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Scope and Purpose 

The forecasting capability of neural networks (NN), when applied to economic 

time series,  remains moot with recent tests of comparative performance 

disappointing and dependent on the particular specification selected. Earlier 

research has established that the performance of a NN model depends quite 

critically on the process by which it is constructed.  However, most previous 

evaluations have not developed systematic procedures to choose the specification. 

In order to evaluate the forecasting effectiveness of NN, it is important to ensure 

they are adequately and objectively built. This paper has two purposes: to propose 

an effective and computationally viable approach to objectively specifying the 

structure of NN and, secondly, to evaluate its success by a thorough examination 

of its forecasting performance when compared to various alternative statistical 

forecasting methods. 

  



Abstract 

The comparative accuracy of feedforward neural networks (NN) when applied to time 

series forecasting problems remains uncertain. This is because most studies suffer from 

either of two defects – they choose the NN from a wide range of alternatives in order to 

present the forecast accuracy results in the best light, or they do not compare the results 

with suitable benchmarks. In order to overcome both these objections this paper 

proposes an objective procedure for specifying a feedforward neural network models 

and evaluates its effectiveness by examining its forecasting performance compared 

with established benchmarks. After the selection of input nodes based on 

cross-validation, a 3-Stage procedure is proposed here which consists of sequentially 

selecting first the learning rate followed by the number of nodes and the initial weights. 

This paper shows that neural networks only perform robustly if they are built by 

considering these three factors jointly. In an empirical demonstration of the strength of 

the approach, those neural network models, built by considering all three factors, 

performed better than other competitive statistical methods when evaluated rigorously 

on a standard test data set.   

 

 

 

Keywords: backpropagation; neural networks; comparative forecasting accuracy; 

model specification 
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1. Introduction 

Neural network approaches to time series forecasting are becoming more accepted as part of the 

armory of forecasting techniques that are used in many application areas. The computer science 

community has been an effective publicist of these new methods, despite the limited evidence of 

their effectiveness compared to established methods (see e.g. Chatfield, [1]). However, more 

recently, there has been increasing evidence that the accuracy of neural network methods is 

comparable to existing methods [2] although in standard time series comparisons their performance 

still remains disappointing [3]. This paper further contributes to this growing literature by examining 

the sensitivity of forecast accuracy to network specification. In so doing, it aims to overcome one 

key weakness in much of the earlier work, the lack of an objective approach to model construction 

[4].  

 

The first stage in defining a procedural  approach to specifying and estimating a feedforward neural 

network is to select a limited number of input nodes from the set of inputs. A number of techniques  

have been proposed including structural stabilization, regularization and Bayesian approaches [5]. 

Here we will use a selection procedure based on cross-validation. Once the input variables are 

specified the following important choices must be made1: the number of hidden nodes, the learning 

rates, and the initial values assigned to the weights and biases of the neural network. A 3-Stage 

                                                 
1 Of course, other choices must also be made including for example, the number of hidden layers. In empirical 

forecasting applications a single hidden layer has always provided sufficient flexibility. 
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Training approach is proposed here to resolve these choices and train a neural network automatically, 

ensuring an objective and replicable approach to model selection.  

 

In order to evaluate the value of this 3-Stage approach rigorously two issues need to be faced. First 

the 3-stage approach must be shown to lead to an adequate and computationally practical NN 

compared with alternative specifications and the procedure underlying its construction justified,  and 

second, the forecasting performance of the resulting neural network models must be compared with 

other established forecasting approaches. This has been achieved by using a standard data set, the 

telecommunications data set [6] and the benchmarks adopted for making the comparisons with 

neural nets were those developed in Fildes et al. [7].  The organization of the paper is as follows. The 

next section discusses the process of building a backpropagation neural net, the choice of input 

variables and the proposed 3-Stage procedural approach to its specification and training. Section 3 

discusses the evaluation of neural net forecasting methods. Section 4 gives a brief summary of the 

data used and the benchmark forecasting methods while the results are presented in sections 5 and 6. 

Looking ahead to the conclusions we find that when the neural net is built using appropriate and 

objective methods it can outperform the best benchmark alternative forecasting methods.  

2. Building a Neural Network: The 3-Stage Training Approach 

Backpropogation neural network methods applied to time series forecasting has now an established 

pedigree (see Zhang et al. [2] for a summary). Before estimating a backpropagation neural network 
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forecasting model (and after defining the set of possible input variables), a number of decisions must 

be made to fully specify the proposed network. Neuneier and Zimmerman [8], for example, give a 

full discussion of the various elements. These include deciding which particular inputs to include, 

the choice of the number of hidden nodes, the learning rates, and an initializing procedure for the 

weights and biases of the neural network etc. Some earlier researchers have shown the effects on 

forecasting accuracy of some of the choices researchers must make.  For example, Farraway and 

Chatfield [9] examined the effects of the choice of input nodes and the number of hidden neurones, 

concluding with the comment ‘great care is needed to choose an appropriate set of input variables, an 

appropriate architecture …and an appropriate numerical procedure for fitting an NN model’. Some 

of these choices are more critical than others, although there is no clear consensus, so for example, 

Zhang et al. [10] examined the number of input nodes and the number of hidden nodes (as well as 

sample size) in a simulation experiment, concluding that the number of input nodes was much more 

important. However, in their experiments, so long as the inputs were sufficient to characterize the 

non-linear equations being simulated, there was nothing to be gained from including additional 

inputs and sometimes there was a (minor) loss. Thus, the choice of the input set needs to be 

sufficiently broad to characterize the data series and the domain of application but not too large 

(relative to sample size) to undermine pruning/ model simplification algorithms. In addition the 

approach used to limit the input nodes should not be overly conservative. Here, a 3-Stage training 

procedure is proposed to specify a NN structure in order to build and estimate a forecasting model 
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automatically, once the set of possible inputs is selected. The approach ensures the forecasting model 

building process is almost entirely data-driven but, because of its sequential nature, it is also 

conservative in its use of computer resources. Simultaneous estimation of the parameters demands 

much more computer time (see appendix 1). The sequential 3-stage procedure also attempts to 

enhance the robustness of the chosen neural network model and to convert the complexity and 

subjectivity inherent in neural network model building into a flexible and more objective 

methodology. Figure 1 presents an overview of the process of specifying a neural net suitable for 

forecasting when the 3-Stage Training approach is adopted. 

 

Figure 1 here. The process of specifying a neural network forecasting model when using 3-Stage 

Training 

Stage 1: Pilot Training 

 The estimation (or ‘learning’) of a specific neural network relies on the non-linear estimation of the 

parameters and the optimizing search routine depends on a pre-selected learning rate. The main goal 

of this first stage is to set up the learning rate of the neural network.  

 

The first stage requires the input set to be specified, based on the modeler’s knowledge of the 

problem area and the known time series characteristics, bearing in mind data limitations. Once the 

potential input variables have been selected, the data set available for model building and estimation 
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is then split into a ‘training’ data set and a ‘validation’ set (according to the usual practice when 

building a neural network) in order to overcome the overfitting problem [11].  In order to derive a 

reasonable learning rate efficiently, simple network structures that contain a small number of hidden 

nodes and a single hidden layer are trained to predict the outputs of the validation data set by 

minimizing a pre-selected error measure, usually MSE. The choice of learning rate etc, then can be 

designed as a small-scale competition (1 or 3 hidden nodes were used here in the empirical 

comparison to reflect the limited data availability). The optimal learning rate is obtained when a 

network structure can use that learning rate to predict best the outputs of the validation data.  

 

The effect of using only simple structures in choosing the learning rate effectively advantages them 

compared to more complex alternatives. This has been used as an alternative to a penalty approach, 

which penalizes more complex structures quite heavily. The approach proposed here only gives the 

simpler structures the advantage of choosing the learning rate.  Once the learning rate is chosen, it is 

used in training all the models at the later stages. The use of an adaptive learning rate with 

pre-specified parameters such as those given by Smith [11] is an equally well-specified approach 

(and in the empirical comparison was shown to have similar performance characteristics). 

Stage 2: Competition Training 
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At this stage, neural networks with all the structures included from the set under consideration are 

trained with the learning rate determined as at the first stage. The network structure that best predicts 

the outputs of the validation data set is recorded and will be used at the third stage. 

Stage 3: Reward Training 

The recorded optimal structure is retrained several times. Each time, in initialization a different set 

of random numbers are given to the weights and the biases of the neural network. That set of random 

numbers, which best predicts the outputs of the validation data set, is selected. The neural network 

model is now specified and can be used to forecast ahead.  

 

A full description of these three stages which lead to an objectively specified structure and 

estimation procedure is given in appendix 1 together with the parameters chosen including data 

transformations. 

3. The Evaluation of Neural Network Forecasting Models 

The forecasting evaluations of neural networks in the literature have taken one of two approaches: 

either a limited set of model structures (with a fixed learning rate etc) have been considered and the 

best chosen using a pre-selected fit criterion, or alternatively, a broader set was considered and one 

complete specification from among the many is lauded for its strong performance. While the former 

places artificial constraints on the potential of NNs, because of the limited structures considered, the 

latter flatters their achievements because no objective selection method is specified, i.e. the model 
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structure is chosen retrospectively to produce the best performance. In order to investigate whether 

neural network forecasting models are effective, the out-of-sample forecasting performance of 

objectively and adequately built neural networks should be evaluated. To carry out this task fairly, 

there are various issues which must be considered. In a study by Adya and Collopy [4], guidelines 

first described in Collopy et al. [12] were used to evaluate the effectiveness of the validation 

component.  These required comparisons with well-accepted models, and the use of ex ante 

validation data based on a reasonable sample of forecasts. Expanding on these guidelines, seven 

issues will be addressed here. 

(1) To evaluate the forecasting performance of neural network models, benchmarks methods should 

be used to demonstrate how performance of the network model differs from relevant 

competitors [1]. By using competitive models as benchmarks, we can evaluate the performance 

of neural networks rigorously. Benchmarks should be chosen based on past research in a similar 

area or the results of forecasting competitions. In the present study, the benchmarks used are 

those methods which have been evaluated in the study by Fildes et al. [7] as they apply directly 

to the data under analysis. In that study, the Robust Trend method, designed specifically for the 

telecoms data [6], was shown to perform convincingly better than all the other methods used.  

The inclusion of methods such as Holt’s has the added advantage that they have been widely 

tested and shown to perform well across a wide variety of series [13]. 
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(2) Since relative forecasting performance can be influenced by the evaluation criteria adopted [6], 

the criteria should be carefully chosen before model estimation. This can prevent biasing the 

evaluation by using some specific evaluation criteria, chosen ex post. Performance evaluation 

criteria should be able to provide a summary of the forecast error distribution and/or to indicate 

the actual costs incurred by forecasting errors. The evaluation criteria used in the present study 

are those criteria which were adopted in the study by Fildes et al. [7] and evaluated in Fildes [14]. 

These include MAPE, GMRAE and MdRAE and are defined in appendix 2.  

(3) The ‘test’ or out-of-sample data set should only be used to measure forecasting performance, 

after model specification and estimation is complete. It should not be used in the model 

estimation or model selection process. This ensures that real ‘forecasting’ performance is 

evaluated.  

(4) If the aim is to establish generalisable conclusions about the performance of neural network 

methods, the number of series selected from the target population should be adequate for the 

problem under consideration. Using a small number of series increases the risks that a particular 

specification that ‘fits’ does not represent the typical data generating processes of the target 

population of series. Moreover, by using more series, we can test neural networks’ capabilities 

of adapting themselves to model different data generating processes within a particular class. 

Here 261 monthly non-seasonal series are used. 
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(5) Forecasting performance should be evaluated over different forecasting horizons. The 

M-competition [15] showed that “the performance of various methods depends upon the length 

of the forecasting horizon.” [7]. In applications it is important to establish whether neural 

networks can forecast well for short and/or long forecasting horizons. Because of their 

non-linearity it might be expected that performance over the longer horizon would be relatively 

stronger. In the present study, the forecast horizon is 18 months.  

(6)  For time series forecasting applications, different forecasting time origins should be used. This 

is because, for each series or data set, the forecasting performance of a model can be influenced 

by the sampling variability of time origins and the effects of the estimation/ test samples sizes 

[7]. In the present study, 5 time origins are used. This permits the examination of the reliability 

of the different methods over time as well as sample size effects. 

(7) A clear, objective and adequate procedure for building neural network forecasting models should 

be adopted so that the models built can be replicated by others.  While most of the studies 

surveyed by Adya and Collopy [4] fail this test, Balkin and Ord’s [3] evaluation on the M3 data 

is fully objective although their process is more limited than that employed here – they only 

specify a criterion for selecting the number of hidden nodes, rather than  the 3-Stage training 

approach adopted here.   
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4. The Data, Alternative Forecasting Methods and Error Measures 

In choosing the test data on which to evaluate the proposed procedure a number of issues need to 

be borne in mind. The relatively poor performance of a forecasting method on heterogeneous data 

such as that in the M3-Competition where NN performed disappointingly does not imply equally 

poor performance on a more homogeneous data set [14,7]. The data used in this study are 261 

non-seasonal time series taken from a telecommunications data set. Thus, our choice of a 

homogeneous data set removes one source of experimental variability.  

 

There are 71 data points in each time series. Some have argued that NN require a large sample size 

to perform effectively but there is no consensus on this issue [4]. While multicollinearity in the 

parameter estimates is inevitable with small samples, the forecasting accuracy of the resulting model 

is not necessarily damaged. If sample size proves to be important we would expect to see NN 

performing better when a larger training set is used. This is evaluated in the experimental 

comparisons we describe by comparing performance over forecast origins. Strong performance 

when the ‘training’ data set is short would give support to those who argue that NN is a robust 

forecasting method in most circumstances.   

 

Each time series represents the monthly data of the number of special circuits in service and is 

non-seasonal. For a more detailed description of the data set, its statistical features and an 

exploratory data analysis of its features, reference can be made to [6, 7, 14]. The key feature of the 
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data are its non-stationarity with a dominant negative trend, limited autoregressive information and a 

considerable number of outliers. Thus, Grambsch and Stahel [6] had proposed a robust technique 

which modelled the differenced data and included the median of the first differences. 

 

The core Neural Network training method used in this study is the backpropagation neural 

network (see for example, Rumelhart et al. [16]), built by using the 3-Stage training approach. The 

set of possible inputs consisted of three autoregressive lags of the first differenced data , given the 

limited data. In addition, based on the earlier research, the median (of the first differenced data), was 

included as this feature has been shown by Grambsch and Stahel [6] and Fildes [14] to have potential 

predictive power. The forecasting performances of the feedforward neural network models was then 

compared with a variety of statistical forecasting methods that had earlier been used by Fildes et al. 

[7], ensuring a fair and thorough evaluation. The methods used were:  

i. Holt’s exponential smoothing with linear trend model  

ii. Damped Smoothing [17]  

iii. ARIMA  

iv. ARARMA [18] 

v. Robust Trend model [5]   
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Researchers have concluded no single forecast error measure contains all the interesting 

information relevant to evaluating forecasting accuracy and that relative performance between 

methods depends on the error criteria used (as discussed in (2) above). Two basic measures were 

used here: the absolute percentage error (APE) and the Relative Absolute Error. The following were 

used to satisfy the various criteria of robustness, reliability and scale independence  promulgated by 

Armstrong and Collopy [19] and Fildes [14].  Definitions and formulae are given in appendix 2. 

(i) mean absolute percentage error (MAPE)  

– this suffers unduly from the effects of outliers (e.g. when an observed value is close to zero 

leading to very large APE)  

 (ii) median absolute percentage error (MdAPE) 

- this has greater applicability and robustness than MAPE but discards much of the information 

in the error distribution. This is because a target value of zero in the test period can make the 

calculation of the percentage error unmanageable.  

(iii) Geometric mean and median relative absolute error  

- Both measures have proved robust to outliers with a more normal distribution than other error 

measures while the former contains information on the relative magnitude of all the errors. 

Following the recommendation of Adya and Collopy [4] the models were evaluated using 5 forecast 

time origins, periods 23, 31, 38, 45 and 53. The NNs (and the benchmark statistical methods) were 

therefore specified and trained on the data interval [1,23] etc and the subsequent 18 points (for 
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forecasting lead times, 1-18) used to evaluate each method. Thus, for any given forecasting origin 

and forecast horizon there were 261 errors to be summarised. These error measures were then 

summarised across the 5 forecast time origins, using means, medians, geometric means (appropriate 

for ratios and percentages) and ranks. Hu et al [19] describe this out-of-sample cross-validation in 

greater detail. 

5. The Effects of Choosing the Learning Rate, the Number of Hidden  Nodes, 

and the Initial Weights 

As figure 1 points out, various decisions must be made for any NN to be operational. In order to be 

confident that the results we report here are competitive with a number of alternative, pre-structured 

NN specifications  we have carried out a full experimental design examining the three factors of 

learning rate, number of hidden nodes and initial weights. We have also evaluated the effects of 

using the full-set of input nodes compared to the cross-validation approach we have used to simplify 

the model structure (an issue we explore more fully in section 5.1). An additional element to 

complete the specification included the choice of transfer function. The logistic function was used 

with the inputs scaled in the interval (.35,.65). Full details of the procedure are given in appendix 1. 

By demonstrating the 3-stage approach performed well we can be better assured that the range of 

settings we considered for these factors is appropriate to deliver effective forecasting accuracy when 

we go on to compare this automatic NN specification with conventional forecasting techniques. This 

ensured the NN results are not handicapped in the comparisons we make with the statistical methods 

in section 6.  
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A number of different variants of the 3-Stage Training Approach have been considered and these 

are shown in Table 1. ‘NN’ represents the Neural Network structure when the full 3-stage Training 

Approach is adopted which specifies the learning rate, number of hidden nodes and the initial 

weights through the validation data set. To give a second example, ‘NN3’ is where the number of 

hidden nodes is pre-determined as 3.  
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Table 1. The Neural Network Models under Consideration 
       (Cross-validation is used to determine the number of lags to be used as inputs to each of the 

models. The number considered ranges from 1 to 3. All the models except NN_AR(1-3) 
include the median as one of the inputs.) 

 

NN 
 

Stage 1:The set of the numbers of hidden nodes tried is {1,3}. 
       The set of the learning rates tried is {0.01,0.1,1}. 
Stage 2: The set of the numbers of hidden nodes tried is {1,3,5}. 
Stage 3: The set of the initial ranges of weights between the input layer and the

hidden layer is {[-0.001,0.001],[-0.01,0.01],[-0.1,0.1]}. 

NN1 

Only stage 1and stage 3 are used. The number of hidden nodes is 1. 
Stage 1:The set of the learning rates tried is {0.01,0.1,1}. 
Stage 3: The set of the initial ranges of weights between the input layer and the

hidden layer is {[-0.001,0.001],[-0.01,0.01],[-0.1,0.1]}. 

NN3 

Only stage 1and stage 3 are used. The number of hidden nodes is 3. 
Stage 1:The set of the learning rates tried is {0.01,0.1,1}. 
Stage 3: The set of the initial ranges of weights between the input layer and the

hidden layer is {[-0.001,0.001],[-0.01,0.01],[-0.1,0.1]}. 

NN5 

Only stage 1and stage 3 are used. The number of hidden nodes is 5. 
Stage 1:The set of the learning rates tried is {0.01,0.1,1}. 
Stage 3: The set of the initial ranges of weights between the input layer and the

hidden layer is {[-0.001,0.001],[-0.01,0.01],[-0.1,0.1]}. 

NN3_0.01 
Only Stage 3 is used. The number of hidden nodes is 3. The learning rate is 0.01. 
Stage 3: The set of the initial ranges of weights between the input layer and the

hidden layer is {[-0.001,0.001],[-0.01,0.01],[-0.1,0.1]}. 

NN3_0.1 
Only Stage 3 is used. The number of hidden nodes is 3. The learning rate is 0.1. 
Stage 3: The set of the initial ranges of weights between the input layer and the

hidden layer is {[-0.001,0.001],[-0.01,0.01],[-0.1,0.1]}. 

NN3_1 
Only Stage 3 is used. The number of hidden nodes is 3. The learning rate is 1. 
Stage 3: The set of the initial ranges of weights between the input layer and the

hidden layer is {[-0.001,0.001],[-0.01,0.01],[-0.1,0.1]}. 

NN3_0.1_0.001 The number of hidden nodes is 3, the learning rate is 0.1, and the initial range of the
weights between the input layer and the hidden layer is [-0.001, 0.001].  

NN3_0.1_0.01 The number of hidden nodes is 3, the learning rate is 0.1, and the initial range of the
weights between the input layer and the hidden layer is [-0.01, 0.01]. 

NN3_0.1_0.1 The number of hidden nodes is 3, the learning rate is 0.1, and the initial range of the
weights between the input layer and the hidden layer is [-0.1, 0.1]. 

NN_AR(1-3) The 3-Stage training used in NN is also used in this model, however the median is 
not included as an input to the neural network. 

 

We first examine the effects on forecasting performance of the choice of the number of hidden nodes, 

the learning rate and the initial weight range using a 3-factor factorial design. For each data series to 

be forecast,  the accuracy using the test out-of-sample data set and measured by MAPE (and 

GRMSE), is potentially affected by the above 3 factors.  
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The comparisons have all been carried out using the three greater forecast origins, 38, 45, and 53 to 

minimize possible sample size effects. Because the sample size available in the empirical problem 

we considered was relatively small, neural network specifications that lead to large numbers of 

parameters to estimate could not be sensibly considered. As a consequence only relatively simple 

structures have been included as part of the procedure. With more data both the input set and the 

number of hidden nodes could be enlarged though the principle of parsimony and the results of the 

various forecasting competitions [13,15] suggest that too complex a structure will lead to noise 

being interpreted as signal with correspondingly poor out-of-sample forecasting performance. The 

set of the numbers of hidden nodes considered was therefore limited to {1,3,5}. The set of learning 

rates used was {0.01,0.1,1}. The set of the initial ranges of the weights between the input layer and 

the hidden layer was [-0.001,0.001],[-0.01,0.01],[-0.1,0.1]}. These small positive and negative 

weights were used to avoid extreme outputs of the hidden nodes and thus avoid slow learning caused 

by small error derivatives [11]. Overall, the parameters that have been used to specify the 3-Stage 

procedure have been pre-selected because of the known characteristics and size of the data set. Table 

2 summarises the results of the ANOVA carried out when the error measure used is MAPE and the 

forecasting horizon is 1. The learning rate is found to be significant. This holds also when GRMSE is 

used as the error measure . More generally, no matter whether MAPE or GMRSE is used as the error 

measure and no matter whether the forecasting horizon is 1, 6, 12 or 18, the learning rate is 

significant. (The time origin block effect is also significant, unsurprisingly.)    
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Table 2 ANOVA Results for the MAPE Data When the Forecasting Horizon is 1 
      (N: the number of hidden nodes; LR: the learning rate; W: the initial ranges of 
      the weights between the input layer and the hidden layer; 3 time origins (38,45,53) are treated as 

different blocks)  
Source of Variation Degrees of 

Freedom 
Mean Square F 

Blocks 2 0.087134 14.6822** 
N 2 0.000174 0.02930 
L 2 0.059665 10.05362** 
W 2 0.000006 0.0011 
Interaction NL 4 0.000080 0.0135 
Interaction NW 4 0.000021 0.0036 
Interaction LW 4 0.000003 0.0004 
Interaction NLW 8 0.000020 0.0034 
Error 52 0.005935  
Total  80   
**significant at the 1% significance level 
 
 

Fisher’s least significant difference (LSD) procedure was used to investigate further where the 

differences occur. The data set used were based on the three longer forecast origins to limit any 

sample size effects. The three treatments considered below were selected  

 Table 3 The treatments of the three factors investigated in the factorial experiment 
(N: the number of hidden nodes; LR: the learning rate; W: the initial ranges of 

the weights between the input layer and the hidden layer) 
Factor Treatment 1 Treatment 2 Treatment 3 
N 1 3 5 
LR 0.01 0.1 1 
W [-0.001,0.001] [-0.01,0.01] [-0.1,0.1] 
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Table 4 Results of LSD procedure at the 1% significance level 
Evaluation 
Criterion 

Horizon Factor Mean for 
Treatment 1 
(LR=0.01) 

Mean for 
Treatment 2 
(LR=0.1) 

Mean for 
Treatment 3 
(LR=1)  

LSD Performance 
Order* 

 1 LR 1.25 1.24 1.16 0.06 Tr.3,(Tr.2,Tr.1)
 MAPE 6 LR 5.45 5.44 4.37 0.14 Tr.3,(Tr.2,Tr.1)
 12 LR 10.46 10.44 7.95 0.22 Tr.3,(Tr.2,Tr.1)
 18 LR 15.83 15.77 12.32 0.53 Tr.3,(Tr.2,Tr.1)
 1 LR 1.51 1.51 1.39 0.03 Tr.3,(Tr.1,Tr.2)
GMRAE 6 LR 0.51 0.51 0.44 0.03 Tr.3,(Tr.1,Tr.2)
 12 LR 0.45 0.45 0.36 0.02 Tr.3,(Tr.2,Tr.1)
 18 LR 0.46 0.46 0.38 0.03 Tr.3,(Tr.2,Tr.1)

*For performance order, treatments in parenthesis are not different at the 1% significance level. 
 

Table 4 shows that a learning rate of 1 performs better than the neural networks with a 

learning rate of 0.01 or 0.1. However, establishing the effects of the number of hidden 

nodes (N) and the choice of weights are more complicated.  When cross-validation is 

used to select the suitable input nodes, the effect is uncertain. When the time origin is 

53, the full input set is invariably used and, with the forecasting horizons treated as 

different blocks, the ANOVA results show that the number of hidden nodes, the 

learning rate and their interaction are significant no matter whether MAPE or GMRSE 

is used as the error measure. Figure 2 shows the interaction between the number of 

hidden nodes and the learning rate based on MAPE. 
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Figure 2 The interaction between the number of hidden 
nodes    

    and the learning rate based on the MAPE data
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The conclusion we draw from this experimental analysis is the need to ensure the proposed NN 

algorithm leads to a careful choice of number of hidden nodes and the learning rate. No a priori 

specification is likely to be dominant. As a consequence the proposed 3-stage approach should have 

the facility to evaluate and choose between a wide range of alternative specifications. 

  

One further comparison has been carried out: a test of whether the cross-validation pruning of the 

input nodes has any significant impact on accuracy. The results (omitted for reasons of space) for 

both error measures showed, when aggregated over lead times and forecast horizons, that there was 

no significant difference between keeping the inputs fixed (at three) or allowing the selection 

algorithm to choose the most appropriate inputs. Only in the case of longer horizons and MAPE as 

the error measure did the selection method of input variables affect performance (so long as the 

initial set is broad enough as in Zhang et al [10]). 
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Whilst the ANOVA demonstrates the significance of the effective choice of the two factors, it does 

not show whether the effects are important (as measured by the various accuracy statistics). Tables 5 

through 7 summarise the results for a range of NN specifications including the 3-Stage Approach, 

for the various lead times and for the various error measures. The best and second best performers 

are shaded. The corresponding results for the Geometric Mean calculations are omitted as they are 

very similar to those shown. Results for the individual forecast origins support the conclusions and 

are available from the authors. 
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Table 5: MAPE summarised across 261 series for all neural network methods,  

summarised across time origins by Mean and over forecast horizon, by Overall Sum of Ranks. 

  Forecast Horizon Overall Sum 
Method 1 6 12 18 of Ranks
NN 1.171 4.056 7.551 11.743 11 
NN1 1.173 4.113 7.621 12.033 24 
NN3 1.170 4.090 7.620 11.974 17 
NN5 1.168 4.050 7.547 11.757 8 
NN3_0.01 1.253 4.889 9.313 14.399 38 
NN3_0.1 1.251 4.880 9.285 14.358 31 
NN3_1 1.171 4.097 7.516 11.826 15 
NN3_0.1_0.001 1.254 4.858 9.374 14.382 39 
NN3_0.1_0.01 1.254 4.857 9.373 14.381 35 
NN3_0.1_0.1 1.254 4.857 9.369 14.373 33 
NN_AR(1-3) 1.167 4.058 7.511 11.767 8 

Key 
 Best performing method 

  Second best method 

 

Table 6 MAPE summarised across 261 series, for all neural network methods, 

 summarised across time origins by Median and over forecast horizon, by Overall Sum of Ranks. 

  Forecast Horizon Overall Sum 
Method 1 6 12 18 of Ranks
NN 1.142 3.830 7.351 11.585 11 
NN1 1.146 3.844 7.502 12.213 24 
NN3 1.139 3.808 7.380 11.756 13 
NN5 1.140 3.835 7.325 11.596 11 
NN3_0.01 1.235 4.875 9.382 13.840 34 
NN3_0.1 1.226 4.876 9.378 13.827 29 
NN3_1 1.140 3.834 7.339 11.708 13 
NN3_0.1_0.001 1.230 4.886 9.480 14.110 39 
NN3_0.1_0.01 1.230 4.886 9.478 14.108 36 
NN3_0.1_0.1 1.231 4.883 9.479 14.112 40 
NN_AR(1-3) 1.138 3.831 7.359 11.657 11 

N.B. To calculate the overall sum of ranks, each method is ranked for each horizon (by MAPE) and 

the results summed to give an overall picture of performance. 
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Table 7: MAPE summarised across 261 series, for all neural network methods, 

summarised across forecast origins by sum of ranks and over forecast horizon, by Overall Sum of Ranks 

  Forecast Horizon Overall Sum 
Method 1 6 12 18 of Ranks
NN 27 16 18 12 73
NN1 21 30 26 29 106
NN3 16 16 19 19 70
NN5 17 15 18 15 65
NN3_0.01 46 48 46 51 191
NN3_0.1 35 45 41 45 166
NN3_1 22 19 13 18 72
NN3_0.1_0.001 43 44 47 43 177
NN3_0.1_0.01 45 43 45 41 174
NN3_0.1_0.1 44 42 44 42 172
NN_AR(1-3) 10 12 13 15 50

 

Almost all the summary tables (as well the robust geometric mean results) point to the success of 

the 3-Stage approach. However it is clear that the use of a fixed number of hidden nodes (NN1, NN3 

and NN5) is less important than the arbitrarily fixing of the other two parameters with the weights 

the least important (as measured by the range of overall ranks). The various error measures all show 

that neural network model performs badly when the smallest learning rate of 0.01 used. The 

differences are also substantial (shown in Tables 5 & 6) so these results support earlier research that 

the choice of the learning rate has an important effect on the forecasting performance of a 

feedforward neural network. The results from the three error measures are highly correlated, 

showing that NN performs well in both the magnitude it beats its competitors and the frequency. 

 

5.1. Sensitivity to Choice of Input Nodes 

A potentially critical issue in using NN as an extrapolative forecasting method is the choice of 

input variables. In the experiments described above we have examined two alternative procedures 

applied to an input set that includes the last three lags and the median of the differenced data (i) 
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where cross-validation is used to select a subset of the inputs appropriate for each series individually, 

(ii) where all the inputs are used. In addition we considered the case where the median is excluded 

despite it being seen as necessary based on the preliminary analysis of Grambsch and Stahel [5]. 

Table 8 summarises the performance for three later forecast origins. The Wilcoxon signed rank test 

was used to compare the forecasting performance of NN (which includes the median) and the 

NN-AR(1_3) (without the median). Differences of zero  were ignored. Where some differences were 

equal, they were assigned average ranks. The test was based on the 4 lead time and 5 forecast time 

origin comparisons. The results of testing whether the median of the MAPEs of the NN_AR(1_3) 

model is greater than that of the NN model (the H 1
 hypothesis holds), versus H 0

 (these two 

medians are equal) are shown in Table 8 for the MAPE and the GMRAE. At 1% significance level 

we conclude that the forecasting performance of the NN model is equal to  that of the NN-AR(1_3) 

model and we conclude that the choice of input variables is not critical to performance in this 

particular case. Table 8  also shows the significance of the choice of learning rate. However, as noted 

in Appendix 1, the validation testing was based on MAPE (while the training used a MSE criterion).  

When MSE was used for both validation and training, the NN_AR(1_3)_MSE model, performance 

was substantially worse (as shown in Table 7). This is suggestive that forecasting performance is 

improved by using MAPE for validation when the forecast criteria using the test out-of-sample data 

are based on relative error.  
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Table 8 Wilcoxon signed rank tests comparing different NN specifications 

(at the 1% significance level: null hypothesis of equal  medians vs first named method less accurate; less 

than the critical value leads to rejecting the null ) 

R−

 
Error Measure Competing Models Pairs of 

observations 
with different 
values 

Critical 
value for 
one-sided 
test 

R−  

 NN_AR(1-3) versus NN 15 19 64.5 
MAPE NN3_0.01 versus NN3_1  19 37 0 
 NN3_0.1 versus NN3_1 19 37 0 
 NN_AR(1-3)_MSEv 

versus NN_AR(1-3) 
20 43 1 

 NN_AR(1-3) versus NN 8 1 18.5 
GMRAE NN3_0.01 versus NN3_1  19 37 0 
 NN3_0.1 versus NN3_1 20 43 1.5 
 NN_AR(1-3)_MSEv 

versus NN_AR(1-3) 
19 37 19 

 
 
 

5.2. Experimental Summary 

To summarise the results so far, the 3-Stage Training Procedure has been shown to be at least the 

equal of the alternative pre-specified networks (although there may of course be feedforward 

networks which, when trained more intensively, e.g. in parallel rather than sequentially perform 

better). The key question we now address is whether this simple procedure for structuring and 

estimating a NN shows adequate performance characteristics when compared to standard 

forecasting benchmarks. 

6. Comparative Forecasting Performance 

A number of comparisons have been carried out, in particular the 3-stage NN has been compared 
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with the methods already evaluated in Fildes et al. [7]. The results are shown in Tables 9-12, where 

the forecasting performances of the neural network model (NN from the evaluation in the previous 

section) is comparable with the best performing Robust Trend Method. Both models outperform all 

the other models consistently. From Table 10 and Table 11, we can see that the neural network model 

performs best based on the evaluation criterion GMRAE or MdRAE.  

 

For the relative error measures, the performance of Robust Trend is very similar to that of Holt’s 

model. Both these two models perform clearly worse than the neural network model. Using MAPE, 

for a short forecasting horizon of between 1 and 12 months, Robust Trend performs better than the 

neural network model (Table 9).  But the difference in forecasting performance is negligible when 

the forecasting horizon is 12 months with the neural network model better for the longer horizon. 

This suggests some slight non-linearity in the trend that the linear method, robust trend, cannot pick 

up. The two more robust measures, MdAPE shown in Table 10, and GMRAE in Table 12 show NN 

as uniformly more accurate which suggests the MAPE results of Table 6 arise from a few outlying 

values. 
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Table 9 The Means of the MAPEs of six different forecasting methods 
(summarised across a sample of 5 forecasting time origins) 

 
   Forecast Horizon  Sum of 

Ranks 
Method 1 6 12 18     1-6   1-12   1-18  
Holt 1.36 5.28 9.82 15.05 3.37 5.66 8.05 28 
Damped 1.35 5.77 12.29 19 3.58 6.41 9.72 33 
Robust-T 1.11 3.95 7.54 11.8 2.54 4.28 6.19 8 
ARIMA 1.51 6.51 14.41 22.92 3.98 7.29 11.38 42 
ARARMA 1.37 4.48 9.79 14.82 2.94 5.03 7.69 23 
NN 1.17 4.06 7.55 11.74 2.64 4.37 6.24 13 
NB: NN denotes the neural network model specified through the 3-stage approach. 
 

Table 10 The Medians of the MAPEs of 6 forecasting methods 
(summarised across a sample of 5 forecasting time origins) 

 
   Forecast Horizon    Sum of 

Ranks
Method 1 6 12 18     1-6  1-12   1-18  
Holt 1.25 5.3 10.77 16.2 3.54 6.09 8.8 28
Damped 1.25 5.74 11.84 18.83 3.45 6.31 9.51 32
Robust-T 1.02 4.18 7.71 12.11 2.46 4.27 6.25 12
ARIMA 1.53 6.76 13.94 22.27 4.17 7.16 11.28 42
ARARMA 1.28 4.38 8.9 14.07 2.97 4.94 7.26 23
NN 1.14 3.83 7.35 11.58 2.47 4.2 6.08 9
 

 

Overall, NN performs at least as well as Robust Trend whether measured through the MAPE or 

the MdAPE. Using the latter measure, the neural network model performs better than the Robust 

Trend model except when the forecasting horizon is 1 month. 
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Table 11 The Ranks of the MAPEs of 6 forecasting methods 
(summarised across a sample of 5 forecasting time origins) 

 
   Forecast Horizon   Sum of 

Ranks
Method 1 6 12 18     1-6  1-12    1-18  
Holt 19 20 17 16 20 19 17 128
Damped 22 23 23 25 23 23 24 163
Robust-T 8 8 9 9 8 9 9 60
ARIMA 27 29 30 30 29 30 30 205
ARARMA 17 16 18 17 16 17 18 119
NN 12 9 8 8 9 7 7 60
 

Table 12 The means of the GMRAEs of 6 forecasting methods  
(summarized across a sample of 5 forecasting time origins) 

Numbers in parentheses indicate the rankings. *These values are affected by the Winsorizing Process.   
Method  Forecast Horizon 

 1* 6 12 18
Holt (3) 1.35 (3) 0.72 (2) 0.60 (3) 0.54
Damped 1.39 0.81 0.78 0.77
Robust-T (3) 1.35 (2) 0.71 (3) 0.61 (2) 0.52
ARIMA (2) 1.33 0.81 0.82 0.84
ARARMA 1.38 0.75 0.67 0.6
NN (1) 1.13 (1) 0.48 (1) 0.4 (1) 0.39
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7. Conclusions 

A 3-Stage sequential training procedure has been used to build a feedforward neural network 

model objectively. Cross-validation was used intensively both to speed up the training process (as 

the processing times included in Appendix 1 show) and to help build a neural network with better 

generalisation capability to overcome the bias/ variance trade-off. This is important when building a 

model based on a general specification using a more intricate training approach than the 3-Stage 

approach adopted here. From the results of this study, we can see that the neural networks built using 

the 3-Stage training procedure is at least the equal of neural networks with a pre-specified structure. 

In fact, performance turns out to be critically affected by the decision on the learning rate and to a 

lesser extent the number of hidden nodes. The choice of input variables (within a plausible initial set) 

was found not to be important.  

 

Neural network methods have not clearly demonstrated their ability to match the performance of 

standard statistical forecasting methods on economic and business time series as the survey by 

Zhang et al. [2] shows, in particular previous studies have failed to meet the criteria laid down by 

Adya and Collopy [4]. This research has added to the evidence, avoiding the pitfalls that earlier 

studies have fallen into. A variety of error measures have been considered, rigorous benchmarks 

employed and an objective and replicable approach to neural network models adopted. Neural 

network methods were shown to perform as well as the best performing benchmark on the test data 

but this required the use of an objective specification procedure.  

 

Like all empirical studies, the evaluation of the 3-Stage Procedure has its limitations in that it has 

been applied to one specific homogeneous data set and the sample sizes used in training were small. 

Other more complex architectures could have offered even better performance. The fact that the 

performance of NNs under these conditions was strong is significant, especially when compared to 

methods such as exponential smoothing which has often proved its effectiveness. It demonstrates, 
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perhaps for the first time convincingly, that NN can be a cost-effective winner when compared to 

rigorous benchmark methods. Further work is needed on a data set such as M3 (where NN 

performed poorly) and on simulated data, where the 3-Stage procedure can be compared to other 

methods of specifying the structure of the Neural Net. In addition, the 3-Stage procedure could itself 

be generalised to include those factors that we pre-specified such as the number of hidden layers, 

with cross- validation used to ensure parsimony and good out-of-sample performance 

characteristics. 

 

8. Appendix 1: Neural Network Model Building 

The complete process of building a neural network model for forecasting the telecommunications 

data will be described below.  

1. Defining the Training and Validation Data Set 

Suppose the time origin of forecasting is T. Each original time series y(t), t=1, 2, 3, ......, T, will be 

first differenced to get a series d(t), t=2, 3, 4, ......, T. The series d(t) is then be scaled to a series s(t), 

t=2, 3, 4, ......T, the values of which are in a range between 0.35 and 0.65  in order to avoid slow 

learning at the extremes where the error derivatives are very small. This also ensures the output is 

within the target range. 

The most recent 3 lagged values of the series s(t) and the median ( m(t) ) of all the past lagged values 

of the series s(t) are used as the inputs to the neural network. That is to say m(t) is the median of 

s(2),s(3), ......, s(t). 

2. Splitting the Data Set into a Validation Data Set and a Training Set 
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  One third of the data will be used as the validation data and two thirds of the data will be used as the 

training data. 

3. Building a Neural Network by Using 3-Stage Training 

Throughout the logistic transfer function is used.  

3.1. Pilot Training 

The number of hidden nodes used is {1,3}. The set of learning rates used is {0.01,0.1,}. 

  3.2. Competition Training 

  The number of hidden nodes considered is {1,3,5}. Since the subset {1,3} were used in pilot 

training, on 5 hidden nodes are further considered. 

  3.3. Reward Training      

Two more sets of initial weights and biases are considered. 

4. Forecasting Ahead on Test Data 

The same notation that was used to describe the design of the whole data set will be used here.  At 

forecast origin T, the three most recent values of the scaled first differenced time series are s(T-2), 

s(T-1), s(T). m(T) is the median of s(2), s(3), ......, s(T). To forecast one period ahead, the inputs to 

the neural network built are s(T-1), s(T), s(T-2) and m(T). Suppose that the output from the neural 

network is . To forecast another period ahead, the inputs to be used are s(T-1), s(T),  

and . is the median of s(2), s(3), ......, s(T) and s . This process of 

forecasting ahead will continue until all the values to be forecasted are produced. Suppose the 
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forecasting horizon is h. , , , ......,  and are the 

forecasted values of the scaled first differenced series s(t). These values will be scaled back to get 

, , , ......,   and , which are the forecasted values of 

the first differenced time series d(t). Suppose  is the forecasted value of the original time 

series p period ahead. The forecasted values of the original time series y(t) can be obtained by using 

the following formulae:  
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For an Intel Pentium III 733 MHz CPU, the average time needed for building a neural network 

model (NN model in this study) for forecasting a time series increases linearly from 2.51 second per 

series for 23 data points rising to 6.96 for 53 points. It should be noted that the NN model was 

programmed in C and the measured  time includes all the data processing time. In this study, the 

method of cross-validation is used and network training is stopped if after 200 iterations the 

validation error can not be reduced. The maximum number of iterations allowed is 1000. The neural 

network selected is the one that produces the smallest validation error. 

 

Different combinations of the learning rate, the number of hidden nodes and the initial ranges of the 

weights and biases were also tried to find the optimal one. NNpo was built by using this kind of 
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Parallel Optimization method. The set of the numbers of hidden nodes used was {1,3,5}. The set of 

learning rates used was {0.01,0.1,1}. The set of the initial ranges of the weights (and biases) between 

the input layer and the hidden layer was [-0.001,0.001],[-0.01,0.01],[-0.1,0.1]}. The time needed for 

building a parallel model was about 3 times as long as the time needed for building an NN model 

confirming Hill et al’s observation [21] about the time consuming nature of a full search. (At the 5% 

significance level we accept that NNpo performs better than NN based on the error measure of 

GMRAE, however the difference between their performances was very small.) No matter whether 

MAPE or GMRAE was used as the error measure, the difference between their performances proved 

negligible.  
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9. Appendix 2: Error Measures 

 
Let Yj,t represent the tth observation on the jth series. Let ei,j,t(l) be the error made in forecasting l periods for 

the jth series from forecast origin t using method i. 
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where summation is over the j=1to 261 series for each time origin, k=1 to 5, for each method, i and for lead l. 
 

These are further summarized across the time origins using the following error measures: 
(a) Mean over k of MAPEi,k(l) for each forecast horizon l and each method i 
(b) Median over k of MAPEi,k(l) for each forecast horizon l and each method i 
(c) Rank over i for each forecast horizon 
 

The relative performance is also ranked with the results for each horizon summarised by the sum of the 
ranks. 
 

The second method used is the geometric mean of the relative absolute errors relative to a base line naïve 
method. 
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(Geometric Mean of Relative Absolute Error) 

As above these are summarised across the time origins k using 
(a) the Geometric Mean of  GMRAEi,k(l) 
(b) the Median. 
 
The relative performance is also ranked with the results for each horizon summarised by the sum of the ranks. 
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Select the number of lags to be used as inputs 

Figure 1 The process of specifying a neural network forecasting model

by using 3-Stage training
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