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Linear Sharing Rules

JAMES HUANG

June 6, 2002

We derive necessary and sufficient conditions for a Pareto optimal sharing

rule to be linear in wealth and for all Pareto optimal sharing rules to be

linear in wealth. We also show that when agents� beliefs have a particular

feature a Pareto optimal sharing rule is linear in wealth if and only if all

Pareto optimal sharing rules are linear. The results obtained in this paper

generalize those on linear sharing rules in the existing literature. Unlike

the special case when aggregate wealth is dependent on a state variable,

even if all Pareto optimal sharing rules are linear it is not necessary that

agents� utility functions be of the equicautious HARA class.

1. INTRODUCTION

LINEAR SHARING RULES IN A special economy where aggregate wealth is depen-

dent on a state variable are now well understood in the literature. Mossin

(1973) showed that when agents have homogeneous beliefs, for all weightings

in an open set the Pareto optimal sharing rules are linear if and only if agents

have HARA class utilities with identical constant cautiousness. Amershi and
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Stoeckenius (hereafter A & S)(1983) showed that if agents have heterogeneous

beliefs then the following statements are equivalent: (i) There exists a Pareto

optimal sharing rule which is linear in wealth. (ii) All the Pareto optimal shar-

ing rules are linear in wealth. (iii) All agents have HARA class utilities with

identical cautiousness.1

Huang and Litzenberger (1985) (hereafter H & L) showed that when agents

have homogeneous beliefs, a Pareto optimal sharing rule is linear if and only

if they have identical cautiousness along their optimal schedules. From this

they pointed out that �for a Þxed weighting λ, for the Pareto optimal sharing

rule to be linear it is not necessary that the agents� utility functions be of the

equicautious HARA class�.

In this paper we study linear sharing rules in a general economy where

the aggregate wealth, which is random, may not depend on a state variable.

Alternatively we may say that the state of the economy is characterized by two

random variables: the aggregate wealth and the state variable. The results

derived in this paper generalize those given by A & S (1983), H & L (1985)

and Mossin (1973). Interestingly we will see from these results that unlike the

special case when aggregate wealth is dependent on a state variable, even if all

Pareto optimal sharing rules are linear it is not necessary that agents� utility

functions be of the equicautious HARA class.

In the following section we brießy introduce the formulation of the problem.

In Section 3 we derive the main results. In Section 4 show conditions for all

we discuss extensions of the results obtained in Section 3. The Þnal section

2



concludes the paper.

2. THE FORMULATION

Since the formulation of the problem is similar to the one in A & S (1983)

and Wilson (1968), we will not go through the details. We refer readers who

are interested in the formality to A & S (1983) and Wilson (1968). Assume

there is a random variable s, which together with aggregate wealth X describes

the state of an economy. Assume the range of s is S ∈ R, which is compact,

and the range of X is R+. The economy is characterized by a measurable space

(Ω,σ(Ω)), where Ω = {(s,X) : s ∈ S and X ∈ R+} and σ(Ω) is a σ-algebra of

events. Let there be N agents in the economy, indexed by i = 1, 2, ..., N . Each

agent i is characterized by a strictly increasing and concave Von Neumann-

Morgenstern utility function ui : R → R and a probability density function

pi(X, s) : Ω → R+. We assume that every agent i has inÞnite marginal utility

of zero consumption, i.e., limx→0 u0i(x) = +∞. Moreover, whenever needed, the

differentiability of agents� utility functions and probability density functions is

assumed.

A sharing rule is a vector-valued function x = (x1, x2, ..., xN) : R+×S → RN+

such that
NX
i=1

xi(X; s) = X, ∀X ∈ R.

A sharing rule x is said to be Pareto-optimal if there is no other sharing rule �x
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such that

Ei[ui(�xi(X; s))] ≥ Ei[ui(xi(X; s))] ∀i

with at least a strict inequality for some i. Using an argument similar to the one

by Wilson (1968), we obtain that a sharing rule x is Pareto-optimal if and only

if there exist constants (weighting) (λ1,λ2, ...,λN) such that for every i and j

λiu
0
i(xi)pi(X, s) = λju

0
j(xj)pj(X, s)(1)

Before we move forward we Þrst clarify on notation. Through out this paper

we always use γi(xi) to denote agent i�s coefficient of relative risk aversion and

εi(X, s) the elasticity of agent i�s probability density function w.r.t X. That is,

γi(xi) = −xiu00i (xi)/u0i(xi) and εi(X, s) = −∂ ln pi(X, s)/∂ lnX.

3. THE MAIN RESULTS

As noticed by Huang and Litzenberger (1985), when agents have homoge-

neous beliefs, for a Þxed weighting λ, for the optimal sharing rule to be linear,

it is not necessary that utilities be of the HARA class at all. Instead they

concluded that it is necessary and sufficient that agents have identical cautious-

ness along their optimal schedules. Their result is generalized in the following

proposition.

Proposition 1 A Pareto optimal sharing rule x is linear in wealth if and only

if for every i and j

γi(xi) + εi(X, s) = γj(xj) + εj(X, s).(2)
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Proof:

Necessity: Taking the derivative of the logarithm of both sides of eq. (1)

w.r.t X, we obtain that for every i and j

Ri(xi)
∂xi
∂X

− ∂ ln pi(X, s)
∂X

= Rj(xj)
∂xj
∂X

− ∂ ln pj(X, s)
∂X

,

where Ri(xi) = −u00i (xi)/u0i(xi) denotes agent i�s coefficient of risk aversion.

This equation can be written as

γi(xi)
∂ lnxi
∂ lnX

− ∂ ln pi(X, s)
∂ lnX

= γj(xj)
∂ lnxj
∂ lnX

− ∂ ln pj(X, s)
∂ lnX

.(3)

If the sharing rule is linear in wealth, since xi(0, s) = 0 we must have xi =

ai(s)X, where ai(s) is a function of s only. Thus eq. (3) can be written as eq.

(2).

Sufficiency: Equations (2) and (3) imply that for every i and j

γi(xi)[
∂ lnxi
∂ lnX

− 1] = γi(xj)[∂ lnxj
∂ lnX

− 1],

which can be written as

γi(xi)

γj(xj)
xj [
∂ lnxi
∂ lnX

− 1] = ∂xj
∂ lnX

− xj .

Noting that
P
j xj = X and

P
j ∂xj/∂X = 1, from the above equation we

obtain for every i X
j

xj
γj(xj)

γi(xi)[
∂ lnxi
∂ lnX

− 1] = 0.

It follows that for every i

∂ lnxi
∂ lnX

− 1 = 0.

From this we conclude that x is linear in X. Q.E.D.
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This proposition generalizes the result in H & L (1985) which states that

when agents have homogeneous beliefs a Pareto optimal sharing rule is linear if

and only if agents have identical cautiousness along their optimal schedules.

Corollary 1.1 Assume agents� beliefs have the following feature

pi(X, s) = fi(X)Q(X, s),(4)

where Q(X, s) is common across all agents. Then a Pareto optimal sharing rule

x is linear in wealth if and only if for every i and j

γi(xi) + εi(X) = γj(xj) + εj(X),(5)

where for any i, εi(X) = −Xf 0i(X)/fi(X).

Proof: It is an immediate result of Proposition 1.

From the condition it is not difficult to construct examples in which agents

do not have HARA utilities while Pareto optimal sharing rules are linear in

wealth.

Corollary 1.2 Assume agents have homogeneous beliefs. Then a Pareto opti-

mal sharing rule is linear in wealth if and only if agents have identical relative

risk aversion along their optimal schedules.

Proof: It is an immediate result of Proposition 1.
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H & L (1985) found that under homogeneous beliefs for a Pareto optimal

sharing rule to be linear it is necessary and sufficient that agents have identical

cautiousness along their optimal schedules. This corollary gives a different nec-

essary and sufficient condition. In fact under the assumption that agents have

inÞnite marginal utility of zero consumption these two conditions are equivalent.

Condition (1) is equivalent to the condition that for every i = 2, 3, ..., N

λiu
0
i(xi)pi(X,s) = u

0
1(x1)p1(X, s).(6)

Let λ ≡ (λ2,λ3, ...,λN). We have the following result:

Proposition 2 For all weightings λ in an open set, the Pareto optimal sharing

rules are linear in wealth if and only if the following conditions are met: (i)

All agents have constant relative risk aversion. (ii) Agents� beliefs have the

following feature:

pi(X, s) = fi(X)Q(X, s)gi(s),(7)

where Q(X, s) is common across all agents. (iii) The sum of an agent�s coef-

Þcient of relative risk aversion and elasticity of his probability density function

w.r.t the aggregate wealth is identical across all agents, i.e., for every i and j

γi + εi(X) = γj + εj(X),(8)

where for any i, γi is agent i�s coefficient of relative risk aversion and εi(X) =

−Xf 0i(X)/fi(X).
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Proof: Since

εi(X, s)− εj(X, s) = −∂ ln pi(X, s)/∂ lnX + ∂ ln pj(X, s)/∂ lnX,

the sufficiency is implied by Proposition 1. Thus we need only to show the

necessity.

Given a linear sharing rule x, since for every i, xi(0, s) = 0, we must have

for every i, xi(X, s) = ai(s)X, where ai(s) is a function of s only. Taking the

derivative of the logarithm of both sides of eq. (2) w.r.t λk, we obtain for every

i andj

γ0i(xi)
∂ai
∂λk

= γ0j(xj)
∂aj
∂λk

.(9)

Since for every i, u00i (x) < 0 we must have for every i, ∂ai/∂λk 6= 0.2

Now we assert that for every i γ0i(xi) = 0. Otherwise we must have some i

such that γ0i(xi) 6= 0. Since for every i, ∂ai/∂λk 6= 0, from (9) we conclude that

for every i, γ0i(xi) 6= 0.

Given any i, since ∂ai/∂λk 6= 0, there must exist j such that ∂(aj/ai)/∂λk 6=

0. Let aij ≡ aj/ai and X = Y/ai, where Y is independent of λk. Rewrite (9)

as

γ0i(Y ) = γ
0
j(aijY )

∂aj
∂λk

/
∂ai
∂λk

.(10)

Differentiating both sides of eq. (10) w.r.t λk, we have

γ00j (aijY )
∂aij
∂λk

Y (
∂aj
∂λk

/
∂ai
∂λk

) + γ0j(aijY )
∂(

∂aj
∂λk
/ ∂ai∂λk

)

∂λk
= 0.

This implies that −xjγ00j (xj)/γ0j(xj) is constant.

Differentiating both sides of eq. (10) w.r.t Y , we have

γ00i (Y ) = γ
00
j (aijY )aij

∂aj
∂λk

/
∂ai
∂λk

.
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From this and eq. (10) we obtain

−xi γ
00
i (xi)

γ0i(xi)
= −xj

γ00j (xj)
γ0j(xj)

(
∂aj
∂λk

/
∂ai
∂λk

).

Since −xjγ00j (xj)/γ0j(xj) is constant, so is −xiγ00i (xi)/γ0i(xi). It follows that

γ0i(xi) = αix
βi
i and γ0j(xj) = αjx

βj
j ,(11)

where αi(6= 0), αj(6= 0), βi, and βj are all constant. Substituting this into (11),

we conclude that βi = βj = β, which is constant across all agents.

On the other hand, from eq. (9) and the fact that
PN
i=1 ∂ai/∂λk = 0 we

must have
PN
i=1 1/γ

0
i(xi) = 0, which is equivalent to

PN
i=1 1/αi = 0. This

implies there must exist i and j such that αi < 0 and αj > 0.

Suppose β = −1, from eq. (11) we have

γi(xi) = αi lnxi + αi0 and γj(xj) = αj lnxj + αj0.

When xi approaches zero or inÞnity, since αiαj < 0, we have γi(xi)γj(xj) < 0.

This is contradictory to the condition that agents� utility functions are increasing

and concave.

Suppose β 6= −1, we have

γi(xi) =
αi
1 + β

x1+βi + αi0 and γj(xj) =
αj
1 + β

x1+βj + αj0.

If β > −1, when xi approaches inÞnity we have γi(xi)γj(xj) < 0. If β < −1,

when xi approaches zero we also have γi(xi)γj(xj) < 0. Both are contradictory

to the condition that agents� utility functions are increasing and concave. Hence

it is proved that for every i, γi(xi) must be constant.
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Since for every γi(xi) is constant, from eq. (2) we obtain eq. (8).

Moreover, differentiating both sides of eq. (8) w.s.t s, we obtain for every i

and j

∂2 ln pi(X, s)

∂ lnX∂s
=
∂2 ln pj(X, s)

∂ lnX∂s
.

This implies condition (ii). Q.E.D.

The sufficiency can also be veriÞed directly as follows. We have for every i

and j

λiαix
−γi
i Xγigi(s) = λjαjx

−γj
j Xγjgj(s),

where αi and αj are constant. It follows that xi = ai(s)X, where ai(s) is the

solution to
NX
j=1

a
γi
γj

i =
NX
j=1

(λiαigi(s))
1
γj /

NX
i=1

(λjαjgj(s))
1
γj .(12)

The existence of a solution to eq. (12) is evident. Let π(y) =
PN
j=1 y

γi/γj . Since

π(0) = 0 and π(+∞) = +∞, given any s ∈ S, there always exists ai(s) satisÞes

eq. (12). This shows that if the conditions in Proposition 2 is satisÞed, then

for all weightings there exist Pareto optimal sharing rules which are all linear

in wealth.

This proposition generalizes Mossin�s (1973, pp. 114) result. Mossin stated

that when agents have homogeneous beliefs a necessary and sufficient condition

under which optimal sharing rules are linear in wealth for all weightings λ in

an open set is that utility functions be of the equicautious HARA class (See

Mossin (1973) pp. 114). Proposition 2, however, tells us that the condition
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is not necessary when agents have heterogeneous beliefs over aggregate wealth

(although it is necessary that utility functions be of the HARA class).

Now consider the case when aggregate wealth X is dependent on the state

variable s and a non-random decision α as in A & S�s (1983) economy. If

given α, X = X(s,α) : S → R+ is one to one, then we have an equivalent

probability space on X induced from the one on s. Let fi(X,α) be agent i�s

probability density function of X induced from his probability density function

of s. Applying Proposition 2, we conclude that all Pareto optimal sharing rules

are linear if and only if all agents have constant relative risk aversion and eq. (8)

holds. Denote this result as Rα. Result Rα is very different from Theorem 5 in

A & S (1983) which states that given that agents have heterogeneous beliefs, all

Pareto optimal sharing rules are linear in wealth if and only if all agents have

identical relative risk aversion. Note that the linear sharing rules in Rα are

determinate while those in Theorem 5 are dependent on the random variable s.

From Proposition 2 we have the following corollary:

Corollary 2.1 Assume agents� beliefs have the following feature

pi(X, s) = Q(X, s)gi(s),(13)

where Q(X, s) is common across all agents. Then for an open set of λ, the

Pareto optimal sharing rules are linear in wealth if and only if agents have

identical constant relative risk aversion.

Proof: It is an immediate result of Proposition 2.

This corollary also generalizes Mossin�s (1973, pp. 114) result. Loosely
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speaking, it tells us that Mossin�s result holds in a more general economy where

agents have homogeneous beliefs regarding aggregate wealth X.

Proposition 3 Assume ∂ ln pi(X, s)/∂s is not identical across all agents on

an open subset of S and for every i and j, ∂εi(X,s)/∂X = ∂εj(X, s)/∂X.

Then the following statements are equivalent: (i) There exists a Pareto optimal

sharing rule which is linear in wealth on the open subset of S. (ii) All Pareto

optimal sharing rules are linear in wealth on all of S. (iii) Agents� beliefs have

the feature in eq. (7), every agent i has constant relative risk aversion and for

every i and j, eq. (8) holds.

Proof: (iii)⇒ (ii) is implied by Proposition 1. (ii)⇒ (i) is trivial. Thus we need

only to show (i)⇒ (iii).

Taking the derivative of both sides of eq. (5) w.r.t X and applying the

condition that for every i and j, ∂εi(X, s)/∂X = ∂εj(X, s)/∂X, we obtain for

every i and j

γ0i(xi)ai = γ
0
j(xj)aj .(14)

Given any i, there must exist j such that ∂(aj/ai)/∂s 6= 0 (otherwise we have for

every i, ∂ai/∂s = 0 which is contradictory to the condition that ∂ ln pi(X, s)/∂s

is not identical across all agents on an open subset of S). The rest of the proof

is almost the same as the proof of the necessity part of Proposition 2 except

that we replace eq. (10) with eq. (14) and λk with s respectively. Q.E.D.

This Proposition generalizes Theorem 5 in A & S (1983) which states that
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when aggregate wealth is dependent on the state variable (and a non-random

decision) then (i) and (ii) are equivalent and they are both equivalent to the

condition that all agents have identical constant cautiousness.

Corollary 3.1 Assume agents� beliefs have the feature as in eq. (13) and

g0i(s)/gi(s) is not identical across i on an open subset of S. Then the following

statements are equivalent: (i) There exists a Pareto optimal sharing rule which

is linear in wealth on the open subset of S. (ii) All Pareto optimal sharing rules

are linear in wealth on all of S. (iii) All agents have identical constant relative

risk aversion.

Proof: It is an immediate result of Proposition 3.

This corollary also generalizes Theorem 5 in A & S (1983). Loosely speaking,

it tells us that Theorem 5 holds in a more general economy where agents have

homogeneous beliefs regarding aggregate wealth X or where aggregate wealth

is dependent on the state variable (and a non-random decision).

Proposition 4 Assume agents� beliefs have the feature in (7). Then there ex-

ists a Pareto optimal sharing rule x which is linear in wealth and for every i,

∂xi/∂s 6= 0 only if every agent has constant relative risk aversion, g0i(s)/gi(s)

is not identical across all agents, and for every i and j, eq. (8) holds.

Proof:

Taking the derivative of the logarithm of both sides of eq. (2) w.r.t s and
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applying eq. (7), we obtain for every i andj

γ0i(xi)
∂ai
∂s

= γ0j(xj)
∂aj
∂s
.(15)

Given any i, since ∂ai/∂s 6= 0, there must exist j such that ∂(aj/ai)/∂s 6= 0.

The rest of the proof is almost the same as the proof of the necessity part of

Proposition 2 except that we replace eq. (10) with eq. (15) and λk with s

respectively. Q.E.D.

Now assume all agents� beliefs have the feature in eq. (13). Apparently, the

syndicate discussed by Wilson (1973) and A & S (1983), where aggregate wealth

completely depends on state variable s and a non-random decision, corresponds

to a special case of the economy where the common factor in (13) is equal to

one. Thus the economy where agents� beliefs have the feature in eq. (13) can

be seen as a generalization of the syndicate in Wilson (1973) and A & S (1983).

Although this more general economy is different from a Wilson syndicate,

it can be treated exactly the same when we derive the Pareto optimal sharing

rules. This can be directly veriÞed by observing the Þrst order conditions for

the utility maximization problems in the two economies. In a Wilson syndicate,

the Þrst order condition has the form

λiu
0
i(xi)gi(s) = λju

0
j(xj)gj(s).

In an economy with the feature in eq. (13), the Þrst order condition has the

form

λiu
0
i(xi)Q(X, s)gi(s) = λju

0
j(xj)Q(X,s)gj(s),
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where Q(X, s) is a common factor across all agents. Since the common factor

can be canceled, the two Þrst order conditions are essentially the same.

Because of this all results on Pareto optimal sharing rules hold in a Wilson

syndicate will also hold in this more general economy.

For example, we have the following proposition, which corresponds to The-

orem 6 in A & S (1983).

Proposition 5 In a two-agent economy assume agents have heterogeneous be-

liefs and their beliefs have the feature in (13). The following statements are

equivalent: (i) There exists a representative agent for some Þxed weighting λ

who has state-independent utility and whose belief has the same feature as indi-

vidual agents. (ii) The Pareto optimal sharing rule is linear in wealth (for the

same λ). (iii) Both agents have identical constant relative risk aversion.

Proof: The proof is almost the same as that of Theorem 6 in A & S (1983).

Thus it is omitted.

We also have results similar to Theorems 7 and 8 in A & S (1983) in this

economy. For the same reason as given by A & S (1983), the conclusion in

Proposition 5 does not hold in an economy where there are more than two

agents.

4. EXTENSIONS

In Section 2 we have assumed that agents have inÞnite marginal utility of

zero consumption, i.e., for every i

lim
x→0u

0
i(x) = +∞.
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This assumption can be relaxed. We now assumed that for every i there exists

ai such that

lim
x→ai

u0i(x) = +∞.

Let A ≡PN
i=1 ai. Assume the range of aggregate wealth is (A,+∞). Let

�γi(x) = −(x− ai)u00i (x)/u0i(x)

and

�εi(X, s) = −(X −A)∂pi(X,s)/∂X.

Following the same argument as in the previous section, we can derive similar

results without any changes except that we replace γi and εi with �γi and �εi

respectively for every i.

5. CONCLUSIONS

The results obtained in this paper show that even if all Pareto optimal shar-

ing rules are linear it is not necessary that agents� utility functions be of the

equicautious HARA class. When Pareto optimal sharing rules are all linear, we

have weak aggregation. That is, equilibrium prices are stable with respect to a

perturbation of the weighting. Thus the results imply that unlike the case when

aggregate wealth is dependent on the state variable, to obtain weak aggregation

it is not necessary that agents� utility functions be of the equicautious HARA

class.
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Notes

1In the economy discussed by A & S (1983) aggregate wealth is completely

dependent on a state variable and a non-random decision.

2 From (6), we have for any i 6= k > 1,

u00i (xi)
u0i(xi)

∂xi
∂λk

=
u001(x1)
u01(x1)

∂x1
∂λk

.

Suppose for some i 6= k > 1, ∂xi/∂λk = 0 then from the above equation we

have for every i 6= k, ∂xi/∂λk = 0. This implies that for every i, ∂xi/∂λk = 0.

But from (6) we have

1

λk
+
u00k(xk)
u0k(xk)

∂xk
∂λk

=
u001(x1)
u01(x1)

∂x1
∂λk

.

This is impossible. Suppose for every i 6= k > 1, ∂xi/∂λk 6= 0 but ∂xk/∂λk = 0.

Then we have
P
j 6=k ∂xi/∂λk = 0. But from (6) we obtain for every i 6= k,

1

λk
=
u00i (xi)
u0i(xi)

∂xi
∂λk

.

It follows that

1

λk

X
j 6=k

u0i(xi)
u00i (xi)

=
X
j 6=k

∂xi
∂λk

= 0.

Since for every i, u0i(xi) > 0 and u00i (x) < 0, the above equality is impossible.

Hence for every i, ∂xi/∂λk 6= 0.
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