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Practical Applications 
Options are risky assets and therefore under standard asset pricing theory they should earn a 
return commensurate with their systematic risk.  While many papers examine the empirical 
performance of various option pricing models few have addressed the issue of option returns.  
This paper examines the returns on European-style exercise (ESX) equity index option data from 
the London International Financial Futures and Options Exchange (LIFFE).  It is found that there 
appears to be a significant degree of overpricing on both put and call ESX contracts.  
Furthermore, the role of higher moments in explaining the return-generating process for these 
options is explored. 
 
Abstract 
The Capital Asset Pricing Model (CAPM) assumes either that all asset returns are normally 
distributed or that investors have mean-variance preferences.  Given empirical observations of 
asset returns, which document evidence of skewness and kurtosis, both assumptions are suspect.  
While several studies have investigated incorporating higher moments into asset pricing models 
using equity data, literature on the contribution of the third and fourth moments in explaining the 
return-generating process in options markets is sparse.  Using a two-pass methodology we 
investigate an asset pricing model that allows moments of higher order than two using European-
style exercise (ESX) equity index option data from the London International Financial Futures 
and Options Exchange (LIFFE).  Our empirical investigation shows that ESX option contracts 
appear to be overpriced and that on average almost all puts and calls earn negative daily returns 
during our ten-year sample period.  Furthermore, our regression results show that systematic 
variance has a significant role in explaining the cross-section of option returns and that the role of 
systematic skewness and systematic kurtosis throughout the sample period is less clear. 
 
Keywords: option returns; CAPM; systematic; skewness; kurtosis; comoments; cross-section 
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INTRODUCTION 

The fundamental assertion that the capital asset pricing model (CAPM) makes is that investors in 

a mean-variance world only price market risk.  This has been questioned almost from the 

inception of the model and indeed there is a body of literature that identifies a number of non-

market risk factors that appear to be priced.  In particular, Fama and French1 find that the non-

market risk factors size and book-to-market value are statistically significant in explaining the 

cross-section of equity returns.  Interestingly, from the perspective of this study, Chung, Johnson 

and Schill2 suggest that these non-market risk factors are in fact proxies for omitted higher 

moments of asset return distributions.   

 

In a CAPM world investors only care about mean and variance for portfolio returns and 

covariance for individual asset returns.  However, it is well documented in the literature that 

unconditional asset return distributions are not normal and the mean and variance of returns alone 

are insufficient to characterise the return distribution completely.3  In particular, the probability of 

extreme returns that are observed empirically is greater than the probability of extreme returns 

under the normal distribution, i.e., empirical distributions are leptokurtotic.  These observations 

have led researchers to investigate the third moment – skewness – and the fourth moment – 

kurtosis – in an effort to explain the cross-section of asset returns.  More specifically 

investigations into higher moment CAPM models have examined the role of systematic 

skewness, which is the ratio given by the coskewness of an asset return to market skewness, and 

systematic kurtosis, which is the ratio given by the cokurtosis of an asset return to market 

kurtosis. 

   

The purpose of this paper is twofold.  Firstly, London International Financial Futures and Options 

Exchange (LIFFE) European-style exercise (ESX) index option returns are calculated on a daily 

basis and examined in risk-return space.  Secondly, we investigate the CAPM incorporating 
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systematic moments of higher order than two using options data and we assess whether or not 

these higher order systematic moment risks might be priced.  Using index options data provides 

an exceptional opportunity to test the extended CAPM model due to the absence of idiosyncratic 

risk and the nonlinear nature of option payoffs.   

 

The paper is organized as follows.  The next section examines the CAPM literature relating to the 

inclusion of moments of higher order than two.  The following sections examine investor 

preferences for higher moments, the empirical form of the expanded CAPM model, the data used 

in the study and the method used to calculate option returns, and the empirical findings of the 

study.  The final section contains a summary discussion and concludes the paper. 

 

EMPIRICAL TESTS OF THE CAPM INCORPORATING HIGHER SYSTEMATIC 

MOMENTS 

Sharpe,4 Lintner5 and Mossin6 developed the first formulations of the mean-variance capital asset 

pricing model (CAPM).  Early tests of the model were generally supportive (e.g., Black, Jensen 

and Scholes;7 Fama and MacBeth8) although there were inconsistencies reported with respect to 

the slope of the regression line and the intercept term.  Banz,9 however, challenged the validity of 

the CAPM by showing that firm size explains the cross-sectional variation in average returns 

better than the CAPM beta.  Fama and French1 show that the size effect may be so significant that 

it questions the validity of the CAPM in any economically meaningful sense.  Furthermore, when 

they include the ratio of the book value of a firm’s common equity to its market value as an 

explanatory variable in addition to size, they find this so-called value factor is also significant in 

explaining the cross-sectional variation in returns. 

 

The findings of Fama and French1 have themselves come under close scrutiny, particularly in 

relation to their claims that the CAPM beta has no role in explaining cross-sectional variation in 
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returns.  Kothari, Shanken and Sloan10 argue that the findings depend critically on the 

interpretation of the statistical results in their study.  In particular, Fama and French’s estimates 

for the coefficient on beta have high standard errors and are possibly too noisy to invalidate the 

CAPM.11  Setting aside these criticisms the general reaction to the Fama and French insights has 

been for researchers to focus on alternative asset pricing models to the original CAPM. 

 

Equity Markets Tests 

Kraus and Litzenberger12 extend the traditional CAPM to include the effect of systematic 

skewness on asset pricing and choose to ignore terms of the fourth and higher order on the basis 

that “aversion to standard deviation and preference for positive skewness are general 

characteristics of all investors having utility functions displaying the desirable behaviouristic 

attributes of decreasing marginal utility of wealth and non-increasing absolute risk aversion” 

whereas general investor attitudes towards higher moments such as kurtosis are not easily 

determined.  The results of their empirical study of equity data support a three moment pricing 

model.  Further they find that investors are averse to variance and prefer positive skewness. 

 

Friend and Westerfield13 offer what they term a “more comprehensive” testing of the Kraus and 

Litzenberger12 hypothesis.  They incorporate bonds into the analysis by including them in the 

market portfolio as well as stocks and conclude that the Kraus-Litzenberger attempt to 

incorporate systematic skewness into the pricing model is not successful and that the significance 

of skewness within the pricing model is particularly sensitive to the choice of market proxy. 

 

Whereas Kraus and Litzenberger12 and Friend and Westerfield13 use similar forms of a two-pass 

regression methodology, Lim14 tests a three-moment CAPM using Hansen’s15 generalised 

method of moments (GMM) allowing a proper treatment of nonnormal data. Another primary 

advantage of this technique is that it avoids the problem of errors-in-variables, a nontrivial 
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problem associated with the two-pass methodology.16  Lim,14 using similar data to Kraus and 

Litzenberger,12 finds significant evidence in support of including a skewness parameter into the 

asset-pricing model. 

 

Fang and Lai17 extend the CAPM framework further in examining the impact of kurtosis.  They 

derive and empirically test a four-moment asset pricing model in which systematic kurtosis, in 

addition to systematic variance and systematic skewness, contributes to the risk premium of an 

asset.  Employing an instrumental variable estimation the model is tested using equity data.  Their 

results show that, in the presence of skewness and kurtosis, the expected excess rate of return is 

related not only to systematic variance but also to systematic skewness and systematic kurtosis. 

 

Dittmar18 argues that the inclusion of the fourth moment in the asset-pricing model is justified as 

a necessary condition for standard risk aversion is decreasing absolute prudence and he 

theoretically links such preferences to an aversion for kurtosis.  Like Fang and Lai,17 Dittmar18 

concludes that the four-moment CAPM prices the cross-section of returns much more effectively 

that the traditional CAPM and that it outperforms multifactor models. 

 

Harvey and Siddique19 initially test the traditional CAPM single factor asset-pricing model and 

conclude that systematic risk as measured by beta fails to explain expected excess returns.  They 

suggest that a possible explanation for this is that if investors are aware of skewness in asset price 

returns the expected excess returns should include a component attributable to conditional 

coskewness.  Tests on a pricing model incorporating systematic skewness show that this higher 

moment is indeed significant in explaining expected excess returns. 

 

 

 



 6

Future and Option Markets Tests 

Christie-David and Chaudhry20 investigate the contribution of the third and fourth moments in 

explaining the return-generating process in futures markets.  Empirical tests of their four-moment 

model show that the second, third and fourth systematic moments are all important in explaining 

futures returns.  Furthermore, their results are robust to the use of several different market 

proxies.  From a financial options perspective there appears to be a scarcity of empirical 

investigations into the validity of the CAPM and extensions thereof using options market data. 

 

THE PRICING OF HIGHER MOMENTS 

It is common in financial modelling to assume that the distribution of asset returns is normally 

distributed thereby allowing mean-variance analysis.  In this framework it is assumed that 

investors are not concerned about moments of higher order than the variance.  However, Levy21 

suggests that higher moments should be included in asset pricing models even if they only 

marginally contribute to describing the return distribution.  This may explain why the CAPM has 

performed relatively poorly in empirical tests.  

 

Given the empirical observations of skewed and fat tailed asset pricing distributions it should 

follow that investors have preferences about higher moments.  Scott and Horvath22 show that the 

preference direction is positive (negative) for positive (negative) values of every odd central 

moment and negative for every even central moment.  In other words, investors will have positive 

preference for skewness and dislike kurtosis. 

 

Chung et al2 argue that there is no reason to stop with the fourth moment as we are in this study.  

After all they point out that investors are concerned with the risk of ruin, for example, and they 

note that the popularity of lottery type games shows that the right hand tail of return distributions 

is also important from an investor’s perspective.  Dittmar,18 however, argues that moments 



 7

beyond the fourth are difficult to interpret intuitively and are not explicitly restricted by standard 

preference theory.  In any case, although not theoretically supported, the extension of this study 

to include moments of higher order than four would be trivial. 

 

METHODOLOGY 

In principle, to test an asset-pricing model like the CAPM one would regress asset or portfolio 

returns on their betas.  However, Dimson and Mussavian23 point out that beta is not known and 

can only be estimated with error and this violates the assumptions underpinning regression.  The 

two-pass methodology developed by Black, Jensen and Scholes7 and Fama and MacBeth8 

overcomes this problem by firstly estimating the beta of each asset with respect to a factor in a 

time-series regression, and secondly using the estimated betas in a cross-sectional regression to 

estimate the risk premium of the factor.  Kan and Zhang24 note that then the primary question of 

interest is whether the estimated risk premium associated with a given factor is significantly 

different from zero, i.e., is the beta risk of a particular factor priced. 

 

A four-moment asset pricing models is outlined below where the term on the left-hand side is the 

expected realised excess return25 on asset j and the variables β, γ, and δ, on the right-hand side 

represent measures of systematic variance, systematic skewness and systematic kurtosis 

respectively. 
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and 
 

jtR~  is the return on asset j at time t. mtR~  is the return on the market at time t. 

jtR  is the expected return on asset j at time t. mtR  is the expected return on the market at time t. 

 

Since options data is being used in the study, option bins need to be created in order to have 

consistent time-series observations of option returns.  Option bins are classified according to an 

option’s delta26 and range from -0.15 to -0.90 for puts and from +0.15 to +0.90 for calls with 

intervals of 0.15.  The delta is the rate of change of the Black-Scholes pricing function with 

respect to the underlying asset.  It gives us the change in the value of an option induced by a unit 

change in the underlying asset’s spot value.  The adjusted Black-Scholes model27 used to 

calculate the delta measure for calls and puts is outlined below. 
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where 
 
c(p) = call (put) option price    F = matched maturity futures price 
N ( ) = the cumulative standard normal distribution K = strike price 
r = risk-free rate of interest    τ = time-to-maturity 
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σ = volatility28 

Individual option positions have their own particular delta values.  Long call options will have 

delta values between zero and one.  Specifically, out-of-the-money (OTM) call options will have 

positive values closer to zero while in-the-money (ITM) call options will have positive values 

closer to one.  Long put options on the other hand will have delta values that lie between zero and 

minus one.  ITM put options will have negative values closer to minus one whereas OTM put 

options’ delta values will be negative but closer to zero. 

 

To carry out the empirical investigation a two-pass methodology is employed as follows.  On any 

given day we obtain rolling estimates of β , γ , and δ  for each option bin29 using the previously 

outlined equations (on p.8) and daily data for 120 days prior to the estimation date.  These 

estimates can then be used in daily cross sectional regressions.30  Results from the daily 

regressions are then cumulated and tested against priors.   

 

DATA AND CALCULATION OF RETURNS 

Data 

The data is end-of-day FTSE 100 European style exercise option data obtained from LIFFE 

through their on-line download service for the ten-year period 1992-2001.  There are contracts 

expiring in March, June, September and December plus the two other additional months such that 

the four nearest calendar months are always available for trading. The options expire on the third 

Friday of the month and settlement is in cash on the first business day after the last trading day 

(which is the same as the exercise day). The interval between exercise prices is either 50 or 100 

index points, but the Exchange reserves the right to introduce tighter strike intervals (e.g., 25 

points). The data was downloaded in text format and contained the following relevant fields:31 

trade date, option type, expiry date, strike price, closing price, instrument settlement price, 

volume, volatility and closing bid/offer. 
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The range of strike prices available throughout the data period is illustrated in Figure 1 and it is 

apparent that many contracts “available” towards the latter end of the data sample are so far from 

the money that they will not be actively traded.32 

 

 

Figure 1: Range of Strike Prices 
 

Option Returns 

Options are risky assets and therefore under standard asset pricing theory they should earn a 

return commensurate with their systematic risk.  Coval and Shumway33 show that options which 

deliver payoffs in bad states of the world will earn lower returns than those that deliver payoffs in 

good states.  One might interpret this as investors foregoing some level of return for the insurance 

type protection that certain put option positions offer.34  The calculation of option returns is not a 

straightforward task like calculating returns on equities for example as the moneyness 

characteristic of options contracts changes according to movements in the underlying asset.  

Therefore, it is necessary to group options into bins based on type, moneyness measure,35 and 

time-to-maturity.  This process can be carried out in a number of different ways and the following 

discussion looks at how previous studies of option returns have dealt with this task. 
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Coval and Shumway33 in their examination of expected option returns point out that under mild 

assumptions expected call returns exceed those of the underlying asset whereas expected put 

returns are below the risk-free rate.  Furthermore, they also note that the expected returns on puts 

and calls are increasing in the strike price (for US Data).  The method they employ to calculate 

index option returns is based on the first bid-ask quote after 9 a.m. Central Standard Time (CST), 

so as such uses opening prices as opposed to closing prices.  They take options that are to expire 

during the following calendar month, which results in options with times-to-expiration of roughly 

between 20 and 50 days.  When calculating option returns they use the midpoint of the bid-ask 

spread.  Options are classified into five groups according to their strike prices relative to the level 

of the underlying index.  This ensures that exactly one option exists within each group at each 

point in time although the moneyness of each bin changes over time. The returns reported in 

Coval and Shumway33 are arithmetic returns.36 

 

For the CBOE, Sheikh and Ronn37 limit their attention to the thirty most actively traded 

individual equity options to examine patterns of returns.  Within this option class they focus daily 

on the nearest the money, shortest maturity options (but with at least eight days to maturity) with 

a bid price of at least $1.00.  These criteria are imposed to ensure that the most liquid options are 

examined.  On a given day, for each option class, they find the option that satisfies their criteria 

and take the last bid-ask quote for the option on that day and the subsequent day and use the 

average of the bid and ask prices to compute the option return.  The returns reported are 

logarithmic returns. 

 

Jones38 examines the possibility that multiple sources of priced risk appear necessary to explain 

the expected returns of equity index options.  Using S&P 500 index options data and factor 

analysis he attempts to identify the sources of the priced risk.  Option returns are calculated based 
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on holding an option from the close of one trading day to the close of the next trading day.  Only 

options with at least ten days to expiration are considered.  Following Coval and Shumway33 

arithmetic returns are calculated using the average of the bid-ask spread. 

 

In our study, option returns are calculated using daily end-of-day data.  On every trade date we 

identify what we term the first nearby39 and second nearby40 option contracts as these contracts 

are the most actively traded contracts on LIFFE.  Puts and calls are classified into 5 bins 

according to a delta-space measure previously outlined.  When calculating option returns we use 

the closing price41 as reported in the LIFFE data.   Option returns are calculated based on holding 

an option from the close of one trading day to the close of the next trading day.  Throughout this 

paper we report arithmetic returns in decimal format and only examine trade days where 

observations exist for all bins under consideration, e.g., first nearby contract bins, second nearby 

contract bins, etc. 

 

EMPIRICAL RESULTS 

The Underlying Asset 

LIFFE prices the FTSE 100 stock index option as if it was an option on a matched maturity 

futures contract, hence the term Instrument Settlement Price for the quoted matched maturity 

futures price.  To this end, LIFFE provides matched maturity futures price information with its 

option price data.  However, since there are only four FTSE 100 futures contracts traded on 

LIFFE (March, June, September, and December) a true matched maturity futures price for a 

given option may not exist.  The exchange, however, provides an implied futures price and since, 

in practice, only the near-dated futures contract trades heavily42 this is the contract used to 

calculate that implied price.  This is achieved by adjusting the near-dated, or front-end, futures 

price using a cost of carry calculation.  Information relevant to this calculation, most importantly, 
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a consensus ex-ante assessment of the dividend yield on the index portfolio, is provided by 

market traders. 

Given that we are interested in the covariance, coskewness, and cokurtosis of option returns with 

the market index it is necessary to examine the characteristics of the FTSE 100 index.  

Accordingly, summary statistics including mean, variance, skewness and kurtosis estimates are 

reported in Table 1.  Furthermore, the results of skewness, excess kurtosis and Jarque-Bera 

normality tests are reported. 

 

For the FTSE100 index annual mean returns over each of the ten-year period are generally 

positive with only three years showing negative returns.  Negative skewness is prevalent for most 

years but is generally insignificant.  In general there is excess positive kurtosis in the distributions 

with it being significant in five of the sample years.  The Jarque-Bera test for normality rejects 

normality in half of the years examined.  It is clear therefore that over the entire period there is, 

albeit weak, evidence of skewness in the underlying asset returns.  More significantly there is 

strong statistically significant evidence of excess kurtosis in the underlying asset return 

distribution over the sample period and that this is the key driver of the nonnormality exhibited. 

 

[INSERT TABLE 1 ABOUT HERE] 

 

The returns and distribution of returns for the FTSE 100 index over the sample period are 

illustrated in Figure 2.  An interesting observation is the increased level of volatility in the index 

returns post 1998.  
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Figure 2: FTSE 100 Daily Arithmetic Returns 1992-2001 
 

FTSE 100 ESX Equity Index Option Returns 

Options, just like all other assets, should earn returns commensurate with their risk.  Coval and 

Shumway33 state “in a Black-Scholes/CAPM asset-pricing framework, call options always have 

betas that are larger in absolute value than the assets upon which they are written.”  The opposite 

should be true for put options, which offer protective insurance to the option holder and will 

therefore have negative betas.  This theoretical perspective is illustrated in Figure 3. 
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Figure 3: Options and the Security Market Line  
 

Table 2 contains summary statistics for all option bins constructed using the previously defined 

delta space measure.  As alluded to previously, call options with deltas of between 0.15 and 0.90 

are divided into five equally spaced bins while put options with deltas of between -0.15 and -0.90 

are similarly treated.  Only days where observations for all bins existed are included in our 

analysis.  In general, option bins are characterised by negative daily returns (even for call option 

bins which we would expect to have positive returns on average) and significant nonnormality.  

The returns on second nearby option bins are higher than their first nearby counterparts.  The 

option bins are quite positively skewed compared to the underlying, which only exhibits marginal 

positive skewness.  All of the option bins have kurtosis figures in excess of the Normal 

benchmark of three.  Volume figures show that the most heavily traded options are those at-the-

money and out-of-the-money. 
 

[INSERT TABLE 2 ABOUT HERE] 

  

Table 3 presents average systematic moment statistics for all option bins.43  Three measures of 

systematic variance are presented: a time-series estimate of beta, a Black-Scholes beta and a 

money-weighted beta estimated from a regression of absolute changes in option value on absolute 

changes in the level of the underlying.  The systematic variance (beta) figures (calculated using 

 

Riskless 
Asset

OTM  
Put 

ATM  
Put 

ITM  
Put 

Stock ITM 
Call

ATM 
Call OTM  

Call 

Beta 

Expected 
Return

Beta = 0
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the previously defined equations on p.8) in particular are of interest and they conform to 

expectations from our illustration of expected option positions on the security market line earlier, 

i.e., monotonically increasing in strike price.  They are consistent with the estimated Black-

Scholes betas also.  The money-weighted beta estimates are also intuitively appealing.  Two 

measures of systematic kurtosis are presented, the first a time-series estimate and the second what 

we term an orthogonalised estimate.  The equations used in the estimation of our measures of 

systematic variance and systematic kurtosis are presented as part of the table. 

  

[INSERT TABLE 3 ABOUT HERE] 

 

The behaviour of the systematic variance estimates is interesting in that absolute beta values get 

smaller post 1997 and get particularly squeezed in 1998 possibly as a result of the Long Term 

Capital Management crisis.  The behaviour of returns around this period along with a volatility 

index is plotted in Figure 4 and clearly shows volatility spikes towards the end of 1998.   

 

 

Figure 4: FTSE100 Index: Level, Returns and Volatility Index 
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Plots of systematic variance, systematic skewness and systematic kurtosis (not orthogonalised) 

over the sample period are presented in Figure 5 and further illustrate the behaviour of the 

systematic moments under consideration. 

 

 
 
Figure 5: Systematic Moment Plots For First Nearby Option Bins 

 

The middle plot suggests that systematic skewness is badly behaved in that it changes sign; it also 

tends to have a number of extremely large outliers.  The other important point of interest is the 

similarity between the systematic variance and systematic kurtosis plots.  The implications of 

these observations impact on the regression analysis that we carry out later in the paper.    

 

As a final illustration of the results to date Figure 6 contains a subplot of systematic skewness 

(with a restricted y-axis) to illustrate its behaviour excluding its most extreme observations and a 

plot of the orthogonalised systematic kurtosis measure presented above as part of Table 3.  From 

these plots one can observe that systematic skewness seems to be intermittently susceptible to 
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periods of unstable behaviour.  More importantly by comparing the plot of the orthogonalised 

systematic kurtosis measure in the figures below with the previously illustrated systematic 

variance and systematic kurtosis plots one can see that the orthogonalised systematic kurtosis plot 

is very different, which is to be expected. 

 

 

Figure 6: Further Systematic Moment Plots For First Nearby Option Bins 
 

In an attempt to summarise the results of the first part of the empirical investigation into the 

returns generating process for ESX equity index options we plot a risk-return space 

representation of option returns below where first and second nearby option bin returns are 

plotted against corresponding average option bin betas (estimated using the equations presented 

on p.8).  It is clear from Figure 7 below (and Table 2) that average returns on most option bins are 

negative.  The negativity of OTM option returns is particularly evident and it can be seen that 

first nearby options in general have more negative returns than their second nearby counterparts.  

The fact that the majority of average call option returns are significantly negative is surprising 
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given our expectation that call returns would on average exceed the return on the underlying 

asset, which in our sample was on average approximately 0.0003 per day 

 

 

Figure 7: A Risk Return Plot for ESX Equity Index Options 

 

Two Stage Time Series Cross-Section Regressions 

Given the results of the empirical investigation to date the two stage time series cross-sectional 

regressions we can employ are restricted.  In particular, due to lack of stability in the systematic 

skewness parameter we will not include it in our regression analysis.  This limitation is mitigated 

to a certain extent by the fact that kurtosis seems to be the dominant cause of nonnormality in the 

market index.  Therefore we run regressions using only systematic variance and (orthogonalised) 

systematic kurtosis estimates in an investigation of how well an extended CAPM works in 

explaining option returns. 
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Table 4 contains results of daily cross sectional regressions for all option bins over the sample 

period.  Three models are tested: Model I is the traditional CAPM, Model II is an extended 

CAPM with a kurtosis term included and Model III regresses option returns on only a kurtosis 

term.  The regressions are run for all options together and for puts and calls separately.  Model I 

results are mixed and contrary to expectations in some cases.  When all options are included in 

the regressions beta is insignificant in explaining option returns (the points on Figure 7 clearly lie 

off the SML).   When only call options are included in the regressions the beta slope coefficient is 

significantly negative.  The beta coefficient is positive and significant when only puts are 

included in the regressions.  In all cases for Model I the intercept is significant possibly 

highlighting another factor that is being priced in the option contract under investigation.  The 

high R2 figures are to be expected given that the main driver of option returns is the market index.  

Model II features significant intercept terms for all three regressions run.  Systematic variance 

(beta) is only significant for the regression involving put options.  Systematic kurtosis is 

significant when all options are included in the regressions and when puts are regressed 

separately.  Even though systematic variance was significant for Model I when only calls were 

used in the regression this is not the case for Model II where the beta coefficient is insignificant.  

The R2 figures are marginally higher in all cases for Model II compared to Model I.  Model III is 

characterised by much lower R2 figures and generally insignificant slope coefficients.  The results 

presented in Table 4 should be interpreted cautiously - the averaging process used to examine the 

slope coefficients and their significance affects the results for this traditional approach to testing 

asset pricing models.   For example, on downdays the slope coefficient for calls will be negative 

while on updays it will be positive.  Averaging the coefficients will have obvious implications in 

the significance tests as the positive coefficients and negative coefficients will tend to cancel each 

other out. 

 

[INSERT TABLE 4 ABOUT HERE] 
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Pettengill et al44 account for a conditional relationship between comoments and realised returns.  

They point out that if the realised market return is above the risk-free return, betas and returns 

should be positively related, but where the realised market return is below that of the risk-free 

asset this relationship will be negative.  In order to allow for this they divide their dataset into 

updays, days on which the realised market returns is above the risk-free return, and downdays, 

days on which the realised market returns are below the risk-free return.  In view of this Table 5 

contains results of daily cross sectional regressions for all option bins over the sample period 

where the data has been split into updays and downdays.  As is Table 4 three models are 

presented and regressions are run for calls alone, puts alone, and calls and puts together. 

 

Applying the above procedure has a dramatic effect on the results.   The significance of beta is 

now very clear in all of the regressions run.  It is also of correct sign, positive on updays and 

negative on downdays.  The size of the slope coefficients on updays and downdays are also 

encouraging as they are of a similar magnitude.  There are some significant results with respect to 

the kurtosis term in Model II but the issue of collinearity is a concern given the effect of its 

inclusion on the significance of the beta coefficient.  This concern also affects our interpretation 

of the Model III results because even though the kurtosis term is significant in some cases when 

returns are regressed on it alone the R2 figures are low in comparison to Models I and II.   

 

[INSERT TABLE 5 ABOUT HERE] 

 

Overall, the results of our empirical analysis are variable.  The basic CAPM model performs 

relatively well in explaining the variation in option returns over the sample period.  However, we 

are unable to make strong inferences for a model including systematic skewness (we discard this 

variable due to its unstable characteristics) and systematic kurtosis (mixed empirical results and 

collinearity concerns).  Most notably, however, the significance of the intercept term throughout 
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the regression analysis highlights the inability of the models presented to explain the return 

generating process for ESX index options. 

 

SUMMARY DISCUSSION AND CONCLUSION 

The purpose of this paper was to carry out an empirical investigation into the returns generating 

process for LIFFE ESX options over a ten-year sample period.  The first contribution of the paper 

is to provide a risk-return analysis of ESX option contracts.  According to classical finance 

theory, options just like all other assets should earn a return commensurate with their systematic 

risk as measured by beta.  Options theory suggests that call options should on average earn 

returns greater than that of the asset upon which they are written while put options should earn 

returns below that of the risk free rate given that investors are willing to pay for their insurance-

like properties The empirical results presented in this paper conform with expectations in that call 

betas exceed that of the underlying and are increasing in strike price whereas put betas are 

negative and increasing in strike price. 

 

However, the most interesting aspect of the study is in the levels of returns provided by the 

options examined.  Both puts and calls (in almost all cases) exhibit negative daily arithmetic 

returns on average.  This is particularly anomalous with regards to the call returns, which one 

would expect to have positive returns on average.  One conclusion that might be drawn from the 

analysis is that ESX option contracts are just bad value, i.e., they are overpriced, possibly as a 

result of the poor liquidity on the LIFFE options exchange.  Another factor in this apparent 

overpricing may be that static buy and hold strategies combined with derivative instruments can 

achieve the same payoffs as dynamic strategies relying on stocks and bonds.  Accordingly, 

Gibson and Zimmermann45 note that in order to enhance the full risk-return spectrum, static 

strategies require diversification and leverage opportunities which is why investors may be 

willing to pay above the odds for the diversification and leverage opportunities offered by 
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derivative instruments.  The overpricing hypothesis would seem to merit further investigation and 

an interesting addition to the preceding analysis would be to include options with very short times 

to maturity, i.e., less than 15 days, which were excluded because of our definitions of first and 

second nearby option contracts. 

 

The second contribution of the paper is to investigate the possibility that systematic moments of 

higher order than two might explain the returns generated on ESX option contracts.  Systematic 

skewnesses were observed to be unstable over the sample period and were therefore not suitable 

for use in this study.  This resulted in its removal from the analysis. To investigate the reduced 

model (second and fourth moments), cross sectional regressions were run across the 1,610 days 

for which observations existed for all option bins. The most significant result from the regression 

analysis is the performance of the traditional single-factor CAPM, in that, while explaining 

approximately 70-85% of the variation in option returns across the sample period the regression 

results consistently showed a significant intercept term, suggesting that some other factor(s) may 

need to be included.  The role of systematic kurtosis was less clear (its collinearity with 

covariance affecting the interpretation of results) and the role of systematic skewness was not 

empirically tested.  

 

Despite the problems encountered in the regression analysis and the mixed incremental 

performance of the systematic kurtosis term, the role of the extended CAPM in explaining equity 

index option returns merits further investigation.  Developing a different measure/estimation 

technique might overcome the problem of a lack of stability in the systematic skewness parameter 

and the orthogonalisation of the systematic kurtosis term can be further explored.  Furthermore, 

an obvious extension of our analysis would be to employ Hansen’s15 generalised method of 

moments which is distribution free and avoids the errors in variable problem associated with the 

traditional two stage time series cross sectional approach employed in this paper. 
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APPENDIX A 

 

DATA FIELD DESCRIPTIONS 
Trading Date Type Expiry 

The date to which the information 

relates. 

Identifier as to whether the option 

is a call or a put. 

The month in which the contract 

legally expires.  ESX options 

expire on the third Friday of every 

month. 

Strike Price Closing Price Instrument Settlement Price 

(Underlying) 

The price at which the holder of the 

option can buy or sell the 

underlying index.  The interval 

between strike prices is either 50 or 

100 index points.  Additional 

exercise prices are introduced when 

the index has exceeded the second 

highest, or fallen below the second 

lowest, available exercise price. 

Option settlement price is defined 

as “an average of traded prices in 

the last 30 seconds of trading; if 

there is no trading the pit observer 

asks for bid/offers in the pit and 

takes the average of these - in this 

case the contract can settle outside 

the high/low range.”46 

LIFFE prices the FTSE 100 stock 

index option as if it was an option 

on a matched maturity futures 

contract, hence the term Instrument 

Settlement Price for the quoted 

matched maturity futures price.  To 

this end, LIFFE provides matched 

maturity futures price information 

with its option price data. 

Volume Closing Bid/Closing Offer  

The total number of matched trades 

on the trading day in question. 

The last bid and offer in the 

marketplace before settlement. 
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Table 1: Summary Statistics for Daily Arithmetic Returns Data on the FTSE 100 Index  
FTSE 100 Index  

N = 2,524 Mean Standard Deviation Skewness a Excess Kurtosis a J-B Test b 

1992     0.0006 0.0099 0.9440*** 5.8407*** RNor 

1993     0.0007 0.0063 0.2536 0.8816*** RNor 

1994    -0.0004 0.0085 -0.1616 -0.5249 Nor 

1995     0.0008 0.0062 0.0010 0.4668 Nor 

1996     0.0004 0.0060 -0.4022*** 0.3198 RNor 

1997     0.0010 0.0095 -0.1524 0.9105*** RNor 

1998     0.0006 0.0134 0.0076 0.8724*** RNor 

1999     0.0006 0.0116 -0.1388 0.3353 Nor 

2000    -0.0002 0.0118 -0.0346 -0.1671 Nor 

2001    -0.0006 0.0133 -0.0154 0.5046* RNor 

Overall     0.0003 0.0100 0.0056 1.8644*** RNor 

a To compute skewness (Sk) and excess kurtosis (Ku) and to test for significance (*, **, *** indicate significance at 
the 10%, 5%, and 1% levels, respectively) the following equations were used 

Skewness and Excess Kurtosis Estimates: 
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b J-B Test is the Jarque-Bera test for normality.  Nor is where the normality hypothesis is not rejected at the 5% level 
of significance.  RNor is where normality is rejected at the 5% level of significance. 
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Table 2: Summary Statistics for Daily Arithmetic Returns Data on ESX Option Bins a   
 Option Characteristics Mean Std. Dev Skewness Kurtosis Avg. Vol. b J-B Test c 
 Delta Class. Nearby       

0.15 to 0.30 OTM 2 1 -0.0023     0.3381     1.0470 5.9568 197 RNor 
0.30 to 0.45 OTM 1 1    -0.0016     0.2743     0.7136 4.3422 172 RNor 
0.45 to 0.60 ATM 1 1    -0.0018     0.2204     0.4267 3.5404 160 RNor 
0.60 to 0.75 ITM 1 1    -0.0002     0.1727     0.2711 3.4806 29 RNor 
0.75 to 0.90 ITM 2 1     0.0007     0.1170     0.0767 3.6728 7 RNor 

0.15 to 0.30 OTM 2 2    -0.0021     0.2365     0.5907 3.7363 62 RNor 
0.30 to 0.45 OTM 1 2    -0.0005     0.1912     0.4137 3.3848 76 RNor 
0.45 to 0.60 ATM 1 2     0.0000     0.1541     0.2579 3.1803 83 RNor 
0.60 to 0.75 ITM 1 2     0.0007     0.1202     0.1678 3.3093 16 RNor 
0.75 to 0.90 ITM 2 2     0.0010     0.0819     0.0082 3.2869 2 Nor 

C
al

ls
 

Underlying 0.0003 0.0105     0.0193 4.3251 - RNor 
Option Characteristics Mean Std. Dev Skewness Kurtosis Avg. Vol. b J-B Test c 

Delta Class.         

         
-0.75 to -0.90 ITM 2 1 -0.0027     0.1769     0.4283 3.4916 11 RNor 
-0.60 to -0.75 ITM 1 1 -0.0041     0.2132     0.5909 3.8223 46 RNor 
-0.45 to -0.60 ATM 1 1 -0.0065     0.2509     0.8131 4.5213 202 RNor 
-0.30 to -0.45 OTM 1 1 -0.0097     0.2898     1.0305 5.2338 174 RNor 
-0.15 to -0.30 OTM 2 1 -0.0151     0.3365     1.4045 6.9048 160 RNor 

-0.75 to -0.90 ITM 2 2 -0.0019     0.1250     0.3616 3.3197 3 RNor 
-0.60 to -0.75 ITM 1 2 -0.0029     0.1488     0.4733 3.5103 12 RNor 
-0.45 to -0.60 ATM 1 2 -0.0038     0.1734     0.6335 3.9125 89 RNor 
-0.30 to -0.45 OTM 1 2 -0.0056     0.1989     0.8027 4.3975 87 RNor 

Pu
ts

 

-0.15 to -0.30 OTM 2 2 -0.0080     0.2314     1.0744 5.4931 59 RNor 
a As part of the data filtering process we only use days where there is a return observation for all bins. As a result each bin 
contains 1,729 observations. 
b The volume figure reported is calculated using bins data prior to filtering for problematic days (each bin contains 1,793 
observations). 
c J-B Test is the Jarque-Bera test for normality.  Nor = Fail to reject normality; RNor = Reject normality (at the 5% level 
of significance) 
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Table 3: Summary Systematic Moment Statistics for ESX Option Data  
 Option  

Characteristics 
Systematic 
Variance 

Systematic 
Kurtosis 

Delta Class. Nearby β a BS-β b MW-β c δa δd 
0.15 to 0.30 OTM 2 1 34.29 34.95 0.26 32.92 -0.18 
0.30 to 0.45 OTM 1 1 28.66 28.43 0.41 27.69 -0.00 
0.45 to 0.60 ATM 1 1 23.47 22.83 0.57 22.88 0.21 
0.60 to 0.75 ITM 1 1 18.39 17.56 0.74 18.07 0.31 
0.75 to 0.90 ITM 2 1 12.45 11.69 0.92 12.36 0.32 

0.15 to 0.30 OTM 2 2 24.40 24.55 0.26 23.56 -0.05 
0.30 to 0.45 OTM 1 2 20.02 19.79 0.41 19.46 0.09 
0.45 to 0.60 ATM 1 2 16.36 15.90 0.57 16.00 0.19 
0.60 to 0.75 ITM 1 2 12.74 12.21 0.74 12.51 0.20 

C
al

ls
 

0.75 to 0.90 ITM 2 2 8.69 8.23 0.91 8.59 0.19 
Option  

Characteristics 
Systematic 
Variance 

Systematic 
Kurtosis 

Delta Class. Nearby β a BS-β b MW-β c δa δd 
-0.75 to -0.90 ITM 2 1 -18.43 -17.10 -0.84 -17.79 0.02 
-0.60 to -0.75 ITM 1 1 -22.11 -20.20 -0.70 -21.37 -0.01 
-0.45 to -0.60 ATM 1 1 -25.73 -23.14 -0.55 -24.91 -0.05 
-0.30 to -0.45 OTM 1 1 -29.27 -26.03 -0.38 -28.28 0.02 
-0.15 to -0.30 OTM 2 1 -32.65 -29.14 -0.20 -31.85 -0.26 

-0.75 to -0.90 ITM 2 2 -13.01 -12.12 -0.83 -12.63 -0.07 
-0.60 to -0.75 ITM 1 2 -15.44 -14.94 -0.69 -15.01 -0.11 
-0.45 to -0.60 ATM 1 2 -17.83 -16.16 -0.53 -17.40 -0.20 
-0.30 to -0.45 OTM 1 2 -20.22 -18.07 -0.37 -19.78 -0.27 

Pu
ts

 

-0.15 to -0.30 OTM 2 2 -22.92 -20.14 -0.19 -22.54 -0.42 
a The systematic variance and systematic kurtosis figures reported are average values calculated using the equations below.  (N = 1,610) 
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b The BS-β figures reported are average Black-Scholes betas calculated using the following equations (N = 1,793). 

C
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P
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c The MW-β figures reported are from regressions (N = 1,729) where money-weighted call returns were regressed on money-weighted index 
returns. 

)*()(* IRPCR ic βα +=  or 

)()( IPC ∆+=∆ βα  
The term on the left hand side is the change in the price of the call/put and the term on the right hand side is the change in the level of the 
FTSE 100 index.  Because these regressions are run using absolute movements in the option and the underlying the results are of different 
scale to the other estimates of systematic variance. 
d When using higher moments as regressors problems of collinearity arise when estimating the systematic moments.  This is particularly 
evident in the systematic variance and systematic kurtosis estimates.  The solution is to orthogonalise the systematic kurtosis estimate with 
respect to the systematic variance estimate by estimating what might be termed co-excess kurtosis as follows. 
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Table 4: Classic Cross-Sectional Regression Results   

 Model I Model IIa Model IIIa 

N = 1,610 jtftjt RR βαα 10 +=−  jtjtftjt RR δαβαα 210 ++=−  jtftjt RR δαα 20 +=−  

ALL α0 α1 α0 α1 α2 α0 α2 

Mean αb -0.0040*** -0.0000 -0.0018*** 0.0004 0.0056*** -0.0027 -0.0027 

t-stat c -4.23 -0.08 -3.45 0.90 3.46 -1.42 -0.72 

Adj. R2 0.8543 0.9145 0.7046 

CALLS α0 α1 α0 α1 α2 α0 α2 

Mean α -0.0031*** -0.0006* 0.0029** -0.0006 -0.0002 0.0012 -0.0023 

t-stat -2.77 -1.95 2.49 -1.33 -0.11 0.44 -0.51 

Adj. R2 0.8059 0.8410 0.6697 

PUTS α0 α1 α0 α1 α2 α0 α2 

Mean α 0.0073*** 0.0007** 0.0031* 0.0010*** 0.0079*** 0.0023 -0.0045** 

t-stat 4.00 2.24 1.70 2.58 4.40 0.65 -1.99 

Adj. R2 0.7167 0.8088 0.5399 
a The kurtosis measure employed in the regressions is the orthogonalised kurtosis estimate described 
earlier. 
b The slope coefficients reported are means for all of the daily cross-sectional regressions 
c The t-values are equal to the mean value of the coefficient divided by its standard deviation. This tests 
whether the coefficient value is significantly different from zero. 
*, **, *** indicate significance at the 10%, 5%, and 1% levels, respectively 
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 Table 5: Upday/Downday Regression Results   
 α0 α1 α2  Adj. R2 N 

CALLS: UPDAYS 
Model I 

jtftjt RR βαα 10 +=−  
0.0031*b 
(1.78) c 

0.0072*** 
(20.07) 

- 
- 0.7480 826 

Model IIa 
jtjtftjt RR δαβαα 210 ++=−  

0.0038** 
(2.18) 

0.0069*** 
(11.49) 

-0.0031 
(-0.97) 0.7892 826 

Model IIIa 
jtftjt RR δαα 20 +=−  

0.0364*** 
(9.68) 

- 
- 

-0.0304*** 
(-4.65) 0.6230 826 

CALLS: DOWNDAYS 
Model I 

jtftjt RR βαα 10 +=−  
0.0032** 
(2.20) 

-0.0088*** 
(-37.89) 

- 
- 0.8668 784 

Model II 
jtjtftjt RR δαβαα 210 ++=−  

0.0019 
(1.28) 

-0.0085*** 
(-15.65) 

0.0028 
(1.03) 0.8956 784 

Model III 
jtftjt RR δαα 20 +=−  

-0.0359*** 
(-10.11) 

- 
- 

0.0274*** 
(4.87) 0.7190 784 

PUTS: UPDAYS 
Model I 

jtftjt RR βαα 10 +=−  
0.0035* 
(1.85)  

0.0081*** 
(38.24) 

- 
- 0.7968 826 

Model II 
jtjtftjt RR δαβαα 210 ++=−  

-0.0013 
(-0.58) 

0.0085*** 
(25.08) 

0.0043** 
(2.19) 0.8582 826 

Model III 
jtftjt RR δαα 20 +=−  

-0.0671*** 
(-17.83) 

- 
- 

-0.0027 
(-0.93) 0.5882 826 

PUTS: DOWNDAYS 
Model I 

jtftjt RR βαα 10 +=−  
0.0113*** 

(3.57) 
-0.0072*** 
(-16.57) 

- 
- 0.6324 784 

Model II 
jtjtftjt RR δαβαα 210 ++=−  

0.0078*** 
(2.61) 

-0.0069*** 
(-11.86) 

0.0116*** 
(3.83) 0.7568 784 

Model III 
jtftjt RR δαα 20 +=−  

0.0754*** 
(15.41) 

- 
- 

-0.0065* 
(-1.82) 0.4891 784 

ALL: UPDAYS 
Model I 

jtftjt RR βαα 10 +=−  
-0.0034*** 

(-2.91) 
0.0076*** 
(31.84) 

- 
- 0.8548 826 

Model II 
jtjtftjt RR δαβαα 210 ++=−  

-0.0022*** 
(-3.24) 

0.0083*** 
(21.12) 

0.0050** 
(2.54) 0.9142 826 

Model III 
jtftjt RR δαα 20 +=−  

-0.0016 
(-0.61) 

- 
- 

-0.0072 
(-1.29) 0.7017 826 

ALL: DOWNDAYS 
Model I 

jtftjt RR βαα 10 +=−  
-0.0045*** 

(-3.07) 
-0.0081*** 
(-29.87) 

- 
- 0.8538 784 

Model II 
jtjtftjt RR δαβαα 210 ++=−  

-0.0015* 
(-1.76) 

-0.0080*** 
(-14.05) 

0.0061** 
(2.39) 0.9149 784 

Model III 
jtftjt RR δαα 20 +=−  

-0.0039 
(-1.39) 

- 
- 

0.0020 
(0.39) 0.7016 784 

a The kurtosis measure employed in the regressions is the orthogonalised kurtosis estimate described 
earlier. 
b The slope coefficients reported are means for all of the daily cross-sectional regressions 
c The t-values (in parentheses) are equal to the mean value of the coefficient divided by its standard 
deviation. This tests whether the coefficient value is significantly different from zero. 
*, **, *** indicate significance at the 10%, 5%, and 1% levels, respectively 
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