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Abstract

Our article provides a study on the use and improvement of Hull and White’s

(1988) control variate technique in pricing options. It contributes to the litera-

ture in two ways. Firstly we show that it is not optimal to use the entire error

of a control variate against its known price (usually a closed-form solution) to

correct and improve the unknown error of the unknown price of a complex op-

tion and we derive a better error correction fraction. Secondly while Hull and

White only advocated the use of the simplest European option control variate,

we show how to choose better controls to reduce pricing errors more effectively

and we discuss the role of so called static hedges as the best theoretical control

variates.

JEL Classification: G13

Keywords: control variate, American option, exponential exercise boundary,

static hedge.



1 Introduction

Many problems in finance must ultimately be solved through the use of a nu-

merical technique as the only practical and universally robust solution method.

By numerical technique, we mean that the state space in question must be par-

titioned and discretized in some manner (either using a tree or a grid) before the

value of the asset is evaluated at each and every of the many resultant points.

Moreover these points (tree nodes or grid points) have to be chosen before the

prices at those points are known.

In the field of options and particularly for American options1 (where no closed

form solution is generally available), such a numerical brute force method is

necessary because it is generally the only way to guarantee that increasing

computational effort results in increased numerical accuracy. Other areas where

numerical techniques are necessary include all dynamic programming techniques

where the value of a strategy must be evaluated simultaneously with its optimal

action, for instance in optimal portfolio control under transaction costs and

similar problems.

It is important to be able to determine the price of a financial claim to arbitrary

accuracy, firstly because a financial intermediary may be concerned about over-

paying or undercharging. Secondly and more importantly, because the financial

intermediary is often left with the task of replicating the claim over its life, he

must be able to evaluate the comparative statics (the hedge parameters or so

called Greeks of the option) repeatedly and quickly if he is to respond to revised

hedging needs. For exotic options (especially path dependent options), this task

may be sensitive to the method chosen and remaining errors will be a function

of the computational time spent (see Boyle and Lau (1994) and Figlewski and

Gao (1999)).

1Asian options and other exotics also fall into this category.
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Although several approximations2 are available for American options (also for

Asians), many of which have the right asymptotic properties and converge to

the true price in the limit of one variable, these do not allow the price of a

general option to be determined to arbitrary accuracy. Even if a series solution

is actually available for pricing an option to arbitrary accuracy (e.g. Geske

and Johnson (1984)), it may still be more efficient3 to employ a numerical

method compared to the task of evaluating a complex series. This is because

the required multivariate cumulative normal function (and other high dimen-

sional numerical integrations on which many compound options solutions rely)

although expressed as an integral and computer coded very efficiently, is not

strictly a closed form solution in that it requires a numerical method itself for

computation. Arbitrary accuracy is only achieved through increasing computa-

tional power and so other methods are typically preferred to the multivariate

cumulative normal function.

Furthermore, the numerical methods themselves are subject to various prob-

lems. The rate of convergence of the estimated price to the true price, may not

be fast and the convergence may not be monotone in that the sign and magni-

tude of the error may oscillate as a finer time grid or tree is used (see Figure

1). This is because there are two sources of discretization error.

Firstly, discretization at the terminal boundary will yield imperfect prices. In-

terpolation techniques and trapezoidal integration rules can minimize these er-

rors for smooth payoff functions but the first derivative at the final exercise

point of an option may not be smooth so the grid or lattice density here is

critical.4

2Approximate solutions for American options include the work of Geske and Johnson

(1984), MacMillan (1986), Barone-Adesi and Whalley (1987), Omberg (1987), and Ju (1998)

etc. Although quick to evaluate, none of these methods will allow accuracy to be increased

with more computational effort.
3Here, efficient means that the method takes less computational time for the same accuracy

or gives more accurate estimates for the same computational time.
4Figlewski and Gao (1999) propose a method termed Adaptive Mesh Model (AMM) to

2



Secondly, the chosen numerical array must be used to evaluate the point of

optimal action simultaneously with the desired prices. This will involve further

forms of discretization error, one in determining the location of the optimal ex-

ercise points itself and one when subsequently valuing the option earlier in time,

which is dependent on the value at, and position of, the optimal exercise bound-

ary (Wilmott, Howison and Dewynne (1995) detail a complimentary condition

that can reduce this boundary error). This will cause problems particularly if

the American exercise boundary is far from linear or if it is discontinuous at

maturity.

This is to say that the critical points in the option pricing problem (that coincide

with an optimal exercise boundary) are as important as the option prices away

from the boundary. Indeed the boundary conditions have equal standing with

the asset partial differential equation itself in pricing the claim because it is

the boundary conditions alone that distinguish one type of option claim from

another. It is the (prior) positioning of the nodes in state space relative to

these critical thresholds in the option pricing problem that cause the second

type of pricing error. Furthermore it is the non—linear way that the state space

grid or tree interacts with a boundary of general shape that causes these errors

to depend chaotically5 on the grid size (see Figure 1). A small error in the

placement of the grid next to a boundary can lead to a large pricing error. By

way of example, Boyle and Lau (1994) show that convergence is very slow when

using binomial methods to price Barrier options because of the severe non-

linearity present as the mesh or lattice points oscillate around the boundary

reduce the “nonlinearity error” at the terminal boundary. In their method, one or more small

sections of fine high-resolution lattice are added onto a tree with coarser time and price steps.

This will incorporate the more accurate fine-mesh values for the critical nodes into the coarse

tree and thus reduce the nonlinearity error.
5A chaotic variable is one that could be evaluated exactly with sufficient computing power;

without such resource it may appear to be “random” (i.e. there may be no apparent short

cut to its determination). Since the emphasis here is to use as little computational power

as possible, we will treat these chaotic errors as if they were truely random (i.e. without

deterministic form).
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with decreasing mesh size.

One way to reduce these types of errors and hence improve the computational

time required is the so called “control variate” method proposed by Hull and

White (1988, hereafter HW). They suggested that a similar claim for which a

closed form solution is available be priced on the same grid and made subject

to the same discretization errors. Comparison of the resultant price with the

analytic price is instructive for two reasons, firstly the magnitude of the errors

against the known price may be related to the errors on the unknown price,

secondly the sign of the two may be related. In their paper, the use of a Black

Scholes control spared the use of a finer grid and thus more computation.

In addition to HW, this paper contributes to the literature in two directions.

Firstly HW used 100% of the error in this control variate against its known

price to correct and improve the unknown error of the unknown price. We will

show that the full use of the control variable may not be optimal. In some cases

using the entire error to correct the unknown error will increase rather than

decrease the latter.

Secondly it is interesting to note that HW only advocated the use of a simple

control variate, the corresponding Black and Scholes European option price.

This will help deal with the first type of discretization error at maturity but

will not necessarily help with the second source of error in the location of and

value near the boundary. We suggest other instruments that may well help in

the second area.

The rest of this paper is organized as follows. Section 2 discusses the method-

ology and the sources of pricing errors when using discrete lattice methods.

Section 3 presents the numerical results and suggests how to choose good con-

trols to effectively correct errors. Section 4 concludes this article.
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2 Methodology

Numerical methods based on a finite number of calculations will always contain

error, in particular for binomial methods only for an arbitrarily large number of

tree nodes will the binomial price converge to the true continuous price. That

is for a given set of option parameters (e.g. stock, strike, risk free, volatility,

maturity) θ = (S0, X, r,σ, T ) and number of time steps n implemented in the

tree, the estimated option price P̂ (θ, n) will only converge to the true price

P (θ) = lim P̂ (θ, n) as n → ∞. As mentioned previously, even then there is a
problem since convergence to the limit may be oscillatory.

We can define an option error ε (n) for any given numerical method or choice

of n, the magnitude of which should decrease as n→∞

ε (n) = P̂ (θ, n)− P (θ) lim
n→∞ ε (n) = 0

The control variate (CV) technique is applicable when there are two similar6

options, labelled C and T . The Target option T is the (difficult) option which

we want to price while C is a Control option, called a Control Variate (or CV),

which is similar to option T but has an analytical (or closed-form) solution

PC . To apply the control variate technique, the values of T and C have to be

evaluated using the same numerical procedure (i.e. with the same value of n if

trees are used). The numerical price estimates of T and C are denoted as P̂T

and P̂C , respectively and they depend on n. The control variate estimate for

the value of T , ePT , is given by
ePT = P̂T + c(PC − P̂C) (1)

εC = P̂C − PC (2)

6By similar options we mean that both option prices should follow the same partial differ-

ential equation (e.g. European vs. American options), both option payoffs should be highly

correlated (geometric average vs. arithmetic average Asian options) or that their boundary

conditions should be congruent (continuously vs. discretely monitored barrier options).
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εT ≈ cεC (3)

ePT = P̂T − cεC . (4)

This is to say that the error of the control option εC can be used to improve

the error of the target option εT because it may be closely linked to it.

Hull and White recommended the use of a corresponding Black Scholes Euro-

pean option price as a control variable PC for an American option and they

then used the pricing error of the discretized price estimate on the European

to improve the American, i.e. the entire error c = 1 of the control variate to

correct the unknown error of the price estimate of the target option.

Without any prior knowledge of the dependency between the target errors and

the control errors, the c = 1 assumption is probably best but examination of

actual error dependency may yield a different error sensitivity and potentially

a better use of the control. The idea is to always chose the value of that leads

to the minimum target error, at least over a limited range of estimations n.

This then leads to the question of how to estimate the dependency between the

control and target errors. This could be examined across different methods,

but within a particular numerical method such as binomial trees we investigate

the errors as a function of different tree step numbers n indexed by i. We

always do this for the same parameter set θ and generate option price estimates

P̂ (θ, i) for many i. For a given set of target option inputs, it is not desirable to

include control errors from other parameter input combinations θ0 (since they

may not respond/correlate in the same manner) so instead we employ other

numerical estimate errors across different i but for the same θ. The idea is to

use a relatively small number of time steps i between two reference levels l,m

to determine the target/control error dependency quickly and then use this to

apply to a much larger tree of size n that is only evaluated once (l < m¿ n).

Option prices for the control and target will be evaluated for different numbers

of time steps between l,m inclusive (i.e. a total ofm−l+1) in order to determine
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the correlation coefficient and optimal control ratio. This optimal control ratio

will then be applied to errors from the control and target calculated from a

much larger tree with nÀ m, l in order to obtain a more accurate estimate of

the limiting value n→∞.

If we wish to minimize the error variance of ePT then the optimal correction to
use is

c∗ (l,m) = Cov(T,C)/V ar(C) = ρ(T,C)σT/σC (5)

=

Pm
i=l εC (i) εT (i)Pm

i=l ε
2
C (i)

(6)

where ρ(T,C) is the correlation coefficient between P̂T and P̂C , σ
2
T (σ

2
C) is the

variance of P̂T (P̂C), and c
∗ is the optimal coefficient in which case the variance

of the estimate will be minimized at

V ar(P̂T + c
∗(PC − P̂C)) = (1− ρ(l,m)2)σ2T , (7)

a quantity that could be zero if the correlation were perfect.

Most importantly, it will not generally be the case that the HW choice of c = 1

will yield the best results, especially not if ρ(T,C) << 1. In fact if this is the

case, the resulting error may well be greater if c = 1 is used, and clearly a

variate with ρ(T,C) = 0 cannot help improve pricing. This is the case in Figure

1 where the American pricing error is plotted as a function of the number of

grid points used. As can be seen the errors using c = 1 can actually be greater

than using c = 0 (i.e. no control is used).7 Figure 2 shows a scatter graph of

the American option pricing errors as a function of the European errors, i.e.

a visualisation of the correlation and slope coefficients used in this paper, the

dependency between the two is clear from this figure.

Figures 1 and 2 ABOUT HERE

7Note that c∗ can in fact be greater than one if the errors in T exceed the errors in C

and the correlation is high, i.e. the variance of the target option price must be greater than

that of the control price, a situation which may be possible for barrier options controlled with

standard European options.
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There are in fact two attributes of the control variate error that matter for

improving target prices, one is the magnitude of the its pricing errors and the

second is the correlation of its errors with those on the unknown price of the

target option.

This paper is concerned with the choice of control variate, the correlation of

target errors and finally the magnitude of the errors that result from an optimal

use of the CV technique. We examine a range of control variates, the correlation

of their errors and their ability to enhance pricing.

We propose evaluating the performance of CV techniques under c = 1 and

c∗ (l,m) methods in order to evaluate the performance of the Black Scholes

(BS) control variate. We also propose evaluating the performance of other

control variates that may reduce discretization error near an exercise boundary.

For example, the analytical approximations of Barone-Adesi, Whaley (1987),

MacMillan (1986) (BAWM) and Omberg (1984) (Om) both allow determination

of an approximate (but not optimal) exercise boundary that can be used to

correct the discretization error near the true exercise boundary. For each and

every array location, it is possible to say if it lies in or outside the boundary as

approximated by each of the formulae. Thus the evaluation of these methods

under grid pricing and closed formmay yield extra information about the nature

of the discretization error near a boundary that is a reasonable approximation

for the true boundary. The performance of these new forms compared to existing

control variates will elucidate something of the nature of the discretization errors

that are incurred at different points of the grid.

For each CV (European, Omberg options etc.) the optimal c∗ (l,m) is estab-

lished as follows. We calculate the prices of the control option and the target

option using one lattice method, e.g. simple binomial method, for a reasonable

number of time steps, say l = 20 to m = 50 steps. We then obtain two series of

prices which allow us to estimate their variance-covariance and hence c∗ (l,m).

We then use a much larger tree (n = 10, 000) and the prices it generates for
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both target and control along with the optimal c∗ (l,m) use of these controls.

3 Numerical Results

The most efficient use of a control variate is not necessarily c = 1, for a given step

size estimation and use of c∗ will generally improve price estimates. However it

takes time to estimate c∗, therefore it is important whether c∗ can be estimated

using only a few samples (Monte Carlo simulation) or time steps (binomial

method). We estimate c∗ as follows. We calculate the prices of the target

option and the control option using binomial trees using different numbers of

time steps, for example, l = 20 to m = 100, this generates two series of prices

which allow us to estimate c∗ (l,m). In Table 1, the target options are American

put options and the control options are their counterpart European options.

Table 1 shows that the estimates of c∗ are quite similar for different ranges of

time steps. In other words, we can estimate c∗ using only few (e.g. 20 to 40)

time steps but apply it for trees with more time steps. Therefore it is beneficial

to use c∗ rather than the prior of c = 1 because it takes little computational

time to estimate it.

Table 1 ABOUT HERE

To compute the benchmark values of the American options used in validating

the approximation methods, we first investigate the accuracy of four lattice

approaches; the binomial method of Cox, Ross, and Rubinstein (1979), the

binomial Black and Scholes (BBS) method and the binomial Black and Sc-

holes method with Richardson extrapolation (BBSR) of Broadie and Detemple

(1996),8 and the Adaptive Mesh Model (AMM) of Figlewski and Gao (1999)

(see footnote 4). We follow the procedure in Broadie and Detemple (1996, 1997)

8The BBS method is a modification of the binomial method where the Black-Scholes for-

mula replaces the usual “continuation value” at the last time step just before option maturity.
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to run a comparison. We first choose a large set of options (35 = 243 options; 3

values of each of 5 variables) with parameters of practical interest (parameter

values from other work). Then for each method we price the test set of op-

tions and compute percentage error measures. The root-mean-squared (RMS)

relative percentage error is used as the error measure and is defined by:

RMS =

vuuut 1
T

TX
j=1

e2j (8)

where T = 243 is the number of options under consideration, ej = ( bPj (θj) −
Pj (θj))/Pj (θj) is the relative error

9 of the j-th option, Pj (θj) is the true option

price (Black-Scholes), bPj (θj) is the estimated option price.
The results (Table 2) indicate that the BBSR method produces the most accu-

rate values of these four methods. Therefore, we use the BBSR with n = 10, 000

time steps to produce benchmark values for American options in the following

numerical evaluations.

Table 2 ABOUT HERE

We define c∗ (l,m) as the optimal coefficient of the target and control option

estimated from using the binomial prices with few time steps, l to m (l < m).

Treating this numerical experiment as a statistical experiment,when evaluating

pricing errors for a number of tree steps between l,m we borrowing terminology

and label c∗ (l,m) as an in sample coefficient. This coefficient is used as a proxy

The BBSR method adds Richardson extrapolation to the BBS method. In particular, the

BBSR method with n steps computes the corresponding BBS price for n/2 steps P (θ, n/2)

and n steps P (θ, n) and then sets the BBSR approximation to the asymptotic price equal to

P (θ,∞) = 2P (θ, n)− P (θ, n/2).
9Note that these percentage errors are calculated using the same number of

steps (n = 10, 000) but across different parameter sets j i.e. e (j) =³ bP (θ (j) , i)− P (θ (j) , i)´ /P (θ (j) , i) as oppose to the previous absolute errors which were
calculated for the same parameter set θ but for different number of tree steps i i.e. ² (i) =bP (θ, i)− P (θ, i) for i = l to m.

10



for the unknown out of sample coefficient c∗ (l, n) and the errors used in making

this assumption are evaluated.

Table 3 shows that the CV technique can significantly reduce the RMS relative

errors of price estimates for the binomial method. The CV technique using

c∗ improves the RMS relative error by about 20 to 25 times for the binomial

method. Combining with the results (their Figures 2 to 8) of Broadie and

Detemple (1996), we can find that the binomial method coupled with the CV

technique using c∗ seems more efficient than other proven (numerically) effi-

cient methods such as the BBSR method. Moreover, Table 3 suggests that CV

technique using c∗ works well for both in-sample and out-of-sample tests.10

Table 3 ABOUT HERE

Another objective of the CV technique is actually to seek a better instrument

(with closed or analytic form pricing solution) whose numerical errors have as

high a correlation as possible with the target option prices errors and then use

these as corrections. To date the CV technique has used Black-Scholes (since

its errors are positively correlated because a deep out of the money American,

is priced as a European anyway) but other closed form formulae or indeed ap-

proximating formulae could be used instead. For instance Omberg (1987) has

a closed form expression for American option prices assuming an exponential

boundary (since this boundary is not actually optimal the formula will under-

value options), this boundary can be numerically applied and a binomial price

for Omberg compared to the theoretical Omberg price. It may not matter that

the Omberg price is not actually an optimal price of an option11, what matters

is that its errors may correlate very well with the true American price errors12.

10Because c∗ is estimated using binomial trees with 20 to 100 time steps, we call 30, 50,

and 80 time steps in-sample test, and 200, 400, and 600 time steps out-of-sample test.
11although it corresponds to the price of a claim with an arbitrary, but optimised, boundary

shape.

12the option bias between the actual and binomial Omberg prices should be small.
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This is so because its arbitrary boundary does not get too far from the true

one and it will suffer errors in the same regions as the true American (near the

boundary).

To verify the above argument, we compare the performance of European op-

tions with that of Omberg options. Table 4 shows that the average correlation

coefficients between American options and Omberg options are high (0.974).

However, it is a little surprising that the performance of Omberg options13 as

the controls is only slightly better than European options. A possible explana-

tion is that the oscillating binomial prices may be not able to distinguish a good

control from a bad control.14 Overall, the results still suggest that an option

with wisely15 chosen exercise boundary is a good control for American options

but that the final maturity boundary errors due to grid point positioning still

matter.

Table 4 ABOUT HERE

Note that the control can be an option or a portfolio of options and theoretically

the best control option(s) are those that have the highest correlation coefficient

with the price of the target option. Recently the static hedge literature16 has

been used to replicate an exotic option using a portfolio of standard (closed form)

13In terms of percentage the absolute values of correlation coefficients of Omberg options

are still generally (65.1%) higher than those of European options.
14One evaluation criterion to determine a good numerical method may be its ability to

distinguish good and bad controls. From this point of view, the binomial method may fail in

some cases.
15meaning that the arbitrary boundary is very close to the true exercise boundary, for ex-

ample, Ju (1998) proposes a multipiece exponential exercise boundary which can approximate

the true boundary much better than Omberg (1987)
16The basic principle behind static hedge method is as follows. If the prices of the target

option and the static hedge portfolio follow the same partial differential equation and they

are worth the same on a certain boundary, they are also worth the same at all interior points

of the boundary (see Derman, Ergener, and Kani (1995) or Carr, Ellis, and Gupta (1998) for

details).
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options. Since an effective static hedge portfolio can approximately replicate the

option position, it will also provide an effective control to reduce the variance

of the numerical estimates of option prices.17

As an example, we investigate the performance of three controls which partially

match the boundary conditions of a barrier option (cite for parameters?). The

barrier option considered in this paper is an up-and-out call option with S =

100, K = 100, H = 120 (barrier), T = 1 year, r = 0.1 (annually compounded

risk free rate), q = 0.05 (annually compounded dividend yield), and σ = 0.25

(volatility). The first control (1) is the counterpart European option which

exactly matches the boundary if the barrier is never crossed before maturity.

The second control (2) matches the boundary of the barrier option at maturity.

The third control (3) replicates the value of the barrier option; (a) at expiration

below the barrier, and (b) exactly on the 120 barrier at one year and 6 months

prior to expiration (half way). It is obvious that portfolio (3) should be a better

control than portfolio (1) because it can match more nodes on the boundary of

the barrier option. Table 5 indicates that the third control is the best control

and can reduce the RMS relative errors by a factor of about three.

Following Derman, Ergener and Kani (1995), one can easily find other control

which can match as many nodes on the boundary as desired.18 In other words,

theoretically one can use the static hedge portfolio to find a perfect control

which can correct all the errors although it will involve an increasing number of

terms.

Table 5 ABOUT HERE

17However it may be very difficult and complicated to formulate a perfect static hedge

portfolio in practice thus reducing the benefits of the CV method.
18Derman, Ergener, and Kani (1995) have shown that a replicating portfolio using 24 op-

tions to match the zero boundary value on the barrier at half-month intervals can hedge the

(continuous) barrier option very well.
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4 Conclusion

This paper has considered the use and improvement of Hull and White’s (1988)

control variate technique in option pricing. Firstly we discussed the sources

of pricing errors when using discrete lattice method and recommended good

controls that effectively correct target errors. Secondly, we gave examples that

showed that Hull and White’s control variate technique is not optimal and

potentially it may increase rather than decrease the pricing errors.

To effectively reduce pricing errors, the control variate technique has to be

customized to both the type of numerical methods and the options in question.

The benefits of this effort are reduced errors and a deeper understanding of their

origin and control.

It would be interesting to study the possibility of combining recent advanced

numerical methods with the control variate technique to price complex options

efficiently. For example, Barraquand and Martineau (1995) and Longstaff and

Schwartz (2001) have proposed a method for pricing multidimensional American

options by Monte Carlo simulation. Given the flexibility for pricing exotic

options under complex asset price processes, combining their methods with the

control variate technique may provide a powerful tool for both academics and

practitioners.
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Table 1: Estimated optimal control c*(l,m) values using different sets of time steps 
 
   c*(l,m) (and ρ(l,m)) 

K T (months) σ (20, 40) (20, 100) (150, 200) (250, 300) 
35 1 0.2 0.96 (0.999) 0.99 (0.999) 0.96 (0.998) 0.95 (0.999) 

35 1 0.3 0.95 (0.999) 0.98 (0.999) 0.96 (0.999) 0.95 (0.999) 

35 1 0.4 0.95 (0.999) 0.98 (0.999) 0.96 (0.999) 0.95 (0.999) 

35 4 0.2 0.90 (0.990) 0.92 (0.989) 0.90 (0.993) 0.87 (0.994) 

35 4 0.3 0.88 (0.989) 0.92 (0.990) 0.88 (0.995) 0.90 (0.996) 

35 4 0.4 0.88 (0.993) 0.92 (0.992) 0.92 (0.997) 0.90 (0.997) 

35 7 0.2 0.83 (0.984) 0.86 (0.983) 0.82 (0.991) 0.81 (0.994) 

35 7 0.3 0.82 (0.985) 0.87 (0.985) 0.87 (0.993) 0.84 (0.994) 

35 7 0.4 0.87 (0.990) 0.90 (0.990) 0.86 (0.995) 0.88 (0.997) 

40 1 0.2 0.81 (0.999) 0.84 (0.995) 0.84 (1.000) 0.84 (1.000) 

40 1 0.3 0.86 (0.999) 0.89 (0.997) 0.88 (1.000) 0.88 (1.000) 

40 1 0.4 0.88 (1.000) 0.91 (0.998) 0.91 (1.000) 0.91 (1.000) 

40 4 0.2 0.70 (0.998) 0.73 (0.991) 0.73 (1.000) 0.73 (1.000) 

40 4 0.3 0.77 (0.998) 0.80 (0.993) 0.80 (1.000) 0.80 (1.000) 

40 4 0.4 0.81 (0.999) 0.84 (0.995) 0.84 (1.000) 0.84 (1.000) 

40 7 0.2 0.64 (0.998) 0.66 (0.991) 0.66 (1.000) 0.66 (1.000) 

40 7 0.3 0.72 (0.999) 0.75 (0.992) 0.75 (1.000) 0.75 (1.000) 

40 7 0.4 0.77 (0.998) 0.79 (0.994) 0.79 (1.000) 0.79 (1.000) 

45 1 0.2 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 0.00 (0.000) 

45 1 0.3 0.51 (0.967) 0.51 (0.946) 0.57 (0.994) 0.57 (0.996) 

45 1 0.4 0.79 (0.984) 0.81 (0.970) 0.79 (0.996) 0.77 (0.997) 

45 4 0.2 0.36 (0.931) 0.37 (0.933) 0.35 (0.977) 0.33 (0.974) 

45 4 0.3 0.63 (0.972) 0.68 (0.953) 0.67 (0.987) 0.67 (0.993) 

45 4 0.4 0.77 (0.973) 0.82 (0.965) 0.78 (0.993) 0.75 (0.991) 

45 7 0.2 0.40 (0.899) 0.41 (0.918) 0.41 (0.976) 0.38 (0.983) 

45 7 0.3 0.64 (0.955) 0.68 (0.948) 0.65 (0.987) 0.64 (0.981) 

45 7 0.4 0.75 (0.987) 0.79 (0.976) 0.74 (0.995) 0.68 (0.989) 

 
The options are puts with other parameters: S=40, r=0.0488, q=0.0 (dividend yield). 
The bracket (e.g. 20,40) means that c* and ρ are estimated using binomial trees with 
step numbers from 20 to 40. The correlation coefficients (ρ) are given in parentheses. 
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Table 2: The root-mean-squared (RMS) relative errors using the following four 
methods to price European options 
 

binomial BBS BBSR AMM 
4.59E-05=0.459bp 5.41E-05=0.541bp 2.46E-06=0.0246bp 2.98E-04=2.98bp 

 
The options are European puts. The root-mean-squared relative errors are defined as 
follows: 

RMS= ∑
=

m

j
jem 1

21  

where ej=(P*
j-Pj)/ Pj is the relative error, Pj is the accurate option price (Black-Scholes), 

P*
j is the estimated option price. The number of time steps in each method is n=10,000. 

There are 243 sets of parameters are used: S=40, K=35, 40, 45, σ=0.2, 0.3, 0.4, T=1, 4, 
7 months, r=3, 5, 7 %, and q=2, 5, 8%. 
 
 
Table 3: The root-mean-squared (RMS) relative errors of price estimates 
 

 in-sample test out-of-sample test 
 30 50 80 200 400 600 

 no CV 1.74E-02 
174bp 

1.46E-02 
146bp 

6.38E-03
63.8bp 

2.38E-03
23.8bp 

1.88E-03
18.8bp 

8.11E-04 
8.11bp 

 c=1 1.14E-03 
11.4bp 

(93.4%) 

6.86E-04 
6.86bp 

(95.3%) 

5.26E-04
5.26bp 

(91.8%) 

1.83E-04
1.83bp 

(92.3%) 

9.98E-05
0.998bp 
(94.7%) 

6.45E-05 
0.645bp 
(92.0%) 

 c* 7.43E-04 
7.43bp 

(95.7%) 

4.36E-04 
4.36bp 

(97.0%) 

3.80E-04
3.80bp 

(94.0%) 

1.19E-04
1.19bp 

(95.0%) 

7.82E-05
0.782bp 
(95.8%) 

4.77E-05 
0.477bp 
(94.1%) 

 
The options are American puts. The root-mean-squared relative errors are defined as 
follows: 

RMS= ∑
=

m

j
jem 1

21  

where ej=(P*
j-Pj)/ Pj is the relative error, Pj is the accurate American option price 

(estimated by the BBSR method with 10000 steps), P*
j is the estimated option price. 

There are 243 sets of parameters are used: S=40, K=35, 40, 45, σ=0.2, 0.3, 0.4, T=1, 4, 
7 months, r=3, 5, 7 %, and q=2, 5, 8%. The coefficient c* is estimated using trees with 
20 to 100 steps. The numbers in parentheses are the error reduction percentages using 
the control variate technique with c* and c=1. 
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Table 4: The absolute value of correlation coefficients between the American option 
prices and the control option prices 
 

 European option Omberg option 
mean 0.97246 0.97405 
max 0.99967 0.99973 
min 0.291753 0.32823 

 
The options are American puts. There are 180 sets of parameters are used: S=40, K=30 
to 50 in increments of 5, σ=0.2, 0.4, 0.6, T=6, 12, 18, 24 months, r=3, 5, 7 %, and q=0. 
The correlation coefficient is estimated using binomial trees with 60 to 100 steps. The 
first control is the counterpart European option with maturity date T. The second 
control is the counterpart Omberg option which has an exponential exercise boundary. 
 
 
 
Table 5: The root-mean-squared (RMS) relative errors for the barrier option 
 

 No control Portfolio 1 Portfolio 2 Portfolio 3 

RMS 6.66E-03 

66.6bp 

5.79E-03 

57.9bp 

4.34E-03 

43.4bp 

2.42E-03 

24.2bp 

 
The barrier option is an up-and-out call with S=100, K=100, H=120, T=1 year, r=0.1 
(annually compounded), q=0.05 (annually compounded), and σ=0.25. Portfolio 1 is 
the counterpart European call option. Portfolio 2 consists of long one European call 
option with K=100, short one European call option with K=H, and short one 
cash-or-nothing (digital) call option with K=H and cash Q=H-100. Portfolio 3 is a 
static hedge portfolio from Derman, Ergener and Kani’s (1995) (their Portfolio 4). The 
root-mean-squared relative errors are defined as follows: 

RMS= ∑
=

m

j
jem 1

21  

where ej=(P*
j-Pj)/Pj is the relative error, Pj is the accurate barrier option price 

(closed-form solution), P*
j is the estimated option price using ni steps per half-year, 

where ni equals to 250 to 300 steps. 
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Figure 1: The American put option price with regard to the number of time steps 
(binomial method) 
 

 
The parameters are S=40, K=45, T=7 months, r=0.07, q=0.02, and σ=0.2. The 
coefficient c* is estimated using binomial trees with 20 to 50 steps. The accurate 
American option price is estimated using the BBSR method with 10,000 steps. 
 

5.238

5.248

60 100 140 180

number of steps

pr
ic

e

no CV
c*
HW (c=1)
true value



 

 21

 

Figure 2:
American against European option errors for tree steps between 20 and 100.
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