

Lancaster University Management School
Working Paper

2005/027

A Deterministic Tabu Search Algorithm for the Capacitated
Arc Routing Problem (CARP)

Richard W Eglese and José Brandão

The Department of Management Science
Lancaster University Management School

Lancaster LA1 4YX
UK

© Richard W Eglese and José Brandão
All rights reserved. Short sections of text, not to exceed

two paragraphs, may be quoted without explicit permission,
provided that full acknowledgement is given.

The LUMS Working Papers series can be accessed at http://www.lums.lancs.ac.uk/publications/

LUMS home page: http://www.lums.lancs.ac.uk/

http://www.lums.lancs.ac.uk/publications/
http://www.lums.lancs.ac.uk/

A Deterministic Tabu Search Algorithm for the Capacitated Arc Routing

Problem (CARP)

José Brandão1* and Richard Eglese2
1. Dep. de Gestão, Escola de Economia e Gestão, Universidade do Minho, Largo do

Paço, 4704 -553 Braga, Portugal. email: sbrandao@eeg.uminho.pt

2. Department of Management Science, Lancaster University Management School,

Lancaster, LA1 4YX, United Kingdom. email: R.Eglese@lancaster.ac.uk

* Corresponding Author

Abstract

The Capacitated Arc Routing Problem (CARP) is a difficult optimisation problem in

vehicle routing with applications where a service must be provided by a set of

vehicles on specified roads. A heuristic algorithm based on Tabu Search is proposed

and tested on various sets of benchmark instances. The computational results show

that the proposed algorithm produces high quality results within a reasonable

computing time. Some new best solutions are reported for a set of test problems used

in the literature.

Keywords

Heuristics, Arc Routing, Tabu Search

1. Introduction

The Capacitated Arc Routing Problem (CARP) may be described as follows: consider

an undirected graph G = (V,E), with a set of required edges R ⊆ E. A vehicle must

service the required edges. A fleet of identical vehicles, each of capacity Q, is based at

a designated depot node. Each edge of the graph (vi, vj) incurs a cost cij whenever a

vehicle travels over it or services it. When a vehicle travels over an edge without

servicing it, this is referred to as deadheading. Each required edge of the graph (vi, vj)

has a demand quantity of qij associated with it. A vehicle route must start and finish at

the designated depot vertex and the total demand serviced on the route must not

 1

exceed the capacity of the vehicle, Q. The objective of the CARP is to find a

minimum cost set of vehicle routes where each required edge is serviced on one of the

routes.

In the instances tested, the objective is to minimise the total cost incurred on the

routes and does not include any costs relating to the number of routes or vehicles

required.

The graph or network on which the problem is based may be directed or undirected or

mixed, but in this paper only undirected graphs are considered. A good introduction to

and survey of the CARP and other arc routing problems may be found in Dror (2000).

In the CARP, each edge in the graph may model a road that can be travelled in either

direction and each vertex or node corresponds to a road junction. Applications of the

CARP arise in applications such as postal deliveries, household waste collection,

winter gritting, snow clearance and others, though in most practical applications there

are additional constraints (e.g. time window constraints or restrictions on certain

turns) that must also be considered.

The CARP is NP-Hard. Even when a single vehicle is able to service all the required

edges, the problem reduces to the Rural Postman Problem which has been shown to

be NP-Hard by Lenstra and Rinnooy Kan (1976). Additionally, Golden and Wong

(1981) showed that even 1.5-approximation for the CARP is NP-Hard. Exact methods

for the CARP have only been able to solve relatively small examples to optimality.

A discussion of different heuristic algorithms that have been proposed for the CARP

can be found in Dror (2000). These include simple constructive heuristics (e.g. Pearn,

1989 and 1991) and go on to include various metaheuristic algorithms. The most

successful algorithms that have been reported in the literature are based on different

metaheuristic models. We have chosen two of these with which to compare the results

of our proposed algorithm. The first is the Tabu Search based algorithm known as

“CARPET” which is described in Hertz et al (2000). The second is the approach using

memetic algorithms, which will be referred to as MA, described in Lacomme et al.

(2004).

 2

There are also other notable contributions that have recently been proposed for

solving the CARP. Beullens et al. (2003) describe a guided local search heuristic for

the CARP. Greistorfer (2002) also uses a Tabu Search based approach, but uses a

form of scatter search within his proposed heuristic. Hertz and Mittaz (2001) describe

a variable neighbourhood descent algorithm for the CARP. Amberg et al. (2000) have

also proposed a Tabu Search based algorithm; their approach makes use of

capacitated trees and can be applied to multi-depot problems.

The approach described in this paper is based on a Tabu Search algorithm. However it

differs from CARPET in many of the details of the implementation. In particular, the

algorithm presented here is deterministic and does not require the use of random

parameter values (which are also needed for MA), so making the results fully

reproducible.

The structure of the remainder of this paper is as follows. Section 2 describes the

methods used to obtain initial feasible solutions in our algorithm. Section 3 describes

the Tabu Search algorithm for solving the CARP and Section 4 describes the results

obtained on a set of test problems. Final conclusions are presented in Section 5.

2. Initial Solutions

Five different methods were used to obtain initial solutions. Each method provided a

feasible solution that could be used as an initial solution for the Tabu Search

algorithm. The methods were designed to be fast to compute and to provide a variety

of starting solutions for the Tabu Search algorithm to improve. The diversity provided

by the different starting solutions was found to be useful in ultimately finding high

quality solutions.

2.1 Method 1 – Cheapest edge

Each route is started with the required edge not yet served in a route that is nearest to

the depot node. If there is more than one required edge nearest to the depot node, then

the one that has the least cost is selected. The vehicle starts by travelling from the

 3

depot to the nearest vertex of that edge along the least cost path (unless the first

required edge is adjacent to the depot node). The route is built up by adding edges that

are feasible to the end of the route. The next edge to be added is the required edge that

has not yet been included in a route which is nearest to the end vertex of the last

included edge (and which has least cost in the event of ties), but excluding any edge

that closes the tour unless no others are feasible. If the next edge does not share a

vertex with the last edge, the route includes the vehicle deadheading edges on the

least cost path between the last edge and the next edge. When no remaining required

edges can be feasibly added to a route, the route is completed by the vehicle returning

to the depot along the least cost path from the end of the last serviced edge, and the

next route is started.

2.2 Method 2 – Dearest edge

This method operates in exactly the same way as Method 1, except that the highest

cost edge replaces the lowest cost edge at each selection point.

2.3 Method 3 – Insert

Each route is started as in Method 1 and a route is completed by adding the

deadheading path from the end of the first edge back to the depot. Then the next edge

to be chosen from the required edges not yet served and which is feasible in terms of

vehicle capacity is the one that increases the cost of the route by the least amount.

When considering an edge for insertion, the new edge may be inserted between any

pair of required edges already included in the route that are currently linked by a

deadheading path, or before the first edge or after the last edge if these edges are not

directly linked to the depot.

2.4 Method 4 – Connected components

This method requires the use of a procedure to solve the Rural Postman Problem

(RPP) for sets of connected required edges. The RPP is the problem of finding the

minimum cost single route to service a set of required edges in a graph and in general

is NP-Hard (Lenstra and Rinnooy Kan, 1976). However, when the required edges are

 4

connected, the RPP is polynomially solvable. A general heuristic for the RPP was first

proposed in Frederickson (1979), based on a procedure that is similar to Christofides’

heuristic for the undirected travelling salesman problem (Christofides, 1976). The

method has been described and used by several researchers; our version follows the

version described in Pearn and Wu (1995) (though in that paper it is referred to as

“Christofides et al. algorithm”).

Frederickson’s algorithm is described in general here as it is also used within the Tabu

Search algorithm to improve individual routes. In what follows, the set of required

edges ER ⊆ R refers to the required edges in a connected component for this initial

solution method, or the required edges serviced on one particular route when used

within the Tabu Search algorithm. Frederickson’s algorithm may be described as

follows:

1. Let GR = (VR, ER) be the subgraph of G containing the required edges ER and the

corresponding set of nodes VR. Let C1, ..., Cc denote the subgraphs of GR that contain

the connected components of ER. Let GC be the graph created by considering each

component as a node. The cost of an edge (i, j)∈GC is defined as d(i, j) = d(Ci, Cj) =

minx, y {d(x, y) - ux - uy}, where x, y ∈ V , x ∈ C1, y ∈ C2 and ux = - η (deg(x) - 2).

d(x,y) is the cost of the minimum cost path from x to y in the original graph G and

deg(x) is the degree of node x in the original graph G.

2. Determine the minimum cost spanning tree in GC. Let ET be the set of edges from

the minimum cost spanning tree solution.

3. Considering the graph GR ∪ ET find a minimum cost perfect matching of the odd

degree vertices. Let EM be the edges of the matching.

4. Find an Eulerian tour in the graph GR ∪ ET ∪ EM. This tour is the RPP solution.

 Pearn and Wu show how the results can be influenced by the use of a parameter η. In

our implementation, the algorithm is executed with η = 0, then η = 1 and the better

solution is chosen.

Note that Frederickson’s heuristic includes finding a minimum cost perfect matching

as one of the steps. This may be achieved optimally in polynomial time using the

approach described in Edmonds and Johnson (1973). However this complex

 5

algorithm was not available and so a simple greedy heuristic was used for the

matching step, which can be described as follows:

Step 0. Set every node as non-included.

Step 1. Select the edge with the minimum cost among all the edges of the graph,

linking two non-included nodes. Set the two end vertices of this edge as included.

Step 2. Repeat step 1 until all the vertices are included.

If the number of nodes were less than or equal to six, then the heuristic was not

applied and the optimum solution was found by complete enumeration. Tests were

carried out to see what effect the use of this procedure had on the solution to the

CARP by finding the optimum solution to the matching problem by complete

enumeration in all cases. As expected, the complete enumeration method was much

slower than the procedure using the heuristic, but surprisingly, the average solutions

to the CARP were worse than when the heuristic was used. We therefore retained the

heuristic procedure for solving the matching problem.

Thus for each connected component, a route is constructed using Frederickson’s

heuristic, ignoring the capacity constraints. In the special case where more than two

required edges are adjacent to the depot node, the connected component is split again

into connected components in which no more than two required edges connect to the

depot. The route is modified into one starting and ending at the depot by starting with

a required edge connected to the depot if one exists, otherwise adding the least cost

route from the depot to a required edge in the connected component, following the

constructed route until the last required edge in the connected component has been

included and then finally joining the route to the depot by linking back to the depot

along the least cost path. If any route is infeasible according to the capacity constraint,

it is split into smaller routes in the following way. Starting from the depot, the route is

followed until the last feasible required edge has been included. The route is then

completed by adding the least cost path from the end of this edge back to the depot.

The next route is started by adding the least cost path from the depot to the next

required edge that is to be served on the route that had been created. The process

finishes when all required edges in each connected component have been included in

a route.

 6

2.5 Method 5 – Path Scanning

This method is based on the procedure proposed by Golden et al (1983). Each route is

extended by one required edge at each step using a variety of selection rules.

Each route starts at the depot node. Let S be the set of required edges closest to the

end of the current route that are not yet served and do not exceed the capacity of the

current route. If S is empty then complete the current route using the shortest

deadheading path from the end of the current route to the depot node and start a new

route. If S is not empty, exclude from S any edges that would close the route unless

that would make S empty. Select a required edge in S to be the next edge in the route

to be serviced according to the current rule and extend the current route to the vertex

at the end of the selected edge.

Five rules are used to determine the next required edge, e, in the route to be serviced:

1) maximise the distance to the depot, 2) minimise the distance to the depot, 3) use

rule 1 if the vehicle is less than half-full, else use rule 2, 4) maximise the ratio

d(e)/c(e), where d(e) and c(e) are, respectively, the demand and the cost of e, 5)

minimise this ratio. Each criterion gives rise to one solution and the best of the five is

chosen.

Some results to show the effectiveness of these initial solution methods are given in

Section 4.

3. The Tabu Search Algorithm

3.1 Neighbourhood Moves

The Tabu Search algorithm (TSA) is based on two types of neighbourhood move. The

first is an insertion and the second is a swap.

In an insertion move, a candidate edge is removed from its current route and a trial

insertion is made in any other route between any two serviced edges that are not

 7

adjacent, but are linked by a deadheading path of edges. The trial insertion considers

both directions for the edge to be traversed when inserted in the new route.

The swap move is similar. Two candidate edges are selected from two different

routes, each containing deadheading paths. The candidate edges are removed from

their original routes and inserted in the other routes between any two serviced edges

that are not adjacent, but are linked by a deadheading path of edges.

The trial move chosen depends on the effect of the move on the objective function

defined in the next section.

3.2 Objective function

The objective function to be minimised by the TSA includes the total cost of each

route, i, plus a penalty cost Pw(i), where P is a penalty term and w(i) = max(x(i)-Q,0),

and where x(i) is the sum of the demands on the edges serviced in route i.

The parameter P is set at 1 initially, and is then halved if all the solutions are feasible

for ten consecutive iterations; it is doubled if all the solutions are infeasible for ten

consecutive iterations.

3.3 Admissibility of moves

A conventional tabu list is constructed to prevent the reversal of accepted moves for

the next t iterations, where t is the length of the tabu list. The length of the tabu list is

fixed and after some experimentation has been set to N/2 in Phase 1 of the TSA and

N/6 in Phase 2, where N is the number of required edges. The tabu restriction may be

overridden if the move will produce a solution that is better than what has been found

in the past. This is referred to as the aspiration criterion.

In the TSA, a trial move is regarded as admissible

i) if it is not currently on the tabu list

ii) or if it is tabu and infeasible, but the cost of the resulting solution is better than the

best infeasible solution yet found

iii) or if it is tabu and feasible, but the cost of the resulting solution is better than the

best feasible solution yet found.

 8

At each iteration in the TSA, the best admissible solution from the candidate moves is

selected.

3.4 Route improvement procedure

At each iteration, a procedure is applied to the two individual routes that have been

changed to try to reduce their costs further. Improving an individual route is

equivalent to finding the least cost route, starting from the depot and then serving all

the required edges included for service in the route and returning to the depot. This is

done by using Frederickson’s heuristic, which was described in section 2.4.

3.5 Outline of TSA

The operation of the TSA can now be summarised in the following steps. In this

description:

FS is the frequency of the swap move (FS = 5 in Phase 1 and FS = 3 in Phase 2).

1. Initialise:

Set current solution S to be an initial solution and let f(S) be the total cost of S.

Set best feasible or infeasible solution SB = S

Set best feasible solution SBF = S, if S is feasible; otherwise set SBF = ∞

Set iteration counter, k = 0

Set number of iterations since best solution before Intensification step, kB = 0

Set number of iterations since best feasible solution, kBF = 0

Set number of consecutive iterations that solution is feasible, kF = 0

Set number of consecutive iterations that solution is infeasible, kI = 0

Set number of iterations since best solution in total, kBT = 0

Set tabu list to be empty.

2. Find best neighbourhood move:

Using all required edges as a candidate list, for each admissible insertion move, S’,

find f(S’);

If f(S’) < f(SB), then accept S’, update tabu list and go to Step 3.

 9

If k is a multiple of FS, then for each admissible swap move, S’, find f(S’);

If f(S’) < f(SB), then accept S’, update tabu list and go to Step 3.

Find the best move from the admissible trial moves evaluated and update the current

solution S to S’ with cost f(S’) and update tabu list

3. Improve changed routes:

For the two routes that have been changed, apply the route improvement procedure

using Frederickson’s heuristic to try to find further cost reductions, resulting in

solution S = S’’

4. Update:

If S’’ is feasible and f(S’’) < f(SB) then apply the route improvement procedure using

Frederickson’s heuristic to all the routes (except the two routes that have just been

improved in Step 2) resulting in solution S’’’. Set SBF = S’’’, S’’ = S’’’ and

kB = kBF = kBT = 0.

If f(S’’) < f(SB) Then set SB = S'' and kB = kBT = 0.

Set k = k + 1, kB = kB + 1, kBF = kBF + 1, kBT = kBT + 1.

If k is a multiple of 10, then if kF = 10, then set P = P/2 else if kI = 10 then set P = 2P;

If kF = 10 or kI = 10 then recalculate f(SB) with the new value of P and set kF = kI = 0.

5. Intensification:

If kB = 5N, then if SBF is feasible set S = SBF else set S = SB, set kB = 0, P =1, kF = 0,

kI = 0, recalculate f(SB)with the new value of P, and empty tabu list.

(Note that the changes to the parameter values and emptying the tabu list at this point

means that the sequence of solutions following SB is different to the sequence

generated previously.)

6. Stopping criterion:

If (k = 500 ⎡√N⎤ and kBF ≥ 6N) or kBT = 10N then stop, otherwise go to 2.

Two versions of the TSA have been applied to the experimental set of problems. In

Version 1, the initial solution is taken from the Path Scanning method as described in

 10

Section 2.5, because this method gave the best results on average for the initial

solution methods tested. This provides a good initial solution quickly. In Version 2,

the TSA is applied to each of the four initial solutions described in Section 2; then in

Phase 2, the TSA is finally applied once more to the best solution from Phase 1.

Version 2 requires a greater computational time, but has the potential to provide better

solutions than Version 1.

4. Results of Experiments

Computational experiments have been conducted on three sets of CARP problems

that have been studied in the literature. The first set contains 23 instances originally

generated by De Armon (1981) and discussed by Golden et al. (1983). The second set

is from Benavent et al. (1992) containing 34 instances defined on 10 different graphs;

for each graph different instances were created by changing the capacity of the

vehicles. In both the first two sets of problems, all the edges in the graphs are required

edges. The final set was generated by Eglese based on data from a winter gritting

application in Lancashire (Eglese, 1994 and Eglese and Li, 1996). There are 24

instances based on two graphs where the different instances have been created by

changing the set of required edges and the capacities of the vehicles. Because of the

application from which these instances were generated, the demand quantities for the

required edges are proportional to their costs.

The full data for these instances can be obtained from

http://www.uv.es/~belengue/carp.html.

Results from using the five initial solution methods are given in Table 1. The table

shows the average solution value over all instances in each set. It will be seen that the

quality of these initial solutions is poor compared to the final solutions generated by

the TSA.

[Insert Table 1 about here]

The results are presented in Tables 2, 3 and 4. For each instance, an indication of the

size of the graph is given, where n is the number of vertices, N is the number of

required edges and M is the total number of edges. The tables show the best known

results from the literature. The column headed “Our best” gives the result from all

 11

runs of our algorithm that included trials of different swap frequencies. The columns

headed “CARPET” give the results reported in Hertz et al (2000). The run times have

been divided by 7 to give an approximate comparison between the times on the

original computer used by the authors (SGI Indigo2 at 195 MHz) and our algorithm

that was coded in C and run using a Pentium Mobile at 1.4 GHz. The columns headed

“MA” give the results reported by Lacomme et al (2004), using a Pentium III at 1

GHz. The computing times in their paper have been divided by 1.5 to make them

approximately equivalent to the times we recorded for our algorithm. The best results

include those reported by Buellens et al. (2003).

[Insert Tables 2, 3 and 4 about here]

In Tables 2 and 3, if the best known or our best solution is optimal then it is shown in

bold. Optimality can be proved for many of the problems in the first two sets using

the lower bounding procedures described in Belenguer and Benavent (2003).

However these lower bounding procedures still leave a gap between the lower bound

and the best known solutions for the larger problems in the third set. Recently Ahr

(2004) has found improvements to some of these lower bounds and the column LB in

Table 4 gives the best lower bounds found so far for these problems. Note that the

lower bounds reported for the second set of test problems in Belenguer and Benavent

(2003) differ from those reported in Hertz et al. (2000) and Lacomme et al. (2004).

This is due to a different cost being used for servicing the required edges. As this is a

fixed cost incurred by any solution, the consequence is just that a constant term is

needed to adjust the results. Details of the adjustments needed are provided in

Belenguer and Benavent (2003).

The results show that the TSA is capable of providing high quality results. Using the

best results from all trials of the TSA with varying swap frequencies and running

times, “our best” solutions match the best solutions found for all instances in the first

set, all instances except the last one in the second set and in the third set of large

instances, “our best” solutions are at least as good as the best published results in all

24 instances and in 17 of these instances, a new best solution has been found using the

TSA.

 12

However in order to properly evaluate the TSA, we should examine the results of

Version 1 and Version 2 where the parameters have been fixed. In our computational

experiments, we have followed the practice of other researchers by halting the

programme when a known optimal solution has been found. As expected, Version 1 is

faster and the average solution over all the instances in each set only exceeds the best

known solution or lower bound on the optimal solution (for the third set) by 0.47%,

1.13% and 3.39% respectively for the three problem sets. Version 2 requires longer,

but the average solution over all the instances in each set exceeds the best known

solution or lower bound on the optimal solution (for the third set) by 0.12%, 0.35%

and 2.59% respectively.

Comparison can be made with CARPET for the first two sets of problems. This shows

that the average solution values given by CARPET and Version 1 are very similar, but

Version 1 is much faster over all the problems. Version 2 gives slightly better

solutions on average than CARPET, finds more best solutions and is still significantly

faster.

Comparison can be made with MA for all three sets of problems. Version 1 is much

faster than MA, but the results are not quite so good. Version 2 gives results that are

very close to those provided by MA. For the first two sets of problems, the computing

times for Version 2 are significantly lower than MA. For the final set of problems, the

average quality of solution is slightly better for Version 2 and the computing time is

lower than required for MA.

Further experiments were carried out to see whether it was worth using five different

initial solutions as required by Version 2. The parameters were changed to allow a

similar total computing time to Version 2, but starting from a single initial solution.

The results were inferior to those given by Version 2.

 13

5. Conclusions

The paper has demonstrated that the TSA is able to provide high quality solutions to

the Capacitated Arc Routing Problem in a reasonable computing time. Several new

best solutions are provided for the Eglese set of test problems that have been studied

by other researchers.

The results presented demonstrate the good performance of the TSA compared to

CARPET and the memetic algorithms approach (MA) of Lacomme et al. (2004). In

addition, the TSA is a deterministic algorithm, so all the results are fully reproducible.

Both CARPET and MA include several random elements, so different runs of these

algorithms may produce different results. CARPET is also complex in the subroutines

used within the algorithm. MA is also a complex algorithm and although it has the

potential to be easily extended to other problems, it requires many parameters to be

set in comparison to the TSA.

The guided local search approach of Beullens et al. (2003) describes an alternative

deterministic algorithm for solving the CARP. Their approach also provides high

quality solutions in a limited computation time. Their paper reports good results for

the DeArmon and the Benavent et al. test problems, but they do not provide any

results for the Eglese problems.

This paper demonstrates that a relatively straightforward implementation of Tabu

Search (without any long term memory component or any other procedures to

encourage diversification apart from different starting solutions) is able to produce

high quality solutions to the CARP in an efficient manner. Several new best solutions

are reported for the Eglese set of test problems.

 14

References

Ahr D. ,2004. Contributions to Multiple Postmen Problems. Ph.D. Dissertation,

Ruprecht-Karls-Universität, Heidelberg.

Amberg A., Domschke W. and Voss S., 2000. Multiple center capacitated arc routing

problems: A Tabu search algorithm using capacitated trees. European Journal of

Operational Research, 124, 360-376.

Benavent E., Campos V., Corberán E. and Mota E., 1992. The capacitated arc routing

problem. Lower bounds. Networks, 22, 669-690.

Belenguer J.M. and E. Benavent, 2003. A cutting plane algorithm for the capacitated

arc routing problem. Computers and Operations Research, 30(5), 705-728.

Beullens P. Muyldermans L., Cattrysse D. and Van Oudheusden D., 2003. A guided

local search heuristic for the capacitated arc routing problem. European Journal of

Operational Research, 147, 629-643.

Christofides N., 1976. Worst-case analysis of a new heuristic for the traveling

salesman problem. Report no. 388, Graduate School of Industrial Administration,

Carnegie Mellon University, Pittsburgh.

DeArmon J. S., 1981. A comparison of heuristics for the capacitated Chinese postman

problem. Master’s Thesis, University of Maryland, College Park, MD.

Dror M. (ed), Arc Routing. Theory, solutions and applications. Kluwer Academic

Publishers, Boston, 2000.

Edmonds J. and E.L. Johnson, 1973. Matching, Euler Tours and the Chinese Postman

Problem. Mathematical Programming 5, 88-124.

Eglese R.W., 1994. Routing winter gritting vehicles. Discrete Appl. Math., 48(3),

231-244.

Eglese R.W. and L.Y.O Li, 1996. A tabu search based heuristic for arc routing with a

capacity constraint and time deadline. In: I.H. Osman and J.P. Kelly (eds.),

Metaheuristics: theory and applications, Kluwer, 633-650.

Frederickson G.N., 1979. Approximation algorithms for some postman problems. J.

ACM 26 (3), 538-554.

Golden, B.L. and R.T. Wong, 1981. Capacitated arc routing problems. Networks, 11,

305-315.

Golden B.L, J.S. DeArmon and E.K. Baker, 1983. Computational experiments with

 15

algorithms for a class of routing problems. Computers and Operations Research,

10(1), 47-59.

Greistorfer P., 2002. A tabu search metaheuristic for the arc routing problem. Preprint

submitted to Elsevier Science.

Hertz A., G. Laporte and M. Mittaz, 2000. A Tabu Search Heuristic for the

Capacitated Arc Routing Problem. Operations Research, 48(1), 129-135.

Hertz A. and M. Mittaz, 2001. A variable neighborhood descent algorithm for the

undirected capacitated arc routing problem. Transportation Science, 35(4), 425-434.

Lacomme P., C. Prins and W. Ramdane-Cherif, 2004. Competitive Memetic

Algorithms for Arc Routing Problems. Annals of Operational Research, 131(1-4),

159-185.

Lenstra, J.K. and A.H.G. Rinnooy Kan, 1976. On General Routing Problems.

Networks 6, 273-280.

Li L.Y.O. and R.W.Eglese, 1996. An interactive algorithm for vehicle routing for

winter-gritting. Journal of the Operational Research Society, 47, 217-228.

Pearn W.L., 1989. Approximate solutions for the capacitated arc routing problem.

Computers and Operations Research, 16(6), 589-600.

Pearn W.L., 1991. Augment-insert algorithms for the capacitated arc routing problem,

Computers and Operations Research, 18(2), 189-198.

Pearn W.L. and Wu T.C., 1995. Algorithms for the rural postman problem,

Computers and Operations Research, 22(8), 819-828.

 16

Table 1 – Average solution values from the initial solution methods

 Cheapest Dearest Insert Connected

components
Path

scanning
De Armon 317.0 316.2 301.0 328.2 287.0

Benavent et al. 436.5 429.7 441.7 429.0 408.8

Eglese 13061.4 12342.7 12640.8 12205.1 11407.6

 17

Table 2 - Problems from De Armon (1981)

CARPET MA Version 1 Version 2
Nº n N Best

Known
Our
Best Cost CPU

(s)*
Cost CPU

(s)**
Cost CPU

(s)***
Cost CPU

(s)***

1 12 22 316 316 316 2.4 316 0.0 316 0.0 316 0.0
2 12 26 339 339 339 4.0 339 0.3 339 0.1 339 0.2
3 12 22 275 275 275 0.1 275 0.0 275 0.0 275 0.0
4 11 19 287 287 287 0.1 287 0.0 287 0.0 287 0.0
5 13 26 377 377 377 4.3 377 0.1 377 0.4 377 0.3
6 12 22 298 298 298 0.7 298 0.1 298 0.0 298 0.1
7 12 22 325 325 325 0.0 325 0.1 325 0.0 325 0.0
10 27 46 348 348 352 47.2 350 26.5 350 1.2 350 12.3
11 27 51 303 303 317 41.8 303 4.7 305 2.4 305 10.7
12 12 25 275 275 275 1.2 275 0.1 275 0.1 275 0.0
13 22 45 395 395 395 1.8 395 0.9 403 0.3 395 0.1
14 13 23 458 458 458 16.0 458 6.5 462 0.9 458 0.1
15 10 28 536 536 544 1.9 536 4.9 544 0.1 536 0.7
16 7 21 100 100 100 0.4 100 0.1 100 0.0 100 0.0
17 7 21 58 58 58 0.0 58 0.0 58 0.0 58 0.0
18 8 28 127 127 127 1.3 127 0.1 127 0.1 127 0.1
19 8 28 91 91 91 0.0 91 0.1 91 0.0 91 0.0
20 9 36 164 164 164 0.2 164 0.1 164 0.0 164 0.0
21 8 11 55 55 55 0.2 55 0.0 55 0.0 55 0.0
22 11 22 121 121 121 7.4 121 0.2 123 0.6 123 0.8
23 11 33 156 156 156 0.9 156 0.1 156 0.0 156 0.1
24 11 44 200 200 200 2.6 200 2.3 200 0.0 200 0.0
25 11 55 233 233 235 26.6 233 34.1 235 0.6 235 5.5

Average 253.8 253.8 255.0 7.0 253.9 3.5 255.0 0.3 254.1 1.4
No. optimal 22 22 19 - 22 - 16 - 19 -

No. best 23 23 19 - 22 - 16 - 20 -
Av. deviation (%) 0.00 0.47 - 0.04 - 0.47 - 0.12 -

* The original value has been divided by 7 (SGI Indigo2 at 195 MHz).

** The original value has been divided by 1.5 (Pentium III at 1 GHz).

*** We used a Pentium Mobile at 1.4 GHz

Optimal solutions are in bold.

 18

Table 3 - Problems from Benavent et al. (1992)

CARPET MA Version 1 Version 2
Name n N Best

Known
Our
Best Cost CPU

(s)
Cost CPU

(s)
Cost CPU

(s)
Cost CPU

(s)
1A 24 39 173 173 173 0.0 173 0.0 177 0.1 173 0.0
1B 24 39 173 173 173 7.2 173 5.3 179 0.3 179 1.7
1C 24 39 245 245 245 72.3 245 19.1 245 0.9 245 13.2
2A 24 34 227 227 227 0.1 227 0.1 227 0.0 227 0.1
2B 24 34 259 259 260 10.1 259 0.1 265 0.2 259 0.7
2C 24 34 457 457 494 24.5 457 14.5 462 2.3 457 14.7
3A 24 35 81 81 81 0.6 81 0.1 81 0.1 81 0.1
3B 24 35 87 87 87 2.1 87 0.0 87 0.0 87 0.6
3C 24 35 138 138 138 32.2 138 18.8 138 0.0 138 0.4
4A 41 69 400 400 400 21.9 400 0.5 400 0.1 400 0.1
4B 41 69 412 412 416 58.6 412 0.8 412 0.5 412 2.2
4C 41 69 428 428 453 54.2 428 12.7 444 1.3 434 11.3
4D 41 69 530 530 556 180.8 541 68.9 536 8.3 536 26.7
5A 34 65 423 423 423 2.9 423 1.3 423 0.3 423 0.2
5B 34 65 446 446 448 32.0 446 0.7 446 0.6 446 0.0
5C 34 65 474 474 476 41.3 474 67.3 478 1.0 474 9.7
5D 34 65 579 577 607 173.5 583 60.5 583 8.7 579 28.2
6A 31 50 223 223 223 3.0 223 0.1 223 0.2 223 0.3
6B 31 50 233 233 241 20.9 233 44.9 235 0.8 233 7.0
6C 31 50 317 317 329 66.0 317 34.8 317 5.3 317 28.0
7A 40 66 279 279 279 5.1 279 1.3 283 0.9 283 6.2
7B 40 66 283 283 283 0.0 283 0.3 283 0.2 283 1.4
7C 40 66 334 334 343 94.0 334 67.5 334 4.8 334 29.4
8A 30 63 386 386 386 3.0 386 0.5 389 0.8 386 1.1
8B 30 63 395 395 401 63.1 395 6.7 421 0.8 395 3.3
8C 30 63 521 521 533 114.1 527 47.7 534 7.1 530 19.2
9A 50 92 323 323 323 22.1 323 12.2 328 3.2 323 0.2
9B 50 92 326 326 329 46.4 326 19.6 326 2.5 326 0.7
9C 50 92 332 332 332 43.7 332 47.5 334 4.7 332 6.2
9D 50 92 391 391 409 273.5 391 140.7 399 8.9 396 44.3
10A 50 97 428 428 428 4.3 428 17.0 428 3.6 428 3.2
10B 50 97 436 436 436 14.3 436 3.1 440 5.1 436 4.2
10C 50 97 446 446 451 72.4 446 11.5 448 4.8 446 3.1
10D 50 97 526 528 544 121.0 530 143.3 536 9.2 529 58.1

Average 344.4 344.4 350.8 49.5 345.2 25.6 348.3 2.6 345.6 9.6
No. optimal 23 23 16 - 23 - 12 - 20 -

No. best 33 33 17 - 30 - 15 - 27 -
Aver. deviation (%) 0 1.86 - 0.23 - 1.13 - 0.35 -

Optimal solutions are in bold.

 19

Table 4 - Problems from Eglese

MA Version 1 Version 2
Name n N M LB Best

known
Our
Best Cost CPU

(s)
Cost CPU

(s)
Cost CPU

(s)
E1-A 77 51 98 3516 3548 3548 3548 49.5 3548 4.5 3548 30.1
E1-B 77 51 98 4436 4498 4498 4498 46.3 4553 5.7 4511 32.6
E1-C 77 51 98 5481 5595 5595 5595 47.5 5633 6.4 5595 38.5
E2-A 77 72 98 4994 5018 5018 5018 101.7 5226 2.5 5018 41.6
E2-B 77 72 98 6271 6340 6317 6340 102.3 6368 13.8 6335 84.2
E2-C 77 72 98 8155 8395 8335 8415 86.4 8444 15.3 8439 92.1
E3-A 77 87 98 5869 5898 5898 5898 161.3 6025 18.4 5912 92.1
E3-B 77 87 98 7649 7816 7777 7822 170.2 7814 21.1 7789 133.2
E3-C 77 87 98 10119 10369 10305 10433 137.6 10313 29.5 10313 148.2
E4-A 77 98 98 6378 6461 6456 6461 194.6 6476 14.2 6476 114.3
E4-B 77 98 98 8839 9021 9000 9021 208.6 9111 28.2 9088 177.7
E4-C 77 98 98 11376 11779 11601 11779 168.3 11802 31.1 11663 191.2
S1-A 140 75 190 4992 5018 5018 5018 139.1 5273 3.6 5072 76.7
S1-B 140 75 190 6201 6435 6388 6435 139.2 6435 13.8 6435 83.3
S1-C 140 75 190 8310 8518 8518 8518 110.4 8672 16.0 8526 100.1
S2-A 140 147 190 9780 9995 9956 9995 582.9 10190 75.3 10107 479.4
S2-B 140 147 190 12886 13174 13165 13174 507.0 13263 94.5 13200 534.3
S2-C 140 147 190 16221 16715 16524 16795 498.0 16587 101.9 16587 563.5
S3-A 140 159 190 10025 10296 10260 10296 713.7 10569 52.1 10433 593.1
S3-B 140 159 190 13554 14028 13807 14053 709.3 14030 96.8 13956 611.0
S3-C 140 159 190 16969 17297 17234 17297 582.9 17498 116.7 17403 745.5
S4-A 140 190 190 12027 12442 12341 12442 1025.1 12624 129.9 12476 851.0
S4-B 140 190 190 15933 16531 16462 16531 953.5 16796 150.7 16514 1019.9
S4-C 140 190 190 20179 20832 20591 20832 996.7 20719 218.5 20719 1165.8

Average 9590 9834.1 9775.5 9842.3 351.4 9915.4 52.5 9838.1 333.3
No. best - 7 24 7 - 1 - 3 -

Average deviation to
the LB (%) - 2.55 1.93 2.63 - 3.39 - 2.59 -

New best solutions are in italic.

 20

	Abstract
	References
	Version 1
	Cost
	Average
	No. optimal
	No. best

	Name
	Version 1
	Cost

	1A
	Average
	No. optimal
	No. best

	Name
	Cost
	Cost
	Cost

	E1-A

