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Abstract

In this paper we first derive second order stochastic dominance option

bounds from concurrently expiring options. We show that these option

bounds are given by piecewise constant pricing kernels. When these option

bounds are violated there are second order arbitrage opportunities. We

then establish the way to construct arbitrage portfolios to make profits

from these opportunities.
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Introduction

Since Perrakis and Ryan (1984), Ritchken (1985), and Levy (1985) derived

the second order stochastic dominance (hereafter SSD) option bounds, there

has developed a rich literature on this topic. For example, Ritchken and Kuo

(1989) derived higher order stochastic dominance option bounds. Basso and

Pianca (1997) and Mathur and Ritchken (2000) worked on decreasing absolute

(relative) risk aversion (hereafter DARA (DRRA)) bounds.

Ryan (2003) tried to improve the SSD option bounds by using the observed

prices of concurrently expiring options. However, he used only one observed

option at a time because he wrongly concluded that “only the two options with

exercise prices closest to the initial option provide binding information.”1

In this paper we improve the SSD option bounds by using concurrently

expiring options. We use a new technique presented by Huang (2004a), which

takes the advantage of the distinctive feature of options’ payoff functions. We

show that given the prices of the underlying stock and n concurrently expiring

options, the option bounds are given by piecewise constant pricing kernels.

As explained by Ryan (2003), risk version implies a second order of arbitrage,

interpreted as conditional expected return comparison, rather than first order
1The option bounds he derived using one observed option price at a time is suboptimal.

This can be seen by examining his numerical results. Some of these results are even worse

than the first order stochastic dominance option bounds obtained by Bertsimas and Popescu

(2002).
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arbitrage which involves the comparison of realized returns. When the derived

SSD option bounds are violated, there are second order arbitrage opportunities

in the market. To take advantage of these opportunities we derive the arbitrage

portfolios in this paper.

This paper is closely related to Huang (2004b, 2004c). Huang (2004b, 2004c)

improved higher order stochastic dominance option bounds and DARA (DRRA)

option bounds by using the observed prices of concurrently expiring options.

The methodology used in this paper is the same as the one used there.

This work is also related to the recent important works by Cochrane and Saa-

Requejo (2000) and Bernardo and Ledoit (2000). Cochrane and Saa-Requejo

(2000) derived option bounds using restrictions on the volatility of the pricing

kernel, while Bernardo and Ledoit (2000) derived option bounds using restric-

tions on the deviation of the pricing kernel from a benchmark pricing kernel.

Other related works include Lo (1987), Grundy (1991), and Constantinides and

Zariphopoulou (1999, 2001) who all derived option bounds under different con-

ditions.

The structure of the paper is as follows: In Section 1 we introduce the

problem. In Section 2 we discuss the case where there is only one observed

option. In Section 3 we discuss the case where there are two observed options.

In section 4 we discuss the general case where we have n observed options. In

Section 5 we derive the arbitrage portfolios which will be used to make profits

when the option bounds are violated. The final section concludes the paper.
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1 The SSD Option Bound Problem

We assume that there is a stock in an economy on which option contracts are

written. We do not have sufficient information to obtain the exact prices of the

options. Thus we are interested in deriving option bounds. Assume the second

order stochastic dominance rule applies in the economy. Also assume that we

observe n options which will expire at the same time as those options we are

interested in.

1.1 In a Discrete State Space

Ryan (2003) modeled the problem in a discrete state space as follows. Assume

a two-date economy starts at time 0 and will end at time 1. Assume there are

Λ states of the economy at time 1 indexed by j = 1, 2, ..., Λ. The probability

of state j is πj . Denote the value of the stock in state j by sj . Assuming

sj , j = 1, ..., Λ, are in an ascending order. The state discount factor (pricing

kernel) is denoted by d; its value in state j is dj , j = 1, ..., Λ. Let xj = dj −dj+1,

j = 1, 2, ..., Λ− 1 and xΛ = dΛ. Let yj = (
∑j

1 πi)xj , j = 1, ..., Λ.

Assume there are n observed options indexed by 1, ..., n expiring at the same

time as the target option. The jth observed option has strike price Ki while the

target option (which we have to price) has strike price X . Denote the payoff of

the ith observed option in state j by ci
j . Denote the payoff of the target option

in state j by cX
j . For k = 1, ..., n and j = 1, ..., Λ, write

c̄X
j =

j∑

1

cX
i πi/

j∑

1

πi, s̄j =
j∑

1

siπi/

j∑

1

πi, c̄k
j =

j∑

1

ck
i πi/

j∑

1

πi.
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Then the SSD option bound problem with n observed options is as follows:2

Problem P1 (P2)

C∗∗ = min (or max)
Λ∑

j=1

c̄X
j yj

s.t.
Λ∑

j=1

yj = B0

Λ∑

j=1

s̄jyj = S0

Λ∑

j=1

c̄i
jyj = ci

0, i = 1, ..., n

yj ≥ 0, j = 1, ..., Λ

Its dual problem is

Problem D1 (D2)

max (ormin) CX
0 = α1B0 + α2S0 +

n∑

i=1

αi+2c
i
0

s.t.

α1 + α2s̄j +
n∑

i=1

αi+2c̄
i
j ≤ (or ≥) c̄X

j , j = 1, ..., Λ

1.2 In a Continuous State Space

In a continuous state space, the presentation is simpler. Let S denote time 1

value of the stock. Let φ(S) denote the pricing kernel. Denote time t value of

a contingent claim by c(S), which is dependent on S; denote its time 0 value

2See Ryan (2003) for detailed explanations.
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by c0. Then we have c0 = B0E(φ(S)c(S)), which is obviously dependent on S0.

Assume the lowest possible time 1 value of the stock is s1.

Since second order stochastic dominance rule applies we have a positive and

decreasing pricing kernel. Thus the problem is:

max B0E(φ(S)cX (S)),

where cX(S) is the payoff of an option with strike price X at time t. subject to

E(φ(S) = 1,

B0E(φ(S)S) = S0,

B0E(φ(S)ci(S)) = ci
0, i = 1, 2, ...n,

where φ(S) is positive and decreasing.

To solve the option bound problem, we first solve a similar but more gen-

eral problem in which we assume that not only the second order stochastic

dominance rule applies but also the pricing kernel is bounded from above and

below.

We will show in this paper that under this condition, the option bounds are

given by a piecewise constant pricing kernel, where the number of segments of

the pricing kernel depends on the number of observed option prices.

Moreover, we will see that for an even number of observed option prices the

pricing kernel that gives the option bounds has a certain pattern while for an

odd number of observed option prices the pricing kernel that gives the option

bounds has a different pattern. Thus in order to explain the solutions more
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clearly we start with the two cases where we have only one or two observed

options. Then we explore the general case where we have n observed options.

In the rest of the paper we will frequently use conditional expectations. We

use the following notation to denote these expectations:

E(f(S)|a < S < b) =
∫ b

a

f(S)p(S)dS

Ê(f(S)|a < S < b) = E(f(S)|a < S < b)/Pr(a < S < b)

where p(S) is the true probability density and Pr denotes probability, i.e.,

Pr(a < S < b) =
∫ b

a

p(S)dS.

2 Option Bounds With One Observed Option

In this section we examine the case where we have only one observed option.

This case has been studied by Ryan (2003) we derive it using our new method.

Before we proceed, we introduce two lemmas.

Lemma 1 (FSS (1999)) Assume two pricing kernels give the same stock price.

If they intersect twice, then the pricing kernel with fatter tails gives higher prices

of convex-payoff contingent claims written on the stock.

Proof: See Huang (2004a) or FSS (1999).

Lemma 2 Assume two pricing kernels give the same prices of the underlying

stock and an option with strike price K. If they intersect three times, then the
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pricing kernel with fatter left tail will give higher [lower] prices for all options

with strike prices below [above] K than the other.

Proof: See Huang (2004a).

We now derive the option bounds under the assumption that the pricing

kernel is decreasing in the underlying stock price S its value is bounded above

and below.

Lemma 3 Assume the pricing kernel is decreasing in S and bounded above by

φ and below by φ. Assume the prices of a unit bond, the underlying stock, and

an option with strike price K are B0, S0, and c0 respectively.

• The upper bound for an option with strike price below K is given by the

pricing kernel φ∗∗
1 (S) = φ, S < sl; φ∗∗

1 (S) = a1, sl < S < su; φ∗∗
1 (S) = φ,

S > su, where a1, sl, and su are to be determined such that φ ≥ a1 ≥ φ,

φ Pr(S < sl) + a1 Pr(sl < S < su) + φ Pr(S > su) = 1

φE(S|S < sl) + a1E(S|sl < S < su) + φE(S|S > su) =
S0

B0

φE(c(S)|S < sl) + a1E(c(S)|sl < S < su) + φE(c(S)|S > su) =
c0

B0

• The lower bound for an option with strike price below K is given by the

pricing kernel φ∗
1(S) = b1, S < sl; φ∗

1(S) = b2, S > sl, where b1, b2, and

sl are to be determined such that b1 ≥ b2,

b1 Pr(S < sl) + b2 Pr(S > sl) = 1

b1E(S|S < sl) + b2E(S|S > sl) =
S0

B0

b1E(c(S)|S < sl) + b2E(c(S)|S > sl) =
c0

B0
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• The upper (lower) bound for options with strike prices above K is given

by the pricing kernel φ∗
1(S) (φ∗∗

1 (S)).

Proof: From Lemma 2 we need only prove that the pricing kernels described in

the lemma intersect all admissible pricing kernels exactly three times and then

examine the fatness of their left tails.

We first examine φ∗∗
1 . Note it is three-segmented and piecewise constant.

More precisely φ∗∗
1 = φ, S < sl; φ∗∗

1 (S) = a1, sl < S < su; φ∗∗
1 (S) = φ,

S > su, φ ≥ a1 ≥ φ. Obviously this pricing kernel intersects any decreasing

pricing kernel at most three times. However from Lemma 1, it must intersect all

admissible pricing kernels at least three times; otherwise they cannot give the

same observed option price. Hence φ∗∗
1 intersects all admissible pricing kernel

exactly three times. It is not difficult to verify that φ∗∗
1 has fatter left tail. For

φ∗
1 the proof is similar. Q.E.D.

Ryan (2003) derived the optimal SSD option bounds using one observed

option price. Here follow his result.

[Ryan] Assume the pricing kernel is decreasing in S. Assume the price of

a unit bond is B0, the underlying stock price is S0, and the price of an option

with strike price K is c0. Assume the lowest possible time 1 value of the stock

is zero, i.e., s1 = 0.

• Then the upper bound for options with strike prices below K is given by

the pricing kernel φ∗∗
1 (S) = a0

δ(S−s1)
p(S) +f(S), where p(S) is the probability

density function, δ(S) is the Dirac function, a0 = 1 − S0

B0Ê(S|S<sl)
, and

f(S) = a, S < sl; f(S) = 0, S > sl, where a = S0
B0E(S|S<sl)

and sl is to
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be determined such that

E((S/S0)|S < sl) = E((c(S)/c0)|S < sl).

• The lower bound for options with strike prices below K is given by the

pricing kernel φ∗
1(S) = b1, S < sl; φ(S) = b2, S > sl, where

b1 =
Ê(S|S > sl) − (S0/B0)

(Ê(S|S > sl) − Ê(S|S < sl)) Pr(S < sl)

b2 =
(S0/B0) − Ê(S|S < sl)

(Ê(S|S > sl) − Ê(S|S < sl)) Pr(S > sl)

and sl is to be determined such that

E(S|S < sl) − (S0/B0)
Ê(S|S > sl) − Ê(S|S < sl)

=
E(c(S)|S < sl) − (c0/B0)

Ê(c(S)|S > sl) − Ê(c(S)|S < sl)
.

• The upper (lower) bound for options with strike prices above K is given

by the pricing kernel φ∗
1(S) (φ∗∗

1 (S)).

Proof: Let φ → +∞ and φ → 0; from Lemma 3 we immediately conclude

that we must have φ∗∗
1 (S) = a0

δ(S−s1)
p(S) + f(S), where f(S) = a1, S < sl;

f(S) = 0, S > sl, where a0, a1, and sl are to be determined by the three

equations about the prices of the unit bond, stock, and the observed option.

Noting s1 = 0, solving the three equations we obtain φ∗∗
1 (S). φ∗

1(S) can be

similarly obtained. Q.E.D.
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Figure 2: One Observed Option: Exercise Price = K
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-
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Lower Bound (Exercise Price < K)
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3 With Two Observed Options

Ryan (2003) argues that given more than one observed options, only two options

with strike prices closest to the interested option provide binding information

for the bounds of the option price. However, this is not true. In this section

we derive SSD option bounds from two concurrently expiring options. We first

introduce a lemma.

Lemma 4 Assume two pricing kernels give the same prices of the underlying

stock and two options with strike prices K1 and K2, where K1 < K2. If they

intersect four times, then the pricing kernel with fatter left tail will give higher

(lower) prices for options with strike prices outside (inside) (K1, K2).

Proof: See Huang (2004a).

We now derive the option bounds under the assumption that the second

order stochastic dominance rule applies and the value of the pricing kernel is
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bounded from above and below.

Lemma 5 Assume the pricing kernel is decreasing in S and bounded above by

φ and below by φ. Assume the prices of a unit bond, the underlying stock, and

two options with strike prices K1 and K2, where K1 < K2, are B0, S0, c1
0, and

c2
0 respectively.

Then the upper bound for an option with strike price below K1 or above K2

is given by the pricing kernel φ∗∗
2 (S) = φ, S < sl; φ∗∗

2 (S) = a1, sl < S < su;

φ∗∗
2 (S) = a2, S > su, where a1, a2, sl, and su are to be determined such that

φ ≥ a1 ≥ a2,

φ Pr(S < sl) + a1 Pr(sl < S < su) + a2 Pr(S > su) = 1

φE(S|S < sl) + a1E(S|sl < S < su) + a2E(S|S > su) =
S0

B0

φE(ci(S)|S < sl) + a1E(ci(S)|sl < S < su) + a2E(ci(S)|S > su) =
ci
0

B0

i = 1, 2.

The lower bound for an option with strike price below K1 or above K2 is

given by the pricing kernel φ∗
2(S) = b1, S < sl; φ∗

2(S) = b2, sl < S < su,

φ∗
2(S) = φ, S > su, where b1, b2, sl, and su are to be determined such that

b1 ≥ b2,

b1 Pr(S < sl) + b2 Pr(sl < S < su) + φ Pr(S > su) = 1

b1E(S|S < sl) + b2E(S|sl < S < su) + φE(S|S > su) =
S0

B0

b1E(ci(S)|S < sl) + b2E(ci(S)|sl < S < su) + φE(ci(S)|S > su) =
ci
0

B0

i = 1, 2.
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The upper (lower) bound for an option with strike price between K1 and K2

is given by the pricing kernel φ∗
2(S) (φ∗∗

2 (S)).

Proof: From Lemma 4 we need only prove that the pricing kernels described in

the lemma intersect all admissible pricing kernels exactly four times and then

examine the fatness of their left tails.

We first examine φ∗∗
2 . Note it is three-segmented and piecewise constant.

More precisely φ∗∗
2 (S) = φ, S < sl; φ∗∗

2 (S) = a1, sl < S < su; φ∗∗
2 (S) = a2,

S > su, where φ ≥ a1 ≥ a2.

Obviously this pricing kernel intersects any decreasing pricing kernel at most

four times. However from Lemma 1, it must intersect all admissible pricing

kernels at least four times; otherwise they cannot give the same observed option

prices. Hence φ∗∗
1 intersects all admissible pricing kernel exactly four times. It

is not difficult to verify that φ∗∗
1 has fatter left tail. For φ∗

1 the proof is similar.

Q.E.D.

Proposition 1 Assume the pricing kernel is decreasing in S. Assume the price

of a unit bond is B0, the underlying stock price is S0, and the prices of two

options with strike prices K1 and K2 are c1
0 and c2

0 respectively.

Then the upper bound for options with strike prices below K1 or above K2

is given by the pricing kernel φ∗∗
2 (S) = a0

δ(S−s1)
p(S) + f(S), where p(S) is the

probability density function and δ(S) is the Dirac function and f(S) = a1,

S < sl; f(S) = a2, S > sl, where a0, a1, a2, and sl are to be determined such

14



that a0 > 0, a1 ≥ a2,

a0 + a1 Pr(S < sl) + a2 Pr(S > sl) = 1

a0s1 + a1Ê(S|S < sl) + a2Ê(S|S > sl) =
S0

B0

a0c
i(s1) + a1Ê(ci(S)|S < sl) + a2Ê(ci(S)|S > sl) =

ci
0

B0

i = 1, 2.

The lower bound for options with strike prices below K1 or above K2 is given

by the pricing kernel φ∗
2(S) = b1, S < sl; φ∗

2(S) = b2, sl < S < su; φ∗
2(S) = 0,

S > su, where b1, b2, sl, and su are to be determined such that b1 ≥ b2,

b1 Pr(S < sl) + b2 Pr(sl < S < su) = 1,

b1Ê(S|S < sl) + b2Ê(S|sl < S < su) =
S0

B0

b1Ê(ci(S)|S < sl) + b2Ê(ci(S)|sl < S < su) =
ci
0

B0
.

i = 1, 2.

The upper (lower) bound for options with strike prices between K1 and K2

is given by the pricing kernel φ∗
2(S) (φ∗∗

2 (S)).

Proof: Let φ → +∞ and φ → 0; from Lemma 5 we immediately conclude that

we must have φ∗∗
2 (S) = a δ(S−s1)

p(S) + f(S), where f(S) = a1, S < sl; f(S) = a2,

S > sl, where a0, a1, a2, and sl are subject to a0 > 0, a1 ≥ a2, and the three

equations. φ∗
1(S) can be similarly obtained. Q.E.D.
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Figure 2: Two Observed Options: Exercise Prices = K1, K2
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4 The General Case

In this section we deal with the case where we have n observed concurrently

expiring options. We first introduce a lemma.

Lemma 6 Assume two pricing kernels give the same prices of the underlying

stock and options with strike prices K1, K2, ..., Kn, where K1 < K2 < ... < Kn.

Let K0 = 0 and Kn+1 = +∞. If the two pricing kernels intersect n + 2 times

then the one with fatter left tail will give higher (lower) prices for all options

with strike prices between (K2i−2, K2i−1) ((K2i−1, K2i)), i = 1, 2, ....

Proof: See Huang (2004a).

We now derive the option bounds under the assumption that the second

order stochastic dominance rule applies and the value of the pricing kernel is

bounded from above and below.
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Lemma 7 Assume the pricing kernel is decreasing in S and bounded above by

φ and below by φ. Assume the prices of a unit bond, the underlying stock, and

n options with strike prices K1, ..., Kn, where K1 < ... < Kn, are B0, S0, c1
0,

..., cn
0 respectively.

Assume n is odd. Let m = (n + 1)/2.

Then the upper bound for an option with strike price between K2i−2 and

K2i−1, i = 1, 2, ..., is given by the pricing kernel φ∗∗
n (S) = φ, S < sl1 ; φ∗∗

n (S) =

a1, sl1 < S < sl2 ; ...; φ∗∗
n (S) = am, slm < S < slm+1 ; φ∗∗

n (S) = φ, S > slm+1,

where a1,..., am, sl1 , ..., slm+1 are to be determined such that φ ≥ a1 ≥ ... ≥

am ≥ φ,

φ Pr(S < sl1) +
m∑

1

ajPr(slj < S < slj+1) + φ Pr(S > slm+1) = 1

φE(S|S < sl1) +
m∑

1

ajE(S|slj < S < slj+1) + φE(S|S > slm+1) =
S0

B0

φE(ci(S)|S < sl1) +
m∑

1

ajE(ci(S)|slj < S < slj+1)

+φE(ci(S)|S > slm+1)) =
ci
0

B0

i = 1, 2, ..., n.

The lower bound for an option with strike price below K1 or above K2 is

given by the pricing kernel φ∗
n(S) = b1, S < sl1 ; ...; φ∗

n(S) = bm+1, S > slm ,

where b1, ..., bm+1, sl1 , ..., slm are to be determined such that b1 ≥ ... ≥ bm+1,

m+1∑

1

bj Pr(slj−1 < S < slj ) = 1

m+1∑

1

bj E(S|slj−1 < S < slj ) =
S0

B0

17



m+1∑

1

bj E(ci(S)|slj−1 < S < slj ) =
ci
0

B0

where slm+1 = +∞ and i = 1, 2, ..., n.

The upper (lower) bound for options with strike prices between (K2i−1, K2i),

i = 1, 2, ..., is given by the pricing kernel φ∗
n(S) (φ∗∗

n (S)).

Assume n is even. Let m = n/2.

• Then the upper bound for an option with strike price between K2i−2 and

K2i−1, i = 1, 2, ..., is given by the pricing kernel φ∗∗
n (S) = φ, S < sl1 ;

φ∗∗
n (S) = a1, sl1 < S < sl2 ; ...; φ∗∗

n (S) = am+1, S > slm+1 , where a1, ...,

am+1, sl1 , ..., slm+1 are to be determined such that

φ Pr(S < sl1) +
m+1∑

1

ajPr(slj < S < slj+1) = 1,

φE(S|S < sl1) +
m+1∑

1

ajE(S|slj < S < slj+1) =
S0

B0
,

φE(ci(S)|S < sl1) +
m+1∑

1

ajE(ci(S)|slj < S < slj+1) =
ci
0

B0
,

where slm+2 = +∞ and i = 1, 2, ..., n.

The lower bound for an option with strike price between K2i−2 and K2i−1,

i = 1, 2, ..., is given by the pricing kernel φ∗
n(S) = b1, S < sl1 ; ...; φ∗

n(S) =

bm+1, sl1 < S < slm+1 , φ∗
n(S) = φ, S > slm+1 , where b1,..., bm+1, sl1 , ...,

slm+1 are to be determined such that b1 ≥ ... ≥ bm+1,

m+1∑

1

bj Pr(slj−1 < S < slj ) + φ Pr(S > slm+1) = 1

m+1∑

1

bj E(S|slj−1 < S < slj ) + φE(S|S > slm+1) =
S0

B0
,

18



m+1∑

1

bj E(ci(S)|slj−1 < S < slj ) + φE(ci(S)|S > slm+1) =
ci
0

B0
,

where sl0 = s1 and i = 1, 2, ..., n.

Proof:From Lemma 6 we need only prove that the pricing kernels described in

the lemma intersect all admissible pricing kernels exactly (n+2) times and then

examine the fatness of their left tails.

We first examine φ∗∗
n . Assume n is odd. Note it is (m+2)-segmented and

piecewise constant, where m = (n + 1)/2. More precisely, φ∗∗
n (S) = φ, S < sl1 ;

φ∗∗
n (S) = a1, sl1 < S < sl2 ; ...; φ∗∗

n (S) = am, slm < S < slm+1 ; φ∗∗
n (S) = φ,

S > slm+1 , where φ ≥ a1 ≥ ... ≥ am ≥ φ.

Obviously this pricing kernel intersects any decreasing pricing kernel at most

(n + 2) times. However from Lemma 6, it must intersect all admissible pricing

kernels at least (n + 2) times; otherwise they cannot give the same observed

option prices. Hence φ∗∗
n intersects all admissible pricing kernel exactly (n + 2)

times. It is not difficult to verify that φ∗∗
1 has fatter left tail. This proves the

first result. Other results can similarly proved. Q.E.D.

Proposition 2 Assume the pricing kernel is decreasing in S. Assume the price

of a unit bond is B0, the underlying stock price is S0, and the prices of n options

with strike prices K1, K2, ..., Kn are c1
0, c2

0, ..., and cn
0 respectively. Let K0 = 0

and Kn+1 = +∞.

1. Assume n is odd. Let m = (n + 1)/2.

(a) Then the upper bound for options with strike prices between (K2i−2,

K2i−1), i = 1, 2, ..., is given by the pricing kernel φ∗∗
n (S) = a0

δ(S−s1)
p(S) +
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f(S), where p(S) is the probability density function and δ(S) is the

Dirac function and f(S) = a1, S < sl1 ; f(S) = a2, sl1 < S < sl2 ;

...; f(S) = am, slm−1 < S < slm ; f(S) = 0, S > slm , where a0, a1,

..., am, sl1 , sl2 , ..., and slm are to be determined such that a0 > 0,

a1 ≥ ... ≥ am,

a0 +
m∑

1

aj Pr(slj−1 < S < slj ) = 1

a0s1 +
m∑

1

aj E(S|slj−1 < S < slj ) =
S0

B0

a0c
i(s1) +

m∑

1

aj E(ci(S)|slj−1 < S < slj ) =
ci
0

B0

where sl0 = 0 and i = 1, 2, ..., n.

(b) The lower bound for options with strike prices between (K2i−2, K2i−1),

i = 1, 2, ..., is given by the pricing kernel φ∗
n(S) = b1, S < sl1 ;

φ∗
n(S) = b2, sl1 < S < sl2 ; ...; φ∗

n(S) = bm+1, S > slm , where

b1, b2,..., bm+1, sl1 , sl2 ,..., and slm are to be determined such that

b1 ≥ b2 ≥ ... ≥ bm+1,

m+1∑

1

bj Pr(slj−1 < S < slj ) = 1

m+1∑

1

bj E(S|slj−1 < S < slj ) =
S0

B0

m+1∑

1

bj E(ci(S)|slj−1 < S < slj ) =
ci
0

B0

where sl0 = 0, slm+1 = +∞, and i = 1, 2, ..., n.

(c) The upper (lower) bound for options with strike prices between (K2i−1,

K2i), i = 1, 2, ..., is given by the pricing kernel φ∗
n(S) (φ∗∗

n (S)).
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2. Assume n is even. Let m = n/2.

(a) Then the upper bound for options with strike prices between (K2i−2,

K2i−1), i = 1, 2, ..., is given by the pricing kernel φ∗∗
n (S) = a0

δ(S−s1)
p(S) +

f(S), where p(S) is the probability density function and δ(S) is the

Dirac function and f(S) = a1, S < sl1 ; f(S) = a2, sl1 < S < sl2 ; ...;

f(S) = am, slm−1 < S < slm ; f(S) = am+1, S > slm , where a0, a1,

..., am+1, sl1 , sl2 , ..., and slm are to be determined such that a0 > 0,

a1 ≥ ... ≥ am+1,

a0 +
m+1∑

1

aj Pr(slj−1 < S < slj ) = 1

a0s1 +
m+1∑

1

aj E(S|slj−1 < S < slj ) =
S0

B0

a0c
i(s1) +

m+1∑

1

aj E(ci(S)|slj−1 < S < slj ) =
ci
0

B0

where sl0 = 0, slm+1 = +∞, and i = 1, 2, ..., n.

(b) The lower bound for options with strike prices between (K2i−2, K2i−1),

i = 1, 2, ..., is given by the pricing kernel φ∗
n(S) = b1, S < sl1 ;

φ∗
n(S) = b2, sl1 < S < sl2 ; ...; φ∗

n(S) = bm+1, slm < S < slm+1 ;

φ∗
n(S) = 0, S > slm+1 , where b1, b2,..., bm+1, sl1 , sl2 ,..., and slm+1

are to be determined such that b1 ≥ b2 ≥ ... ≥ bm+1,

m+1∑

1

bj Pr(slj−1 < S < slj ) = 1

m+1∑

1

bj E(S|slj−1 < S < slj ) =
S0

B0

m+1∑

1

bj E(ci(S)|slj−1 < S < slj ) =
ci
0

B0
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where sl0 = 0 and i = 1, 2, ..., n.

(c) The upper (lower) bound for options with strike prices between (K2i−1,

K2i), i = 1, 2, ..., is given by the pricing kernel φ∗
n(S) (φ∗∗

n (S)).

Proof: Assume n is odd. Let φ → +∞ and φ → 0; from Lemma 7 we immedi-

ately conclude that we must have φ∗∗
n (S) = a δ(S−s1)

p(S) + f(S), where f(S) = a1,

S < sl1 ; f(S) = a2, sl1 < S < sl2 ; ...; f(S) = am, slm−1 < S < slm ; f(S) = 0,

S > slm , where a0, a1, ..., am, sl1 , sl2 , ..., and slm are to be determined by

the n + 2 equations. This proves the first result. Other results can be similarly

proved. Q.E.D.

5 The Arbitrage Portfolios

When the option bounds derived in this paper are violated, then there are second

order arbitrage opportunities in the markets. In this case we can construct

arbitrage portfolios to make profits. But first we have to know how to construct

such portfolios. In order to get the right solution, we will first work out the

arbitrage portfolios in a discrete state space, then pass it to the limit continuous

case we will obtain our result.

5.1 Solutions in a Discrete State Space

We directly present the general case where we use n observed concurrently

expiring options. We have the following result.
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Lemma 8 Assume dj is decreasing in j. Assume the price of a unit bond is

B0, the underlying stock price is S0, and the prices of n options with strike

prices K1, K2, ..., Kn are c1
0, c2

0, ..., and cn
0 respectively. Let K0 = 0 and

Kn+1 = +∞.

1. Assume n is odd. Let m = (n + 1)/2.

(a) For options with strike prices X between (K2i−2, K2i−1), i = 1, 2, ...,

the solution to (P1) is given by

0 ≤ (yl1 , yl1+1, ..., ylm , ylm+1, yΛ) = (B0, S0, c01, ..., c0n)A−1 (1)

where matrix A is given by




1 s̄l1 c̄1
l1

... c̄n
l1

1 s̄l1+1 c̄1
l1+1 ... c̄n

l1+1

...
...

...
...

...

1 s̄lm c̄1
lm

... c̄n
lm

1 s̄lm+1 c̄1
lm+1 ... c̄n

lm+1

1 s̄Λ c̄1
Λ ... c̄n

Λ





yj = 0, j 6= l1, l1 + 1, ..., lm, lm + 1, Λ.

(b) For options with strike prices X between (K2i−2, K2i−1), i = 1, 2, ...,

the solution to Problem P2 is given by

0 ≤ (y1, yl1 , yl1+1, ..., ylm , ylm+1) = (B0, S0, c01, ..., c0n)B−1 (2)
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where matrix B is given by




1 s̄1 c̄1
1 ... c̄n

1

1 s̄l1 c̄1
l1

... c̄n
l1

1 s̄l1+1 c̄1
l1+1 ... c̄n

l1+1

...
...

...
...

...

1 s̄lm c̄1
lm

... c̄n
lm

1 s̄lm+1 c̄1
lm+1 ... c̄n

lm+1





yj = 0, j 6= 1, l1, l1 + 1, ..., lm, lm + 1.

(c) For options with strike prices X between (K2i−1, K2i), i = 1, 2, ...,

the solution to Problem P1 is given by (2) and the solution to Problem

P2 is given by (1).

2. Assume n is even. Let m = n/2.

(a) For options with strike prices X between (K2i−2, K2i−1), i = 1, 2, ...,

the solution to (P1) is given by

0 ≤ (yl1 , yl1+1, ..., ylm+1 , ylm+1+1) = (B0, S0, c01, ..., c0n)U−1 (3)

where matrix U is given by




1 s̄l1 c̄1
l1

... c̄n
l1

1 s̄l1+1 c̄1
l1+1 ... c̄n

l1+1

...
...

...
...

...

1 s̄lm+1 c̄1
lm+1

... c̄n
lm

1 s̄lm+1+1 c̄1
lm+1+1 ... c̄n

lm+1+1





yj = 0, j 6= l1, l1 + 1, ..., lm+1, lm+1 + 1.
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(b) For options with strike prices X between (K2i−2, K2i−1), i = 1, 2, ...,

the solution to Problem P2 is given by

0 ≤ (y1, yl1 , yl1+1, ..., ylm , ylm+1, yΛ) = (B0, S0, c01, ..., c0n)V −1 (4)

where matrix V is given by




1 s̄1 c̄1
1 ... c̄n

1

1 s̄l1 c̄1
l1

... c̄n
l1

1 s̄l1+1 c̄1
l1+1 ... c̄n

l1+1

...
...

...
...

...

1 s̄lm c̄1
lm

... c̄n
lm

1 s̄lm+1 c̄1
lm+1 ... c̄n

lm+1

1 s̄Λ c̄1
Λ ... c̄n

Λ





yj = 0, j 6= 1, l1, l1 + 1, ..., lm, lm + 1, Λ.

(c) For options with strike prices X between (K2i−1, K2i), i = 1, 2, ...,

the solution to Problem P1 is given by (4) and the solution to Problem

P2 is given by (3).

Proof: The proof is similar to the continuous case. Note Lemma 6 is valid for

discrete state spaces.3 Thus we need only to find the right pricing kernels that

intersect the true pricing kernel exactly (n + 2) times. These pricing kernels

have similar features as their counterparts in the continuous case. That is they

are piecewise constant, and the numbers of their segments are equal to their

counterparts in the continuous case. For example, if n is odd the pricing kernel
3See Huang (2004a).
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that gives an upper bound for options with strike prices X between (K2i−2,

K2i−1), i = 1, 2, ..., has m + 1 segments, where m = (n + 1)/2. Hence we have

d1 = ... = dl1 ,

dl1+2 = ... = dl2 ,

... ,

dlm−1+2 = ... = dlm ,

dlm+2 = ... = dΛ.

Note the only difference with the continuous case is that there is freedom for

the points between adjacent segments to choose their own values. These here

are dlj+1, j = 1, ..., m.

Since yj = (
∑j

1 πi)(dj − dj+1), we have

y1 = ... = yl1−1 = 0,

yl1+2 = ... = yl2−1 = 0,

... ,

ylm−1+2 = ... = ylm−1 = 0,

ylm+2 = ... = yΛ−1 = 0,

ylj ≥ 0, ylj+1 ≥ 0, j = 1, ..., m, and yΛ ≥ 0. This proves the first result. The

other results can be similarly proved. Q.E.D.
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5.2 Arbitrage Portfolios in a Discrete State Space

Now we can derive the arbitrage portfolios in the discrete case. We have the

following result.

Lemma 9 Assume dj is decreasing in j. Assume the price of a unit bond is B0,

the underlying stock price is S0, and the prices of n options with strike prices

K1, K2, ..., Kn are c1
0, c2

0, ..., and cn
0 respectively.

• Assume n is odd. Let m = (n + 1)/2.

– For options with strike prices X between (K2i−2, K2i−1), i = 1, 2, ...,

when its lower bound is violated the arbitrage portfolio is given by

(α1, α2, α3, ..., αn+2) = (c̄X
l1 , c̄X

l1+1, ..., c̄
X
lm , c̄X

lm+1, c̄
X
Λ )(A−1)T , (5)

where l1, ..., lm, and A are determined by (1a) in Lemma 8.

– For options with strike prices X between (K2i−2, K2i−1), i = 1, 2, ...,

when its upper bound is violated the arbitrage portfolio is given by

(α1, α2, α3, ..., αn+2) = (c̄X
1 , c̄X

l1 , c̄X
l1+1, ..., c̄

X
lm , c̄X

lm+1)(B
−1)T , (6)

where l1, ..., lm, and B are determined by (1b) in Lemma 8.

– For options with strike prices X between (K2i−1, K2i), i = 1, 2, ...,

when its lower bound is violated the arbitrage portfolio is given by

(6); when its upper bound is violated the arbitrage portfolio is given

by (5).

• Assume n is even. Let m = n/2.
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– For options with strike prices X between (K2i−2, K2i−1), i = 1, 2, ...,

when its lower bound is violated the arbitrage portfolio is given by

(α1, α2, α3, ..., αn+2) = (c̄X
l1 , c̄X

l1+1, ..., c̄
X
lm+1

, c̄X
lm+1+1)(U

−1)T , (7)

where l1, ..., lm+1, and U are determined by (2a) in Lemma 8.

– For options with strike prices X between (K2i−2, K2i−1), i = 1, 2, ...,

when its upper bound is violated the arbitrage portfolio is given by

(α1, α2, α3, ..., αn+2) = (c̄X
1 , c̄X

l1 , c̄X
l1+1, ..., c̄

X
lm , c̄X

lm+1, c̄
X
Λ )(V −1)T ,

(8)

where l1, ..., lm, and V are determined by (2b) in Lemma 8.

– For options with strike prices X between (K2i−1, K2i), i = 1, 2, ...,

when its lower bound is violated the arbitrage portfolio is given by

(8); when its upper bound is violated the arbitrage portfolio is given

by (7).

Proof: Suppose n is odd. For options with strike prices X between (K2i−2,

K2i−1), i = 1, 2, ..., applying Lemma 8, we obtain its lower bound

(yl1 , yl1+1, ..., ylm , ylm+1, yΛ)(c̄X
l1 , c̄X

l1+1, ..., c̄
X
lm , c̄X

lm+1, c̄
X
Λ )T

= (B0, S0, c01, ..., c0n)A−1(c̄X
l1 , c̄X

l1+1, ..., c̄
X
lm , c̄X

lm+1, c̄
X
Λ )T ,

which is the optimal value of the objective function of Problem (P1). At opti-

mality, the primal and dual objective functions are equal. Thus the above value

must be equal to the optimal value of Problem (D1)’s objective function, i.e.,

(B0, S0, c01, ..., c0n)(α1, α2, α3, ..., αn+2)T .
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Note this must hold for all values of B0, S0, c1
0, ..., cn

0 . Hence we obtain (7).

Other results can be similarly proved. Q.E.D.

5.3 Arbitrage Portfolios in a Continuous State Space

If we let the differences between adjacent states become smaller and smaller, we

come closer and closer to a continuous state space. In the limit we reach the

continuous state space and for all j, slj+1 and slj converge to a single slj . In a

continuous state space, we have

s̄lj = Ê(S|S < slj ), c̄i
lj = Ê(ci(S)|S < slj ), c̄X

lj = Ê(cX (S)|S < slj ).

We will also use the following notation: (c̄X
lj

)′ ≡ dÊ(cX (S)|S < slj )/dS|S=slj
.

When we take the limit while for all j slj+1 → slj , for brevity we write

lim∀j,slj+1→slj
simply as lim.

From the results given in the last subsection we can obtain the arbitrage

portfolios in a continuous state space. We now present our main result.

Proposition 3 Assume the pricing kernel is decreasing in S. Assume the price

of a unit bond is B0, the underlying stock price is S0, and the prices of n options

with strike prices K1, K2, ..., Kn are c1
0, c2

0, ..., and cn
0 respectively.

• Assume n is odd. Let m = (n + 1)/2.

– For options with strike prices X between (K2i−2, K2i−1), i = 1, 2, ...,

when its lower bound is violated the arbitrage portfolio is given by

αi = (−1)i[
m∑

1

((c̄X
lv )′Â2v,i − c̄X

lv Â2v−1,i) − c̄X
Λ Ân+2,i]/|Â|, (9)
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i=1, ..., n+2, where sl1 , ..., slm , are determined by 1(b) in Proposition

2 and Â is given by




1 s̄l1 c̄1
l1

... c̄n
l1

0 (s̄l1)
′ (c̄1

l1
)′ ... (c̄n

l1
)′

...
...

...
...

...

1 s̄lm c̄1
lm

... c̄n
lm

0 (s̄lm)′ (c̄1
lm

)′ ... (c̄n
lm

)′

1 s̄Λ c̄1
Λ ... c̄n

Λ





(10)

– For options with strike prices X between (K2i−2, K2i−1), i = 1, 2, ...,

when its upper bound is violated the arbitrage portfolio is given by

αi = (−1)i[−c̄X
1 B̂1i +

m∑

1

(c̄X
lv B̂2v,i − (c̄X

lv )′B̂2v+1,i)]/|B̂|, (11)

i=1, ..., n+2, where sl1 , ..., slm are determined by 1(a) in Proposition

2 and B̂ is given by




1 s̄1 c̄1
1 ... c̄n

1

1 s̄l1 c̄1
l1

... c̄n
l1

0 (s̄l1)
′ (c̄1

l1
)′ ... (c̄n

l1
)′

...
...

...
...

...

1 s̄lm c̄1
lm

... c̄n
lm

0 (s̄lm)′ (c̄1
lm

)′ ... (c̄n
lm

)′





(12)

– For options with strike prices X between (K2i−1, K2i), i = 1, 2, ...,

when its lower bound is violated the arbitrage portfolio is given by

(11); when its upper bound is violated the arbitrage portfolio is given

by (9)
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• Assume n is even. Let m = n/2.

– For options with strike prices X between (K2i−2, K2i−1), i = 1, 2, ...,

when its lower bound is violated the arbitrage portfolio is given by

αi = (−1)i
m+1∑

1

((c̄X
lv )′Û2v,i − c̄X

lv Û2v−1,i)/|Û |, (13)

i=1, ..., n+2, where sl1 , ..., slm , are determined by 2(b) in Proposition

2 and Û is given by




1 s̄l1 c̄1
l1

... c̄n
l1

0 (s̄l1)
′ (c̄1

l1
)′ ... (c̄n

l1
)′

...
...

...
...

...

1 s̄lm+1 c̄1
lm+1

... c̄n
lm+1

0 (s̄lm+1)′ (c̄1
lm+1

)′ ... (c̄n
lm+1

)′





(14)

– For options with strike prices X between (K2i−2, K2i−1), i = 1, 2, ...,

when its upper bound is violated the arbitrage portfolio is given by

αi = (−1)i[−c̄X
1 V̂1i +

m∑

1

(c̄X
lv V̂2v,i − (c̄X

lv )′V̂2v+1,i) + c̄X
Λ V̂n+2,i]/|V̂ |,

(15)

i=1, ..., n+2, where sl1 , ..., slm , are determined by 2(a) in Proposition
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2 and V̂ is given by




1 s̄1 c̄1
1 ... c̄n

1

1 s̄l1 c̄1
l1

... c̄n
l1

0 (s̄l1)′ (c̄1
l1

)′ ... (c̄n
l1

)′

...
...

...
...

...

1 s̄lm c̄1
lm

... c̄n
lm

0 (s̄lm)′ (c̄1
lm

)′ ... (c̄n
lm

)′

1 s̄Λ c̄1
Λ ... c̄n

Λ





(16)

– For options with strike prices X between (K2i−1, K2i), i = 1, 2, ...,

when its lower bound is violated the arbitrage portfolio is given by

(15); when its upper bound is violated the arbitrage portfolio is given

by (13).

Proof: Assume n is odd. Let m = (n + 1)/2. Consider an option with strike

price X between (K2i−2, K2i−1), i = 1, 2, .... If the upper bound of its value is

violated, then applying Lemma 9 we know the arbitrage portfolio in a discrete

state space is given by (6). We have

(BT )−1 =
1
|B|

((−1)i+jBij)(n+2)×(n+2).

Hence from (5) we have

|B|αi = c̄X
1 (−1)1+iB1i +

m∑

1

(−1)2v+i(c̄X
lv B2v,i − c̄X

lv+1B2v+1,i).

Rewrite it as

|B|αi = c̄X
1 (−1)1+iB1i +

m∑

1

(−1)2v+i(c̄X
lv (B2v,i−B2v+1,i)−(c̄X

lv+1− c̄X
lv )B2v+1,i).

(17)
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Let B̂ be given by (12).

Obviously we have

|B| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 s̄1 c̄1
1 ... c̄n

1

1 s̄l1 c̄1
l1

... c̄n
l1

0 s̄l1+1 − s̄l1 c̄1
l1+1 − c̄1

l1
... c̄n

l1+1 − c̄n
l1

...
...

...
...

...

1 s̄lm c̄1
lm

... c̄n
lm

0 s̄lm+1 − s̄lm c̄1
lm+1 − c̄1

lm
... c̄n

lm+1 − c̄n
lm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Hence

lim |B|/[(sl1+1 − sl1)...(slm+1 − slm)] = |B̂|.

Similarly we have

lim B1i/[(sl1+1 − sl1)...(slm+1 − slm)] = B̂1i,

lim (B2v,i − B2v+1,i)/[(sl1+1 − sl1)...(slm+1 − slm)] = B̂2v,i,

lim (c̄X
lv+1 − c̄X

lv )B2v+1,i)/[(sl1+1 − sl1)...(slm+1 − slm)] = (c̄X
lv )′B̂2v+1,i.

Substituting the above four equations into (17) while taking the limit we

obtain

|B̂|αi = c̄X
1 (−1)1+iB̂1i +

m∑

1

(−1)2v+i(c̄X
lv B̂2v,i − (c̄X

lv )′B̂2v+1,i).

This proves (11). Other results can be similarly proved. Q.E.D.
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6 Conclusions

As argued by Ryan (2003), the pricing information for the pricing kernel con-

tained in the relevant options, as well as in the bond and underlying stock, can

significantly improve the previous option bounds. In this paper we have im-

proved the SSD option bounds by using concurrently expiring options. We have

shown that given the prices of the underlying stock and n concurrently expiring

options, the option bounds are given by piecewise constant pricing kernels.

When these SSD option bounds are violated there are second order arbitrage

opportunities in the market. We have also presented the arbitrage portfolios

that will be used to make profits from these arbitrage opportunities. Since first

order arbitrage opportunities virtually do not exist, our results on second order

arbitrage opportunities are particularly useful.

It would be interesting if the results derived in this paper are extended to

the continuous time case.
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