. Recall that it used to be L times 

the demand per period forecast. Note that a similar adjustment cannot be made for 

MA, SES, and CR_LS, since those methods do not forecast demand size and demand 

interval separately.  
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Figure 4 compares the performance of the original methods to the adjusted methods. 
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Figure 4. Increase in Service Level accuracy due to a modified calculation of mean 

lead time demand (scale different from Figure 3).  Results are averaged over all 

items. 

 

As can be seen from Figure 4, the improvement in performance is significant. Note 

also that the actual service level is no longer consistently below the target service 

level. For target service levels below ca 94% (for these two items) the actual service 

level is still lower, but for target service levels above 94% the actual service level is 

higher. As discussed in the previous section, this can be explained by the use of the 

normal distribution for fitting the lead time demand distribution. 

 

This suggests that further improvement may be possible by assuming a different 

distribution of lead time demand, or for the Bootstrapping method by directly using 

the ‘full’ distribution determined by bootstrapping. As explained in Appendix A, the 

latter suggestion also has a major disadvantage: it can lead to jumps in the considered 

order-up-to levels. See also Porras Musalem (2005). 
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7. Conclusion 

By comparing both basic (MA, SES) and Croston-type forecasting methods to a 

simple benchmark method that always generates a zero forecast, we clearly showed 

that traditional per period forecast errors are inappropriate for measuring the 

performance of forecasting methods for items with intermittent demand. To the best 

of our knowledge, we are the first to include such a benchmark policy and obtain this 

insight. Indeed, it explains to a large extent why the literature has been inconclusive 

with respect to the question of whether Croston-type methods indeed outperform 

general methods. 

 

Building on some suggestions in the literature, we proposed to measure performance 

by comparing target service levels to actual service levels. Doing so for a large data-

set from the RAF showed that Croston-type methods significantly outperform general 

methods. We also included a bootstrap method in the comparative study, which 

performed slightly worse than the Croston-type methods but still considerably better 

than the general methods. 

 

Based on the observation that actual service levels were consistently below their 

targets for all methods, we suggested a modification in the determination of order-up-

to levels by taking into account that each lead time starts with the demand that 

triggers it. Although this seems straightforward, to the best of our knowledge it has 

not been suggested in the literature previously. The modification significantly 

improves the performance of the original Croston method, the Syntetos-Boylan 

variation and the bootstrap method. The other methods cannot be modified in this way 

as they do not separately forecast the demand size and the demand interval. 

 

The results for these modified order-up-to levels suggest that the remaining service 

level inaccuracy is largely explained by the deviations of the actual lead time 

distribution from the Normal distribution. So, further improvement may be possible 

by considering other distributions (e.g. Erlang), or for Bootstrapping by using the full 

empirical distribution rather than the first two moments.  This, however, requires 

further research.  
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Based on the results of this research, we advocate the use of the original Croston 

method with modified calculation of order-up-to levels. Bootstrapping performs 

equally well, but is more difficult to implement. 
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Appendix A.  Forecasting methods 

Table A.1 lists the notations used in this appendix. 

 

Notation Definition 

$dt  Forecast for mean demand per period after period t 

dt  Realised demand in period t 

nt  Number of time units since the previous demand occurred  

(if a demand occurs in period t) 

$st  Forecast for mean demand size after period t (Croston-type methods) 

$nt  Forecast for the demand interval after period t (Croston-type methods) 

α  Smoothing parameter (SES and Croston-type methods) 

m Demand history on which the forecast is based (MA) 

L Lead time 

Table A.1. Notations 
 

Table A.2 gives the mathematical details of all considered forecasting methods except 

bootstrapping. 

 

Name demand size 

$st  
demand interval 

$nt  
demand per period

$dt  

Moving Average --- --- 1
0

1

m
dt kk

m
−=

−∑  

Single Exponential 

Smoothing 

--- --- α αd dt t+ − −( ) $1 1  

Croston 

Original 

α αd st t t
+ n− −( ) $1  α αn nt t tn+ − −( ) $1  $

$

s
n

t

t

 

Croston 

Syntetos & Boylan 

α αd st t t
+ n− −( ) $1  α αn nt t tn+ − −( ) $1  

t

t

n
s
ˆ
ˆ

2
1 ⎟

⎠
⎞

⎜
⎝
⎛ −

α  

Croston 

Levén & Segerstedt 

--- --- 
α α

d
n

dt

t
t nt

+ − −( ) $1  

Table A.2. Details of forecasting methods included in out comparative study (except 

bootstrapping). 
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Values of between 0.1 and 0.3 for the smoothing constantα  are generally accepted to 

make SES work successfully. For Croston-type methods, several suggestions have 

been made. Croston (1972) recommends 0.2 < α  < 0.3 when a high proportion of 

items have non-stationary, intermittent demand, but 0.1 < α  < 0.2 otherwise.  

Syntetos and Boylan (2001) suggest that α  should be no more than 0.15.  Eaves 

(2002) chooses values in the range of 0.01-0.1.  As a compromise between these 

conflicting suggestions, we use a smoothing constant of 0.15. Moreover, we use the 

same constant for all Croston-type methods and for SES to ensure a fair comparison.  

 

For MA, we set the demand history m on which the forecast is based to 12, i.e. the 

demand history is one year. 

 

Bootstrapping 

Bootstrapping techniques estimate the (moments of the) distribution of lead time 

demand by repeatedly sampling L demands from the demand history.  The sampling 

can be done in many different ways. Especially, one can sample with or without 

replacement, and sample randomly or restricted to successive months. To maximise 

the use of the limited available data involved with mostly zero demand series, we 

choose to sample with replacement and randomly. We sampled 10,000 times, as that 

turned out to be sufficient for obtaining stable estimates. 

 

We use the bootstrapping results to calculate the mean and standard deviation of lead 

time demand for an item. The order-up-to level is then determined by assuming a 

normal distribution, as is done for all other methods. Alternatively, the ‘full’ 

distribution resulting from bootstrapping could have been used to determine the order-

up-to level. However, the full distribution can be far from smooth if there are very 

few demand occurrences. For instance, based on two demand occurrences of sizes 5 

and 6, respectively, the full distribution would suggest that possible lead time demand 

values are restricted to 0, 5, 6, 10, 11, 12, 15, etc., which would imply that only these 

order-up-to levels are sensible. 
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Appendix B.  Normality of lead time demand 

In Figures B.1 and B.2, the lead time distribution resulting from bootstrapping is 

compared to the (discrete) normal distribution with the same mean and variance for 

two randomly selected items (numbered 1 and 2, respectively, in this appendix). 

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Lead time demand

N
um

be
r o

f s
am

pl
es

 w
ith

 e
ac

h 
de

m
an

d

Observed data
Normal curve

 
Figure B.1. The observed lead time (17 months) demand distribution from 

bootstrapping versus the Normal distribution with the same mean and variance for 

item 1. 
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Figure B.2. The observed lead time (8 months) demand distribution from 

bootstrapping versus the Normal distribution with the same mean and variance for 

item 2. 
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The main conclusion for these two items (and for other items as well) is that the 

normal curve provides a reasonably good fit to the observed data, although it 

somewhat overestimates the probabilities of large demands and underestimates the 

probabilities of very large demands. This is further illustrated by the cumulative 

relative frequency curves in Figures B.3 and B.4, which show that for these two items 

the observed and normal curves intersect around the 95% cumulative relative 

frequency / probability point, corresponding with the 95% cycle service level. 
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Figure B.3.  Cumulative frequency curves for item 1. 
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Figure B.4.  Cumulative frequency curves for item 2. 
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Note from a comparison of Figures B.1 (B.3) and B.2 (B.4) that a larger lead time 

results in a smoother distribution from bootstrapping. The same effect also results 

from more demand occurrences. 
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