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Abstract

This article discusses convergence problems when calculating Vega (op-

tion sensitivity to volatility) that arise from discretization errors embedded

in the lattice approach. Four alternative improvements to the traditional

binomial method are discussed and investigated for performance. We also

propose a new Modified Binomial (MB) Method to calculate Vegas. Numer-

ical results show that although the MB is not the most price accurate of the

models, due to its error structure as a function of volatility, it produces the

most accurate and fastest Vega estimates. JEL: G13. Keywords: Vega,

lattice approach, discretization error, smoothing.

∗Lancaster LA1 4YX, UK. tel 44 (0) 1524 594131, fax 847321. Thanks go to the Editor and

Referee for helpful comments on our first draft. Email: m.shackleton@lancaster.ac.uk.

1



1 Introduction

Once the price of an option position has been negotiated and the position estab-

lished, tracking and maintenance of the hedging properties is an essential task not

only for the buyer but especially for the option seller. This is because the option’s

risk characteristics change dynamically as the stock price and time to maturity

change. Therefore the so called “Greeks” (or partial differentials) with respect to

model variables must be calculated accurately and repeatedly.

For many different option models and numerical estimation methods, there is a

body of literature concerning the properties of these Greeks which recognises that

numerical procedures are problematic. While producing option sensitivities that

converge in the number of time steps (grid points or tree nodes), numerical dif-

ferentiation is hazardous because results converge in an oscillatory fashion (see

Pelsser and Vorst (1994) and Chung and Shackleton (2002) for details).1

As well as the first (second) differentials with respect to price and time variables,

Delta, (Gamma) and Theta, there are Greeks that represent differentials with

respect to option parameters. The first differential with respect to volatility (and

interest rate), Vega (Rho), are also calculated and often quoted even though many

option models assume these factors to be constant. This is because these are used

in a slightly different, but no less important manner by purchasers and hedgers of

options.

There several reasons why an option’s sensitivity to a fixed (or potentially non—

dynamic) parameter needs to be considered and calculated repeatedly and accu-

rately. It is also clear for option models that explicitly model stochastic volatility

1This is largely due to the fact that changing the number of time steps (or another numerical

paramater) changes the number of nodes either side of the exercise point, therefore the estimated

price tends to oscillate around the true price as it converges.
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and treat it as a variable, why Vega sensitivity is important.

Firstly, even if an option model has a fixed volatility, there is the danger of param-

eter mis—estimation. It may be the case that volatility may be constant but just

difficult to estimate accurately with limited data. This means that the sensitivity

of a model’s volatility assumption needs to be examined through its Vega in order

to test the sensitivity to any one particular chosen volatility value.

Secondly, even for constant volatility models, potential uncertainty about the exact

model specification means that different models may be used not only to estimate

the option’s price but also to estimate the impact of the same volatility assumption

in different models.

Thirdly, for tractability, many practitioners may assume that these last two vari-

ables (volatility and interest rates) are known and constant, in the knowledge that

this is only an approximation. If the validity of this assumption is questionable,

they may use two option positions with opposite Vega in an attempt to eliminate

their volatility risk. Essentially they may estimate Vega from each model with

constant volatility, hoping that if volatility actually changes that it will affect both

of the mis—specified model prices to the same degree and due to the supposed Vega

neutrality, cancel each other out.

Finally, there are an increasing number of models that include stochastic rather

than fixed volatility. Although in this paper we apply numerical methods to the

estimation of Vega sensitivity with fixed volatility, its results relate to other more

complex Vega calculation problems.

This article continues in Section 2 with a review of the five methods that are cur-

rently used or discussed in the literature. In Section 3, we propose a new method,

named the Modified Binomial (MB) method. Section 4 assesses the efficiency of
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each of the five existing methods as well as the new method proposed. Section 5

examines the root mean square error against computational speed (efficiency) of

each method while Section 6 concludes.

2 Vega estimation

The numerical error of Vega estimates is mainly due to the discretization embedded

in the binomial lattice approach, particularly at option expiry where the positioning

of nodes with respect to the exercise price is critical. Within the literature, there

are at least four proposed solutions that reduce the discretization errors or enhance

the rate of convergence compared to the standard tree structure. Firstly, addition

of one or more small sections of fine high—resolution lattice within a tree with

coarser time and price steps (see Figlewski and Gao (1999)). Secondly, adjustment

of the discrete—time solution prior to maturity (see Broadie and Detemple (1996)

and Heston and Zhou (2000)) or smoothing of the payoffs at maturity (see Heston

and Zhou (2000)). Finally, allocation and number (the shape and span) of tree

nodes (see Ritchken (1995), Tian (1999) and Widdicks, Andricopoulos, Newton,

and Duck (2001)). In this section we review the motivation and construction of

each method.

2.1 Binomial method

In the lattice approach to option pricing and hedging (for example see Hull (2000)),

it is common wisdom in calculating Vega to make a small change, ∆σ, to the

volatility σ and construct a new tree to obtain a new value of the option. This is

then used to calculate a numerical derivative. Since the magnitude of the pricing

error implicit in the discrete tree depends on the number of steps in the tree (as
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well as other things), usually the same number of steps is used so as to minimize

potential errors involved in this numerical differentiation. The estimate of Vega is

then

V (σ,∆σ, n) =
P (σ +∆σ, n)− P (σ, n)

∆σ
(1)

where P (σ +∆σ, n) and P (σ, n) are the estimates of the option price from the

original and the new tree, respectively (both with n steps). Note that this is only a

numerical differential of the true sensitivity V (σ, 0, n) = lim∆σ→0 V (σ,∆σ, n) and

as such will contain estimation error for the Vega that depends on the size of ∆σ

and the number of tree steps (n).

However there is a convergence problem similar to that of pricing barrier—type op-

tions (see Boyle and Lau (1994) and Ritchken (1995)). This method for calculating

Vega also faces discretization errors embedded within the lattice approach, partic-

ularly with respect to the positioning of final nodes around the exercise threshold.

The problem is serious because the two estimates of the option price are obtained

using two different trees where the final nodes are non—coincident (i.e. same num-

ber but differently placed nodes) so that discretization errors in each estimate are

imperfectly correlated and do not cancel.

Pest. (σ, n) = Ptrue (σ, n) + ε (σ, n) (2)

Pest. (σ +∆σ, n) = Ptrue (σ +∆σ, n) + ε0 (σ +∆σ, n)

V (σ,∆σ, n) =
Pest. (σ +∆σ, n)− Pest. (σ, n)

∆σ
(3)

=
Ptrue (σ +∆σ, n)− Ptrue (σ, n)

∆σ
+

ε0 (σ +∆σ, n)− ε (σ, n)

∆σ

Thus with imperfectly correlated errors, Vega is always estimated with error. This

total error will depend on the way the second error depends on the first. If the best

fit line between them is of unit slope and zero intercept, then their cancellation can

be expected and the variance of the residual error will depend on the goodness of

5



fit between the two errors. Thus investigation of the error dependency is a crucial

part of the analysis of Vega estimation. This is conducted in Section 4.

2.2 Adaptive Mesh Model (AMM)

In order to improve price convergence Figlewski and Gao (1999) propose a method

termed the Adaptive Mesh Model (AMM) to reduce the convexity error at the

terminal boundary. In their method, one or more small sections of fine high—

resolution lattice are added into a tree with coarser time and price steps. This

incorporates a finer mesh of values around the critical nodes in the coarse tree and

thus achieves greater accuracy by reducing the non—linearity error.

This method has been shown to reduce pricing errors considerably. The cost is that

the tree now has different structures in different regions and so is more complex to

implement. Furthermore, although the location of the maximum convexity is know

(near the money at maturity), the choice of span around this area is arbitrary. Any

number of extra nodes between two and the number of steps already used could be

added (in the latter case the tree is again a regular one with twice as many steps).

Thus this method partially smooths the option price with respect to a perturbation

of its parameters. With the increased node density around the exercise threshold,

price oscillation in n is also reduced. However in light of Equation 2 the correlation

of these errors is shown to be as important as the magnitude and so the correlation

structure of the price errors should also be considered.

As will be seen in Section 4 a lack of error correlation structure, means that

although being individually accurate for prices, the AMMmethod does not actually

perform well for Vega estimation.
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2.3 Binomial Black Scholes (BBS)

The next method is to adjust the discrete-time solution one period prior to matu-

rity. For instance, Broadie and Detemple (1996) proposed the so called binomial

Black Scholes (BBS) method. They augmented the binomial tree method through

the addition of Black Scholes prices at the penultimate pricing node, arguing that

since one period before maturity the option will revert to either its European value

or payoff, these closed form expressions would be useful in increasing the accuracy

of American or other option types. This is akin to using a continuum of new nodes

over the last interval to generate a smooth function.

Chung and Shackleton (2002) have shown that the numerical differentiation of the

BBS prices produces very accurate estimates for option Deltas and Thetas because

the method itself contains a smooth and not discrete function of the stock price

and time to maturity. Therefore it produces option values that are also a smooth

function of the initial price. This is especially important when employing numerical

differentiation over arbitrarily small changes in a time or price parameter.

In this article we further investigate the accuracy of numerical Vegas using the

BBS method and show that smoothness in time and stock price space does not

necessarily assist estimation of other option sensitivities such as Vega.

2.4 Heston Zhou method (HZ)

The second method to smooth the option’s payoff at maturity is from Heston

and Zhou (2000). They first show that the accuracy or rate of convergence of

the binomial method depends crucially on the smoothness of the payoff function.

Intuitively, if the payoff function at singular (infinite convexity) points can be
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smoothed, the binomial recursion will be more accurate. They propose an approach

that smooths the payoff function of a European option. If g(x) is the payoff

function, they suggest setting the smoothed payoff function G(x) as follows

G(x) =
1

2∆x

Z ∆x

−∆x
g(x− y)dy,

where ∆x is the step size of the binomial tree.2 The above transformation is

called rectangular smoothing of g(x). The smoothed function G(x) can be easily

computed analytically for most payoff functions used in practice. Applying the

binomial model to G(x) instead of g(x) yields a rather surprising and interest-

ing result. The associated binomial prices converge now at a rate of 1/n to the

continuous—time limit and this convergence is uniform across the nodes of the bi-

nomial tree (in the same paper Heston and Zhou show that without this correction

the rate goes with 1/
√
n). Against this convergence benefit, this method may

suffer greater initial price error, especially for small n.

2.5 Ritchken’s Trinomial method

It is possible to reduce the discretization errors embedded in the lattice approach by

allocating the nodes of the binomial or trinomial tree so that they match the payoff

of the option or satisfy some other specific requirement (e.g. overlapping nodes of

two trees as required in calculating Vegas). For example, Ritchken (1995) takes

advantage of the flexibility (additional degree of freedom) offered by the trinomial

model and proposes an ingenious way to “stretch” the node separation so that

one layer of price nodes coincides exactly with the barrier or final exercise price

that is problematic. The idea can be applied in constructing trinomial trees for

2Heston and Zhou (2000) make a transformation of variables by setting x = [lnS−(r− 1
2σ

2)t]

and thus model log prices. This smoothing procedure helps numerical differentiation but leads

to a price bias. Similar to Jensen’s Inequality, the expectation of a less convex payoff is higher

than the more convex payoff.
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two different volatilities so that their nodes are always coincident. In a standard

trinomial tree, the asset price at any given time, can move into three possible

states, up, down, or middle, in the next period. If St denotes the asset price at

time t, then at time t + ∆t the prices will be uSt, mSt, or dSt. Parameters are

defined as follows

u = eλσ
√
∆t,

m = 1,

d = e−λσ
√
∆t,

where λ ≥ 1 (a dispersion parameter generated by the extra degree of freedom) is
chosen freely as long as the resulting probabilities are positive. For fastest conver-

gence, Omberg (1988) suggested setting the free parameter λ =
√
2π
2
(according to

a normal density condition).

Matching the first two moments (i.e. per period mean M and variance Σ) of the

risk-neutral returns distribution leads to the probabilities associated with these

states

Pu =
u(Σ+M2 −M)− (M − 1)

(u− 1)(u2 − 1)
Pm = 1− Pu − Pd
Pd =

u2(Σ+M2 −M)− u3(M − 1)
(u− 1)(u2 − 1)

where3 M = e(r−q)∆t and Σ = M2(eσ
2∆t − 1). For the trinomial trees of two

different volatilities (σ and σ +∆σ) to have exactly the same nodes positions, λ

should be chosen differently for the σ and σ +∆σ trees so that

eλσ
√
∆t = eλ

∗(σ+∆σ)
√
∆t (4)

Therefore, following Omberg we set λ =
√
2π
2
but determine λ∗ from σ and ∆σ

accordingly.

λ∗ =
λσ

σ +∆σ
=

√
2π

2

σ

σ +∆σ

3q is the dividend yield.
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Now the final σ and σ + ∆σ tree nodes are always located at the same points

although the probabilities for each branch in the trees are different. This reduces

discretization error where nodes and critical boundaries oscillate as a function of

step number n.

The next section proposes a sixth and new method that also exploits careful node

placing to reduce discretization error.

3 Modified Binomial (MB) method

We propose a new modified binomial method to calculate Vegas. Our idea is

derived from Amin (1991) who suggested a binomial method to price options where

the underlying asset has a time-varying (or functional) volatility.

Amin (1991) allowed time step sizes of varying magnitude in order to cancel out the

variable volatility term. Similarly, we increase the number of steps in the σ +∆σ

tree by two above the σ tree so that all but the two new nodes in the new tree are

common and coincident at maturity. In other words, if we denote the time step

sizes of the σ and σ +∆σ trees as ∆t, ∆t0, we set

∆t =
T

n

∆t0 =
T

n+ 2

u = eσ∆t = e(σ+∆σ)∆t0

d =
1

u
.

This implies that ∆σ = (
q
n+2
n
− 1)σ and the volatility increment is fixed in

proportion to the volatility by the size of the first tree and the number of new

nodes (2), ∆σ can still be made arbitrarily small by making n large. Also note

that the probability of an up movement as well as the per period discount rate
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t = 0 t = ∆t → t = T ← t = ∆t0 t = 0

σ,∆t = T
n
tree σ +∆σ,∆t0 = T

n+2
tree

Inadmissable node→ S0u
n+2

-
.

S0u
n · · ·

%
&

-
.

· · · S0u
n−2 · · ·

p S0u
%
&

... -
.S0u p0

S0
%
& S0d

iun+2−i -
.S0

1− p S0d
%
&

... -
.S0d 1− p0

· · · S0d
n−2 · · ·

%
&

-
.

S0d
n · · ·

-
.

Inadmissable node→ S0d
n+2

Number of end nodes (n+ 1) (n+ 3)

Table 1: Two binomial trees (the larger reversed in time to aid comparison) with

different volatilities and probabilities p, p0, and all final nodes coincident except

two.

in the new tree are again different.4 The detailed tree structures of the modified

binomial method are shown in Table 1, note the two extra nodes (inadmissible for

the first tree), one at both extremes of the final asset price.

Now as volatility is increased one new node is added above and below the exercise

price so that the balance of nodes either side is less likely to change. Further-

more the distance between the exercise threshold and its closest node is likely to

4Probabilities p0 = er∆t
0−d

u−d are smaller than the initial ones p = er∆t−d
u−d because discount

factors er∆t
0
are smaller than er∆t

³
∆t0
∆t =

n
n+2

´
.
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stay roughly the same (as well as staying the same sign). Thus the potential for

oscillation around the exercise threshold is lessened.

It is worth discussing that, in the spirit of the extended binomial tree method of

Pelsser and Vorst (1994), the modified binomial method and the trinomial method

are both essentially one—tree structures because the trees for two different volatili-

ties share almost all of the same nodes. They share the same stock price nodes so

that each does need separate storage during computation, only the option prices

need separate storage along with the two probabilities. Therefore this method and

the trinomial method will be more computationally efficiently than the other four

methods.

All the above six methods discussed in this paper are not mutually exclusive as

their features can be combined. For example, the idea of BBS method can be

applied to the trinomial or the modified binomial methods. The AMM method

can also be added to the trinomial method to improve accuracy. However we have

considered each method separately in order to evaluate their individual costs and

benefits.

4 Numerical results

In order to investigate the convergence properties of Vega by method, numerical

values were calculated for the initial and perturbed volatility (σ = 40%, ∆σ =

σ
³q

n+2
n
− 1

´
) and investigated using differing numbers of total steps in the tree.

The same volatility perturbation was used across all methods to ensure a fair

comparison.

For number of time steps n from 20 to 100 Panels A to F in Figure 1 for the six
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methods show dollar errors against the known theoretical value (Black Scholes).

Panels A to F in Figure 2 show the dollar errors for the two volatilities in scatter

graph form for the six methods. Finally, Panels A to F in Figure 3 show the

resulting numerical Vega derived from the perturbation around the initial volatility

for the six methods (again as a function of number of time steps).

Table 2 shows the root mean square errors for each method for n from 20 to 100

and 500 to 1,000 and finally Figure 4 shows this information in graphical form,

scattering the (log) r.m.s. errors against the (log) computational time in seconds.

4.1 Binomial method

It is known in the literature that numerical values oscillate around the true limiting

values (the benchmark n → ∞ Black-Scholes value in this case) as n increases.

The results here show that this oscillatory convergence is a problem for estimation

of Vega as well as other of the so called Greeks (partial derivative hedge ratios).

Firstly, Panel A of Figure 1 reaffirms the result, that neighbouring values (in n

the number of steps) have pricing errors which are negatively serially correlated.

Panel A of Figure 2 shows that although these errors are correlated, they are not

perfectly correlated and that there is considerable dispersion around the 45 degree

line.

Consequently when (for a fixed level of time steps n) numerical differentiation is

employed via a perturbation ∆σ in σ (Equation 1), the resulting Vega oscillates

around its Black Scholes theoretical value (Panel A of Figure 3). Convergence is

slow in n and the envelope for Vega is roughly a tenth of its level (for small n).

Thus as noted by many other authors for option Deltas, the binomial method is

also problematic for Vega estimation because of oscillatory convergence.
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4.2 AMM method

The Adaptive Mesh Model reduces the pricing error by adding more nodes to the

tree in the region near exercise. As can be seen from Panel B of Figure 1, the

resulting prices are indeed considerably more accurate than the Binomial method.

For both option estimates (the unpeturbed and volatility peturbed) the error en-

velope is considerable smaller than in the previous case and more importantly the

errors are no longer so negatively serially correlated (across n).

Furthermore the scatter graph of pricing errors under the AMM (Panel B of Figure

2) is much tighter to the origin, but although it has less dispersion along the 45

degree line, the correlation of these errors is smaller than for the regular Binomial

method because the dispersion in the perpendicular to the 45 degree line has not

been reduced by the AMM method.

Although it does reduce the pricing error, the AMM method inherits and indeed

magnifies the relative dispersion of the pricing errors. Other methods may produce

larger overall errors, but if these errors across two values of σ are more dependent

they will be easier to eliminate.

Thus the numerical Vega estimates in Panel B of Figure 3 (although not as os-

cillatory) still only tracks the true Vega within a large (but converging) envelope.

This is true for this and the Binomial method because although the effect of dis-

cretization can be reduced, its effect on the error structure and correlation cannot

be eliminated.

The next pair of methods behave differently and eliminate this last problem but

still prove problematic.
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4.3 BBS method

The so called Binomial Black Scholes method (BBS) smooths out the option value

function through the addition of the continuous Black Scholes pricing function one

period before maturity. Thus as the number of time steps is varied there are no

final nodes that can oscillate around the payoff condition.

In terms of price accuracy, the BBS performs well (Panel C of Figure 1). Further-

more, the errors while small in magnitude are also highly correlated. However, the

errors decrease at different rates as n increases, therefore the difference in errors

is not expected to be zero. This leads to the situation where Equation 1 is incon-

sistent due to the non zero mean error difference. The best situation for the two

errors is that their best fit line is of unit slope and passes through the origin with

a tight fit. Then both errors are highly dependent and their difference is much

smaller. The scatter graphs in Panel C of Figure 2 contain the 45 degree line for

reference.

As can be seen for Panel C of Figure 2, this is not the case for the BBS method so

the numerical Vega contains error bias. Thus the numerical Vega (in Panel C of

Figure 3) although stable across choice of n is inconsistent for all but the highest

number of step. This is to say that the option price difference for the higher

volatility less the lower is too low compared to the volatility difference itself.

4.4 HZ method

Like the BBS, this method applies smoothing. The D Panels tell a similar story.

Price errors themselves are large and declining almost monotonically with n (Panel

D of Figure 1). Although highly correlated across the two volatilities, these errors
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are not consistent. Their regression line is not of unit slope; it is greater than one

so that the error difference again is not zero.

Unlike the previous case, the higher volatility price contains a higher mean error

than the lower case as can be seen in Panel D of Figure 2. As a consequence, the

Vega estimate is overestimated and converges from above but only slowly (Panel

D of Figure 3).

Both of these last two methods that smooth the value function (BBS and HZ) thus

lead to less precise Vega estimates even though they may produce prices that are

in themselves more accurate. This is because of the structure present in the errors.

The next two methods seek to exploit some of the similarity properties of the tree

node structure in each volatility case and therefore produce a smaller overall error.

4.5 Trinomial method

The trinomial tree method performs quite well in Vega estimation. Price errors are

highly correlated and have a best fit very close to the unit slope, zero intercept line.

Thus the errors cancel out well in the numerical Vega estimation and although

upward biased (the higher volatility option has the higher error) they converge

quite well as n increases.

These results are somewhat akin to those of the Binomial method since two bino-

mial steps (with recombination) produce a very similar tree to that of a trinomial.

Looking at Panel A of Figure 1, if alternate points as a function of n (say for

even n) were considered the results would be similar to the trinomial tree. Indeed

the (upper) envelopes of the price and Vega curves for the BBS are similar to the

curves for the Trinomial method in Panel E of Figures 1 and 3.
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Therefore it may seem as if the results for the Binomial method could have been

substantially improved through the use of even n ordinates only, which would be

equivalent to comparing two trinomial trees similar to Ritchken’s method. However

when we tested this method it only seemed to eliminate the oscillatory convergence

in the special case where the initial stock price S equalled the exercise price K.

For other S/K ratios, the Vega still converged in an oscillatory fashion.

Overall as can be seen from Panel E of Figures 1 to 3, the Trinomial method while

containing some bias, works quite well in terms of Vega estimation.

4.6 MB method

Finally the Modified Binomial method (MB) is presented. Because it does not

add more nodes near expiry or attempt to smooth out the value function by an

insertion of a functional form near expiry, the pricing errors are large and suffer

the regular oscillatory convergence problem. For this method to work the volatility

perturbation has to be chosen to depend on n in a particular fashion (with σ = 40%

and σ
q
n+2
n
).5

Panel F of Figure 1 shows the price of two options . However because of the

positioning of the final nodes, these errors are both highly correlated and nearly

on the unit slope zero intercept line as can be seen from the scatter plot in Panel

F of Figure 2.

As a consequence, the Vega estimates in Panel F of Figure 3, although oscillatory,

have low error, are within a tight envelope and converge quickly. This is in contrast

5This choice of volatility perturbation is required for the MB method to work but has also been

adopted for all other methods to ensure comparability of results. It also has the useful property

of decreasing as n increases in a manner that does not distort the numerical differentiation.
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to all previous methods. In many applications, this MB method would be highly

suitable for robust, quick and accurate Vega calculation. This is because it uses

only two extra (and uniquely different) nodes so the maximum amount of nodes

are common to both trees.

5 Comparison of RMS errors and times

Table 2 shows root mean squared errors for 243 option prices for each of the six

methods. For all 35 = 243 combinations of parameters drawn from combinations

of K ∈ {35, 40, 45} , T ∈ {1, 4, 7} months, σ ∈ {20, 30, 40}%, r ∈ {3, 5, 7}%,
q ∈ {2, 5, 8}% (dividend yield) numerical Vegas were calculated using ∆σ =

σ
³q

n+2
n
− 1

´
for the peturbation.

The errors against the Black Scholes continuous value were squared, averaged and

square rooted to produce an aggregate RMS statistic. This was done repeatedly for

differing numbers of time steps n ∈ {20, 40, .., 100, 500, 1000} in order to examine
the convergence properties. The time taken for computation is also shown in

minutes, seconds and hundredths of seconds.

Each method almost always yields a lower RMS for increased n (the binomial

method being the most striking exception for lower values of n). Computational

time always increases with n and all methods require a similar magnitude of time

to compute apart from the BBS (which requires normal integrals). However the

AMM and the trinomial method take about twice the time of the binomial, HZ

and MB methods because of their extra tree complexity.

For many values of n and especially for large n, the binomial method and AMM

perform the worst in terms of RMS errors. This is because of the poor correlation
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between the errors for differing volatilities. Surprisingly the BBS method also

performs poorly for low n as well, however its performance improves as n increases

although this comes with increased computational burden. Although the BBS

price errors are well correlated across the volatility and its perturbed value, their

slope is not unity so that the Vegas calculated using this method contain bias.

The final three methods (Trinomial, HZ and MB) are quite similar in terms of

RMS performance and speed, however (like the AMM method) the Trinomial cal-

culation that contains more nodes and paths takes longer to evaluate than the HZ

and MB methods. The new Modified Binomial method performs quite similarly

to the HZ method but its errors are always lower for comparable computational

times. Furthermore its simple tree design lends it more intuitive appeal. This

is remarkable given the lack of price accuracy inherent in the Modified Binomial

method, however the high price coincidence across volatilities (Figure 1F) and very

high correlation between errors (Figure 2F) means that error cancellation is almost

complete in Vega calculation.

Figure 4 also shows the RMS errors and times from Table 2 in scatter plot form.

The horizontal axis details computational time in seconds, while the vertical details

RMS errors (both in log10 scale). The points on the left of Figure 3 are for n = 20

and move to n = 1, 000 on the right. This graphic reiterates the results just

discussed that the Modified Binomial method gives an easy way to achieve quick

and accurate estimates of option Vegas.

6 Conclusion

In conclusion, the model that produces the most accurate option prices may not

be the one that is best for calculating partial derivatives via numerical differenti-
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ation. This is because the error in the Vega depends not only on the magnitude

of the errors present in the two price estimates, but critically on their correlation

structure.

Models that produce individually accurate but jointly inaccurate prices such as the

AMM or BBS will not be good for estimating option Vegas (and other Greeks).

Models that are tailored specifically to reduce the discretization error near a ter-

mination boundary however, do much better in terms of Vega estimation.

These models, such as the Modified Binomial (MB) presented here, are the ones

that are also most likely to produce the best Vega results for other option types such

as American and Barrier, where no closed form benchmark formulae are available.
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Table 2: RMS (root-mean-squared) errors of six Vega estimates 
 
 

Number of steps 20 40 60 80 100 500 1000 
Binomial 0.4817 

(0:00.054) 
0.2727 
(0:00.086)

0.3313 
(0:00.132)

0.2211 
(0:00.192)

0.2254 
(0:00.266)

0.0743 
(0:05.083) 

0.0766 
(0:19.974)

AMM 0.1818 
(0:00.062) 

0.1311 
(0:00.117)

0.1075 
(0:00.204)

0.0927 
(0:00.320)

0.0890 
(0:00.469)

0.0406 
(0:09.696) 

0.0307 
(0:38.093)

BBS 0.2971 
(0:00.132) 

0.1511 
(0:00.584)

0.1010 
(0:02.383)

0.0759 
(0:04.326)

0.0609 
(0:06.243)

0.0124 
(0:48.092) 

0.0060 
(1:49.478)

HZ 0.1452 
(0:00.052) 

0.0736 
(0:00.082)

0.0507 
(0:00.125)

0.0382 
(0:00.195)

0.0303 
(0:00.265)

0.0061 
(0:05.085) 

0.0030 
(0:19.730)

Trinomial 0.1502 
(0:00.057 

0.0767 
(0:00.107)

0.0498 
(0:00.200)

0.0378 
(0:00.317)

0.0309 
(0:00.458)

0.0061 
(0:10.127) 

0.0031 
(0:39.822)

Modified 
binomial 

0.1118 
(0:00.050) 

0.0546 
(0:00.078)

0.0414 
(0:00.130)

0.0282 
(0:00.187)

0.0231 
(0:00.265)

0.0044 
(0:04.984) 

0.0025 
(0:19.460)

 
 

RMS= ∑
=

243

1

2
243
1

i
ie  defines the root-mean-squared errors for European puts where the 

error )( *
iii VVe −=  depends on iV  is the accurate (closed form) European Vega, *

iV  
the estimated Vega using σ and σ((n+2)/n)0.5. There are 243 parameter sets used: 
S=40, and combinations of K=35, 40, 45, σ=0.2, 0.3, 0.4, T=1, 4, 7 months, r=3, 5, 7 
%, and q=2, 5, 8%. The CPU time (in minutes, seconds, hundred of seconds) required 
to value all 243 options is also given. 
 

Figure 4: RMS error against computational time for six Vega estimation methods
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