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Relationships between Prudence, Risk Aversion,
and Cautiousness

Abstract

In this paper we investigate the relationships between prudence, risk
aversion, and cautiousness. These three measures explain investors’ in-
vestment decisions in the money market, stock market, and option market
respectively.1 Thus to understand how investors’ investment decisions in
the three markets are related it is important to know the relationships be-
tween the three measures. We show that roughly speaking, if an investor’s
(absolute or relative) prudence has some feature then his (absolute or rel-
ative) risk aversion will have the same feature. We also show that roughly
speaking, if an investor’s cautiousness has some feature then his relative
risk aversion will have the opposite feature.

1See Pratt (1964), Kimbal (1990), and Huang (2004). Also see Section 1 of this paper.
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Introduction

Investors pursue financial activities in three main financial markets, namely
the money market, stock market, and option market. It is, of course, of great
interest to know how they make investment decisions in these three financial
markets. Pratt (1964) and Arrow (1965) developed the theory of risk aversion
to explain investors’ behavior in the stock market. Pratt (1964) showed that
the higher an investor’s risk aversion the more risk premium he demands and
the less investment he makes in the stock market.

According to Leland (1968), “the ‘precautionary’ demand for saving usually
is described as the extra saving caused by future income being random rather
than determinate.” He concluded that the precautionary saving in response to
risk is associated with a positive third derivative of a von Neumann-Morgenstern
utility function. Kimball (1990) later developed the theory of prudence to mea-
sure the strength of an investor’s motive to make precautionary savings. The
theory is an anology to Pratt’s (1964) theory of risk aversion. Kimball showed
that the more prudent an investor, the more precautionary savings he will make
and the more precautionary premium he demands.

The definition of cautiousness was first brought by Wilson (1968) without
explanations. Cautiousness is equal to the ratio of prudence to risk aversion
minus one. Leland (1980) suggested to use this measure to explain convexity
of investors’ optimal payoff functions which is related to the feature of options.
Huang (2004) established that cautiousness measures of investors’ tendencies to
buy options. He showed that if investor i’s lowest possible cautiousness is higher
than j’s highest possible cautiousness, then investor i has a stronger tendency
to buy an option regardless of other conditions; and the reverse is also true.

Obviously to understand how investors’ investment decisions in the three fi-
nancial markets are related it is important to know the relationships between the
three preference measures, namely prudnence, risk aversion, and cautiousness.
Eeckhoudt and Schlesinger (1994) gave some good results on the relationship
between prudence and risk aversion. In this paper we cast further light on this.
We show that roughly speaking, if an investor’s (absolute or relative) prudence
has some feature then his (absolute or relative) risk aversion will have the same
feature (sometimes with a minor additional condition).

We also give a thorough research on the relationship between cautiousness
and risk aversion. We show that, roughly speaking, if an investor’s cautiousness
has some feature then his relative risk aversion will have the opposite feature
(sometimes with a minor additional condition).

We also show some inter-personal chararacteristics of the relationships be-
tween the three measures. For example, we show that given two investors with
different initial wealth, if one has higher relative prudence in all states than the
other, he also has higher relative risk aversion in all states given that they have
zero marginal utility of infinite wealth.
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All these results have interesting implications for undstanding how investors’
investment decisions in the three financial markets are related, which are ex-
plained in this paper.

The structure of this paper is as follows: In Section 1 we briefly introduce
the three investment decision problems in the money market, stock market, and
option market and show how the three preference measures explain investors’
decisions regarding these three problems. In this section we also slightly extend
the results on intra-personal comparative risk aversion and prudence in Pratt
(1964) and Kimball (1990) to the inter-personal case. In Section 2 we discuss
the relationship between absolute prudence and absolute risk aversion. Section
3 discusses the relationship between relative prudence and relative risk aver-
sion. Section 4 shows the relationship between cautiousness and absolute risk
aversion. Section 5 shows the relationship between cautiousness and relative
risk aversion. Section 6 discusses extensions of the results on relative risk aver-
sion and relative prudence to partial relative risk aversion and partial relative
prudence. Section 7 concludes the paper. Lengthy proofs are put in appendices.

1 Prudence, Risk Aversion, and Cautiousness

Given a utility function u(x), Arrow (1965) and Pratt (1964) defined its ab-
solute risk aversion as the negative ratio of its second derivative to its first
derivative.2 If we use R(x) to denote its absolute risk aversion, then we have
R(x) ≡ −u′′(x)/u′(x). Kimball (1990) defined its absolute prudence as the neg-
ative ratio of its third derivative to its second derivative. If we use P (x) to
denote its absolute prudence, then we have P (x) ≡ −u′′′(x)/u′′(x). The first
derivative of risk tolerance is first called cautiousness by Wilson (1968). Equiv-
alently it is equal to the ratio of prudence to risk aversion minus one. If we use
C(x) to denote cautiousness, then we have C(x) ≡ P (x)/R(x) − 1.3

1.1 Prudence and the Money Market

Consider a two-period economy. An investor with first-period utility function
v(x) and second-period utility function u(x) has the following consumption-
saving problem in the money market.

(I) max
c

v(c) + Eu((w0 − c)r + ε),

where w0 is the investor’s initial wealth, c ≡ c(ε) is his first period consumption,
r is the total return of 1 unit of money saved in his bank account in the second
period, and ε is the uncertainty in his wealth. Note w0 − c is the amount of
money the investor will save in his bank account.

2In this paper we always assume that utility functions are strictly increasing, strictly
concave, and three times differentiable unless stated otherwise.

3Throughout the paper we use P or P with subscripts to denote absolute prudence, R
or R with subscripts to denote absolute risk aversion, and C or C with subscripts to denote
cautiousness.
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Leland (1968) and Kimball (1990) developed the theory of precautionary
savings which explains investors’ decisions with respect to problem (I). Kim-
ball (1990) showed that prudence, which is defined as the negative ratio of the
third derivative of u(x) to its second derivative, measure the strength of the
investor’s motive to make precautionary savings responding to the uncertainty
in his wealth.

Given two utility functions u1(x) and u2(x). Let Pi denote the absolute
prudence of ui(x), i = 1, 2. Let c = ci(ε) be the solution if u(x) = ui(x),
i = 1, 2. Kimball (1990) showed that the following conditions are equivalent.

• For all x ≥ 0, P1(x) ≥ P2(x).

• c1(ε) ≤ c2(ε) for all ε.

The same equivalences hold if attention is restricted throughout to an interval.
The result tells us that if an investor becomes uniformly more prudent then

he will consume less and make more precautionary savings for all ε.
The above Kimball’s (1990) original result is about intra-personal compar-

ative prudence. This result can be extended to the interpersonal case where
investors have different initial wealth. Before we proceed, we first introduce
some notation. Given a utility function u(x), its relative prudence is defined
as its absolute prudence multiplying x. If we use β(x) to denote its relative
prudence then we have β(x) ≡ xP (x), where P (x) is its absolute prudence.4

In order to facilitate the comparison of investors’ decisions with respect to
the consumption-saving problem, we now assume that investors have the same
utility functions in the first and second periods. Denote investor i’s utility
function by ui(x). Assume investor i initially has wi units of wealth. Now the
uncertainty ε̂ is proportional to his wealth. Let ĉi ≡ ĉi(ε̂) be his first period
consumption as a proportion of his initial wealth. Then the consumption-saving
problem becomes

(I′) max
ĉi

ui(ĉiwi) + ρEui(wi((1 − ĉi)r + ε̂)).

where ρ is the time discount factor. We have the following result.

Proposition 1 Let βi(x) be the relative prudence of ui, i = 1, 2. Let ĉi be the
solution to investor i’s problem in the money market.

1. Assume ρr = 1. Then for all x ≥ 0, β1(w1x) ≥ β2(w2x) if and only if for
all ε ĉ1(w1, ε) ≤ ĉ2(w2, ε).

2. Assume ρr ≤ 1. Then for all x ≥ 0, β1(w1x) ≥ β2(w2x) implies for all ε
ĉ1(w1, ε) ≤ ĉ2(w2, ε).

The same equivalences hold if attention is restricted throughout to an interval.

Proof: See Appendix Appendix A.
4Throughout this paper given a utility function u(x) we will always use β(x) to denote its

relative prudence. When the utility function u(x) has a hat or a subscript, the corresponding
β(x) will also have a hat or the subscript.
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1.2 Risk Aversion and the Equity Market

An investor may also have the following investment problem in the equity mar-
ket.

(II) max
x

Eu(w0r + x(ε − r)),

where ε = S/S0, S0 and S are the values of the equity at time 0 and 1 respec-
tively, and x is his position in the equity market.

Arrow (1965) and Pratt (1964) developed the theory of risk aversion which
explains investors’ decisions with respect to problem (II). They showed that
the higher an investor’s measure of risk aversion, the more money he invests
in the equity market. As in the first problem, assume two investors have the
same initial wealth. Let Ri denote the absolute risk aversion of ui, i = 1, 2.
Let x = xi(ε) be the solution if u(x) = ui(x), i = 1, 2. They showed that the
following conditions are equivalent.

• For all x ≥ 0, R1(x) ≥ R2(x).

• x1(ε) ≤ x2(ε) for all ε .

• g(t) = u1(u−1
2 (t)) is a concave function of t.

The same equivalences hold if attention is restricted throughout to an interval.
The result tells us that if an investor becomes uniformly more risk averse

then he will invest less in the equity market whatever the return on the equity
is.

The above Pratt’s (1964) original result is about intra-personal comparative
risk aversion. This result can be easily extended to the interpersonal case where
investors have different initial wealth. Before we proceed, we first explain the
notation. Given a utility function u(x), its relative risk aversion is defined as its
absolute risk aversion multiplying x. If we use γ(x) to denote its relative risk
aversion then we have γ(x) ≡ xR(x), where R(x) is its absolute risk aversion.5

Assume investor i invest x̂i proportion of his wealth in the equity market.
Then investor i’s investment problem in the equity market becomes:

(II′) max
xi

E[ui(wir + xiwi(ε − r))].

We have the following result.

Proposition 2 Let γi(x) and xi be the relative risk aversion and optimally
invested proportion of initial wealth corresponding to investor i, i = 1, 2. Then
the following conditions are equivalent.

1. For any x ≥ 0, γ1(w1x) ≥ γ2(w2x).

2. x1(w1, ε) ≤ x2(w2, ε) for all ε [and < if 0 < x1(w1, ε) < 1].
5Throughout this paper given a utility function u(x) we will always use γ(x) to denote its

relative risk aversion. When the utility function u(x) has a hat or a subscript, the correspond-
ing γ(x) will also have a hat or the subscript.
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3. g(t) = u1(w1
w2

u−1
2 (t)) is a concave function of t.

The same equivalences hold if attention is restricted throughout to an interval.

Proof: Given investor i’s utility function ui(x), define

ûi(x) ≡ ui(wix). (1)

We call ûi(x) investor i’s transformed utility function. Although investors have
different initial wealth, that is in terms of their original utility functions. In
terms of the transformed utility function all investors have the same initial
wealth; thus we can apply Pratt’s (1964) results on the transformed utility
functions.

Let R̂i(x) and P̂i(x) be the absolute risk aversion and absolute prudence of
ûi(x). Let γi(x) and βi(x) be the relative risk aversion and relative prudence of
ui(x). From (1), we have

R̂i(x) = γi(wix)/x, (2)

and
P̂i(x) = βi(wix)/x. (3)

Applying Pratt’s (1964) Theorem 1 and Theorem 7, noting that

R̂i(x) = wiRi(wix) = γi(wix)/x,

we immediately obtain the proposition. This completes the proof.

1.3 Cautiousness and the Option Market

Now assume there is an option written on the stock. The third investment
problem, which involves the option, is

(III) max
x,y

Eu(w0r + x(
S

S0
− r) + y(

c(S)
c0

− r)),

where c0 and c(S) are the values of the equity at time 0 and 1 respectively and
y is the investor’s position in the option.

Huang (2004) studied the third problem and established that cautiousness,
which is equal to the ratio of prudence to risk aversion minus one, measures an
investor’s tendency to buy options. He showed that the following two conditions
are equivalent:

• There exists a constant C ≥ 0 such that for all x Ci(x) ≥ C ≥ Cj(x).

• Investor j buys the derivative only if investor i does, and investor i sells
the derivative only if investor j does, regardless of their initial wealth, the
interest rate, the stock price, the derivative price, and the distribution of
the future stock price.

7



In Sections 2 of this paper we will show the relation between an investor’s
decisions in Problems (I) and (II) by investigating the relationship between
prudence and risk aversion. In Sections 3 we will show the relation between an
investor’s decisions in Problems (I′) and (II′) by investigating the relationship
between relative prudence and relative risk aversion. In Sections 5 we will show
the relation between an investor’s decisions in Problems (I) and (III) by inves-
tigating the relationship between cautiousness and absolute risk aversion. In
Sections 5 we will show the relation between an investor’s decisions in Problems
(I′) and (III) by investigating the relationship between cautiousness and relative
risk aversion.

2 Absolute Prudence and Absolute Risk Aver-

sion

An investor’s decisions on precautionary saving and investment in equity must
be closely related, and prudence must be closely associated with risk aversion.
In the early days, the difference between investor’s motivation of precautionary
saving and risk aversion was sometimes even ignored. As pointed out by Leland
(1968), “when rigor is absent, economists have tended to equate the precau-
tionary demand for saving with the concept of risk avoidance.” Although it is
inappropriate to equate the concept of prudence to that of risk aversion, there is
no doubt that the two are closely related to each other. In this section we show
the relationship between absolute prudence and absolute risk aversion, which
will reveal how an investor’s decision in problem (I) is related to his decision in
problem (II).

Lemma 1 Given two utility functions u1(x) and u2(x), assume for all x ∈
(a, A), P1(x) > P2(x), where A can be +∞. Then the following statements are
true.

1. For some x ∈ (a, A), R1(x) > R2(x), if and only if there exists x◦ ∈
(x, A) ∪ {A}, such that u′

1(x
◦)/u′

1(x) ≤ u′
2(x

◦)/u′
2(x).6

2. For some x ∈ (a, A), R1(x) < R2(x), if and only if there exists x◦ ∈ [a, x),
such that u′

1(x
◦)/u′

2(x
◦) < u′

1(x)/u′
2(x).7

Both statements hold if all >’s and <’s are replaced by ≥’s and ≤’s respectively.

Proof: See Appendix B.

The first statement generalizes a result obtained by Eeckhoudt and Schlesinger
(1994). Their result gives a sufficient condition for the above relationship be-
tween the two preference measures, which states that if utility function u1(x)

6Throughout this paper, given a utility function u(x), which is defined for x ∈ (a, A), u′
i(a)

is defined as limx→a u′
i(x) and u′

i(A) is defined as limx→A u′
i(x), i = 1, 2.

7The ratio u′
1(a)/u′

2(a) is defined as limx→a u′
1(x)/u′

2(x).
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always has higher absolute prudence than utility function u2(x), then u1(x) has
higher absolute risk aversion than u2(x) at some x, if the ratio of the latter’s
marginal utility and the former’s marginal utility at x is no larger than the limit
of the ratio when x approaches infinity.

Proposition 3 Given two utility functions u1(x) and u2(x), assume for all
x ∈ (a, A), P1(x) > P2(x), where A can be +∞. Then the following statements
are true.

1. For all x ∈ (a, A), R1(x) > R2(x), if and only if for all x ∈ (a, A),
u′

1(A)/u′
1(x) ≤ u′

2(A)/u′
2(x).

2. For all x ∈ (a, A), R1(x) < R2(x), if and only if for all x ∈ (a, A),
u′

1(a)/u′
2(a) < u′

1(x)/u′
2(x).

Both statements hold if all >’s and <’s are replaced by ≥’s and ≤’s respectively.

Proof: We first prove the first statement. The sufficiency part is immediately
implied by the first statement of Lemma 1. Thus we need only show the necessity
part. If for every x ∈ (a, A), R1(x) > R2(x), then for any x ∈ (a, A), we have
(ln(u′

1(x)/u′
2(x)))′ < 0, which implies that ln(u′

1(A)/u′
2(A)) < ln(u′

1(x)/u′
2(x)).

Hence the necessity is proved.
The proof of the second statement is similar. Q.E.D.

Roughly speaking, the two statements of Proposition 3 give necessary and
sufficient conditions for a utility function to associate uniformly high absolute
prudence with uniformly high/low absolute risk aversion when compared with
another utility function.

Assume two inevstor A and B with the same initial wealth have utility
functions u1(x) and u2(x) respectively.

If the condition in the first statement is satisfied then u1(x) is uniform-
ly more prudent than u2(x) implies u1(x) is uniformly more risk averse than
u2(x). According to the results from Kimball (1990) and Pratt (1964) (shown
in Subsections 1.1 and 1.2 of this paper) this implies that if investor A decides
to make more precautionary savings than B in the money market w.r.t. prob-
lem (I) for any uncertainty ε in their wealth, then A will decide to invest less
than B in the equity w.r.t. problem (II) for any equity return ε.8 This seems
reasonable.

However, if the condition in the second statement is satisfied then u1(x) is
uniformly more prudent than u2(x) implies u1(x) is uniformly less risk averse
than u2(x). According to the results from Kimball (1990) and Pratt (1964)
(shown in Subsections 1.1 and 1.2 of this paper) this implies that if investor A
decides to make more precautionary savings in the money market w.r.t. problem
(I) than B for any uncertainty ε in their wealth, then A will decide to invest

8Consider all random variables ε and ε satisfy the conditions that for c, x ∈ (0, w), a <
(w − c)R + ε < A and a < (w − x)R + xε < A.
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more in the equity w.r.t. problem (II) than B for any equity return ε. This
looks less reasonable.

From the above proposition we can see clearly that if for all x ∈ (a, +∞),
P1(x) > (≥)P2(x), and u′

1(+∞) = 0, then for all x ∈ (a, +∞), R1(x) > (≥
)R2(x). That is, assuming the marginal utility of infinite wealth is zero, if a
utility function always has higher absolute prudence than another utility func-
tion, then the former will always have higher absolute risk aversion than the
latter. This shows that if we use utility functions that have zero marginal util-
ity of infinite wealth to model investors’ preferences then the more prudent an
investor is globally in the money market then the more risk averse globally the
investor in the equity market.

It is not difficult to see that most common utility functions satisfy the condi-
tion that marginal utility of infinite wealth is zero. For example, all risk-averse
HARA class utility functions satisfy this condition. However, there are utility
functions that do not have zero marginal utility of infinite wealth. These util-
ity functions will not associate globally high prudence with globally high risk
aversion. We give the following example.

Let u1(x) = ln x and u2(x) = 10x0.1. Note that u′
1(+∞) = u′

2(+∞) = 0.
Let û1(x) be a utility function such that

û′
1(x) = u′

1(x) +
1
9

=
1
x

+
1
9
.

Apparently, û1(+∞) = 1
9 > 0. It is obvious that the prudence of û1(x) is equal

to the prudence of u1(x). Since the prudence of u1(x) is higher than that of
u2(x), we conclude that the prudence of û1(x) is higher than that of u2(x). On
the other hand we have

û′
1(1)/û′

1(x) = (1 +
1
9
)/(

1
x

+
1
9
) and u′

2(1)/u′
2(x) = x0.9.

Since for x 6= 1

x−0.1 +
1
9
x0.9 =

10
9

9x−0.1 + x0.9

10
>

10
9

,

the preceding equation implies that for x 6= 1, û′
1(1)/û′

1(x) < u′
2(1)/u′

2(x).
Thus from the second statement of Proposition 3 we conclude that for x > 1,
R̂1(x) < R2(x). For x > 1, applying Corollary 1, we also have Ĉ1(x) > C2(x),
where Ĉ2(x) and C2(x) are the cautiousness of û1(x) and u2(x). The above con-
clusions can be verified by calculating the risk aversion and cautiousness û1(x)
and u2(x).

Note that if u′
2(a) = +∞ and u′

1(a) < +∞, then we always have u′
1(a)/u′

1(x) ≤
u′

2(a)/u′
2(x). Thus it appears that we have a similar result implied by the second

statement of Proposition 3. That is, assume for all x ∈ (a, +∞), P1(x) > P2(x),
u′

1(a) < +∞, and u′
2(a) = +∞ then for all x ∈ (a, +∞), R1(x) < R2(x). It

can be proved that the above statement is true. However, the conditions in the
statement can never be satisfied. According to Pratt’s (1964) Theorem 8, if
P1(x) ≥ P2(x) then u′

2(a) = +∞ implies u′
1(a) = +∞.
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Since cautiousness is equal to the ratio of prudence to risk aversion minus
one, a relationship between prudence and risk aversion may imply a relationship
between cautiousness and prudence. From the second statement of Proposition
3, we have the following result.

Corollary 1 Given two utility functions u1(x) and u2(x), assume for all x ∈
(a, A), P1(x) > (≥)P2(x), where A can be +∞. If for all x ∈ (a, A), u′

1(a)/u′
2(a) ≤

u′
1(x)/u′

2(x), then for all x ∈ (a, A), C1(x) > (≥)C2(x).

Proof: Given utility function u(x), we have

(ln[1/R(x)])′ = (ln u′(x))′ − (ln[−u′′(x)])′ = P (x) − R(x),

where P (x) and R(x) are its absolute prudence and absolute risk aversion re-
spectively. This implies

[1/R(x)]′ = P (x)/R(x) − 1.

Thus we have
C(x) = P (x)/R(x) − 1. (4)

On the other hand, under the condition given in this corollary, Proposi-
tion 3 implies that for all x ∈ (a, A) R1(x) < R2(x). Since for all x ∈ (a, A)
P1(x) > P2(x), this and (4) imply that for all x ∈ (a, A) C1(x) > C2(x). This
completes the proof.

From Proposition 3 we can derive an interesting result.

Proposition 4 The following two statements are true.

• (i) If there exists a constant δ > 0 such that for all x ∈ (a, +∞), P (x) <
(≤)δ, then for all x ∈ (a, +∞), R(x) < (≤)δ.

• (ii) If there exists a constant δ > 0 such that for all x ∈ (a, +∞), P (x) >
(≥)δ, then for all x ∈ (a, +∞), R(x) > (≥)δ if and only if u′(+∞) = 0.

Proof: We only prove Statement (ii). Statement (i) can be similarly proved.
Let u0(x) ≡ −e−δx. It is straightforward that its prudence and risk aversion
are P0(x) = δ and R0(x) = δ. If u′(+∞) = 0, since P (x) > P0(x), applying
Proposition 3, we have R(x) > R0(x) = δ. This proves the sufficiency part. The
necessity part follows from the fact that R(x) > δ > 0 implies

ln u′(+∞) = ln u′(x) −
∫ +∞

x

R(x)dx = −∞.

This completes the proof.

Pratt (1964) and Arrow (1965) defined a special type of preference with
which an investor will invest more in equity when he becomes wealthier. Such
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investors are said to have decreasing absolute risk aversion (hereafter DARA).
Investors who have the opposite feature are said to have increasing absolute
risk aversion (hereafter IARA). They also defined a special type of preference
with which an investor will invest more proportion of his wealth in equity when
he becomes wealthier. Such investors are said to have decreasing relative risk
aversion. Investors who have the opposite feature are said to have increasing
relative risk aversion.

Kimball (1993) defined a special type of preference with which an investor
will make less precautionary savings when he becomes wealthier. Such investors
are said to have decreasing absolute prudence (hereafter DAP). Investors who
have the opposite feature are said to have increasing absolute prudence (here-
after IAP). Kimball (1993) also defined a special type of preference with which
an investor will make less precautionary savings proportional to his wealth when
he becomes wealthier. Such investors are said to have decreasing relative pru-
dence. Investors who have the opposite feature are said to have increasing
relative prudence.

Kimball (1993) showed that any utility function that has DAP with wealth
x ∈ (a, +∞) also has DARA. In this paper, we show that any utility function
that has decreasing relative prudence with wealth x ∈ (a, +∞) also has de-
creasing relative risk aversion. Moreover we show that any utility function that
has increasing absolute (relative) prudence with wealth x ∈ (a, +∞) also has
increasing absolute risk aversion if and only if the marginal utility of infinite
wealth is zero. We first state Kimball’s result as follows and give a different
proof.

[Kimball (1993)] If P (x) is decreasing with wealth x ∈ (a, +∞), then
R(x) is decreasing with wealth x ∈ (a, +∞).

Proof: For any ε > 0, let u1(x) = u(x) and u2(x) = u(x + ε). Since P (x) is
decreasing with x ∈ (a, +∞), we have that P1(x) > P2(x). Since u′(x) is de-
creasing and positive, u′(+∞) exists. It follows that u′

1(∞) = u′
2(∞) ≥ 0. But

since u′(x) is decreasing, we obtain u′
1(∞)/u′

1(x) ≤ u′
2(∞)/u′

2(x). Applying
Proposition 3, we obtain R1(x) > R2(x). Thus we conclude that for any ε > 0,
R(x) > R(x + ε), which proves the first half. The second half can be proved
similarly. This completes the proof.

We now show the following result.

Proposition 5 Given a utility function u(x), assume its absolute prudence is
(strictly) increasing with wealth x ∈ (a, +∞). Then its absolute risk aversion
is also (strictly) increasing with wealth x ∈ (a, +∞) if and only if the utility
function has zero marginal utility of infinite wealth.

Proof: The proof is similar to the one of Kimball’s (1993) result we give in the
context preceding this proposition, thus it is omitted.

The proposition tells us that when utility functions have zero marginal utility
of infinite wealth globally increasing prudence implies globally increasing risk
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aversion; however, when utility functions do not have zero marginal utility of
infinite wealth, globally increasing prudence will not imply globally increasing
risk aversion.

3 Relative Prudence and Relative Risk Aversion

In the last section we have shown the relationship between absolute prudence
and absolute risk aversion. In this section we show the relationship between
relative prudence and relative risk aversion. By doing this we help to understand
how investors’ decisions w.r.t problem (I′) are related to their decisions w.r.t
problem (II′). More specifically we will answer the following question. If an
investor decides to make more proportional precautionary savings responding
to a proportional risk in his wealth in problem (I′) than another investor under
what necessary and sufficient conditions will the first investor decide to invest
more or less proportion of wealth in the equity market in problem (II′) than
the second investor? Note that different investors not only have different utility
functions but have different wealth as well, thus the problem is more complicated
than the problem in the last section.

We now present the following result.

Lemma 2 Given two utility functions u1(x) and u2(x), assume for all x ∈
(a, A), β1(w1x) > β2(w2x), where a ≥ 0, A can be +∞, and wi > 0, i = 1, 2.
Then the following two statements are true.

1. For some x ∈ (a, A), γ1(w1x) > γ2(w2x), if and only if there exists x◦ ∈
(x, A) ∪ {A}, such that u′

1(w1x
◦)/u′

1(w1x) ≤ u′
2(w2x

◦)/u′
2(w2x).

2. For some x ∈ (a, A), γ1(w1x) < γ2(w2x), if and only if there exists x◦ ∈
[a, x), such that u′

1(w1x
◦)/u′

2(w2x
◦) < u′

1(w1x)/u′
2(w2x).

Both statements hold if all >’s and <’s are replaced by ≥’s and ≤’s respectively.

Proof: Let û1(x) = u1(w1x) and û2(x) = u2(w2x). Let γ̂i(x) and β̂i(x) be the
relative risk aversion and relative prudence of ûi(x), i = 1, 2. Applying Lem-
ma 3 on ûi(x), i = 1, 2 and noting that γ̂i(x) = γi(wix) and β̂i(x) = βi(wix),
i = 1, 2, we immediately obtain Lemma 2. This completes the proof.

Proposition 6 Given two utility functions u1(x) and u2(x), assume for all
x ∈ (a, A), β1(w1x) > β2(w2x), where a ≥ 0, A can be +∞, and wi > 0,
i = 1, 2. Then the following two statements are true.

1. For all x ∈ (a, A), γ1(w1x) > γ2(w2x), if and only if for all x ∈ (a, A),
u′

1(w1A)/u′
1(w1x) ≤ u′

2(w2A)/u′
2(w2x).

2. For all x ∈ (a, A), γ1(w1x) < γ2(w2x), if and only if for all x ∈ (a, A),
u′

1(w1a)/u′
2(w2a) < u′

1(w1x)/u′
2(w2x).
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Both statements hold if all >’s and <’s are replaced by ≥’s and ≤’s respectively.

Proof: The proof is almost the same as the proof of Proposition 3.

Proposition 6 shows necessary and sufficient conditions for a utility function
to associate uniformly high relative prudence with uniformly high/low relative
risk aversion when compared with another utility function given that the in-
vestors whose preferences are represented by these two utility functions have
different initial wealth.

From the second statement of Proposition 6 we have the following corollary.

Corollary 2 Given two utility functions u1(x) and u2(x), assume for all x ∈
(a, A), β1(w1x) > (≥)β2(w2x), where a ≥ 0, A can be +∞, and wi > 0,
i = 1, 2. If for all x ∈ (a, A), u′

1(w1a)/u′
2(w2a) < (≤)u′

1(w1x)/u′
2(w2x), then

for all x ∈ (a, A), C1(w1x) > (≥)C2(w2x), where Ci(x) is the cautiousness of
ui(x), i = 1, 2.

Proof: The proof is similar to the proof of Corollary 1.

From Proposition 6 we have the following result.

Proposition 7 Given two utility functions u1(x) and u2(x), assume u′
1(+∞) =

0, and for all x ∈ (a, +∞), β1(w1x) > (≥)β2(w2x), where a ≥ 0 and wi > 0,
i = 1, 2. Then for all x ∈ (a, +∞), γ1(w1x) > (≥)γ2(w2x).

Proof: Since u′
2(x) is positive and decreasing thus u′

2(∞) must exist. Since
u′

1(∞) = 0, for all x ∈ (a, +∞), u′
1(w1(+∞))/u′

1(w1x) ≤ u′
2(w2(+∞))/u′

2(w2x).
Applying Proposition 6, we immediately obtain the result.

We have shown in Subsection 1.1 that if for all x, β1(w1x) ≥ β2(w2x) then
ĉ1 ≤ ĉ2, where ĉi is the solution to investor i’s investment problem (I′), i = 1, 2.
We have also shown in Subsection 1.2 that if for all x, γ1(w1x) ≥ γ2(w2x)
then x1 ≤ x2, where xi is the solution to investor i’s investment problem (II′),
i = 1, 2.

Thus assuming utility functions have zero marginal utility of infinite wealth,
if u1(w1x) has uniformly higher prudence than u2(w2x) implies u1(w1x) has
uniformly higher risk aversion than u2(x). According to the results in Subsec-
tions 1.1 and 1.2 of this paper, this implies that if investor A decides to make
more proportional precautionary savings than B in the money market w.r.t.
problem (I) for any uncertainty ε in their wealth, then A will decide to invest
less proportion of his wealth than B in the equity w.r.t. problem (II) for any
equity return ε.

From the above proposition we can derive another interesting result.

Proposition 8 The following two statements are true.

1. If there exists a constant δ > 1 such that for all x ∈ (a, +∞), β(x) < (≤)δ,
then for all x ∈ (a, +∞), γ(x) < (≤)δ − 1.
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2. If there exists a constant δ > 1 such that for all x ∈ (a, +∞), β(x) > (≥)δ,
then for all x ∈ (a, +∞), γ(x) > (≥)δ − 1 if and only if u′(+∞) = 0.

Proof: We only prove Statement (ii). Statement (i) can be similarly proved. Let
u0(x) ≡ x2−δ/(2−δ). It is straightforward that its relative prudence and relative
risk aversion are β0(x) = δ and γ0(x) = δ−1. If u′(+∞) = 0, since β(x) > β0(x),
applying Proposition 7 we have γ(x) > γ0(x) = δ−1. This proves the sufficiency
part. The necessity part follows from the fact that γ(x) > δ − 1 > 0 implies

ln u′(+∞) = ln u′(x) −
∫ +∞

x

γ(x)d ln x = −∞.

This completes the proof.

Pratt (1964) and Arrow (1965) defined a special type of preference with
which an investor will invest more proportion of his wealth in equity when
he becomes wealthier. Such investors are said to have decreasing relative risk
aversion. Investors who have the opposite feature are said to have increasing
relative risk aversion. Kimball (1993) defined a special type of preference with
which an investor will make less precautionary savings proportional to his wealth
when he becomes wealthier. Such investors are said to have decreasing relative
prudence. Investors who have the opposite feature are said to have increasing
relative prudence.

We now show the following result.

Proposition 9 The following statements are true.

1. If its relative prudence is (strictly) decreasing with wealth x ∈ (a, +∞),
then its relative risk aversion is also (strictly) decreasing with wealth x ∈
(a, +∞).

2. Assume its relative prudence is (strictly) increasing with wealth x ∈ (a, +∞).
Then its relative risk aversion is also (strictly) increasing with wealth
x ∈ (a, +∞) if and only if the utility function has zero marginal utility
of infinite wealth.

Proof: We only prove the first statement. The second statement can be similarly
proved.

Let β(x) and γ(x) denote the relative prudence and relative risk aversion of
the utility function respectively. For any x > a ≥ 0 and ε > 0, let w1 = x
and w2 = x + ε. Given y > a/x, let u1(w1y) = u(xy) and u2(w2y) =
u((x + ε)y). Let βi(x) and γi(x) denote the relative prudence and relative
risk aversion of ui(x), i = 1, 2. It is straightforward that β1(w1y) = β(xy) and
β2(w2y) = β((x + ε)y). This and the condition that β(x) is decreasing with
x ∈ (a, +∞) imply that for any y > a/x, β1(w1y) > β2(w2y). On the other
hand, we have u′

1(∞) = u′
2(∞) ≥ 0. But since u′(x) is decreasing, we obtain

u′
1(∞)/u′

1(xy) = u′(∞)/u′(xy) ≤ u′
2(∞)/u′

2(xy). Applying Lemma 6, we obtain
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γ1(w1y) > γ2(w2y). But we have γ1(w1y) = γ(xy) and γ2(w2y) = γ((x + ε)y).
Hence we obtain for any y > a/x, γ(xy) > γ((x + ε)y). Letting y = 1 in the
last equation, we obtain γ(x) > γ(x + ε). This completes the proof.

When utility functions do not have zero marginal utility of infinite wealth,
globally increasing relative prudence will not imply globally increasing relative
risk aversion. We give the following example.

Let u(x) ≡ ln(x + 1) + x. It is straightforward that u′(x) = 1
x+1 + 1. Ap-

parently, u′(+∞) = 1 > 0. It is also straightforward that the relative prudence
of u(x) is β(x) = 2x/(x + 1), which is increasing with x. However, its relative
risk aversion is

γ(x) =
x

(x + 1)2
/(

1
x + 1

+ 1) =
x

(x + 1)(x + 2)
.

We have

γ′(x) =
3 − x2

(x + 1)2(x + 2)2
,

which is negative for x >
√

3. This example shows increasing relative prudence
does not imply increasing relative risk aversion when the marginal utility of
infinite wealth is not zero.

4 Cautiousness and Absolute Risk Aversion

In the last two sections we have shown the relationship between prudence and
risk aversion, which helps to understand how investors’ investment decisions in
the money market and equity market are related. In this section and next sec-
tion we show the relationship between cautiousness and risk aversion, which will
help us to understand how investors’ investment decisions in the equity market
and option market are related. In this section we first show the relationship
between cautiousness and absolute risk aversion. This will help to understand
the relation between problem (II) and problem (III). Moreover, we know that
cautiousness is the ratio of prudence to risk aversion minus one. On the other
hand, according to Kimball’s (1990) precautionary premium and Pratt’s (1964)
risk premium for a small risk are approximately equal to half the prudence and
risk aversion multiplied by the variance of the risk respectively. Thus the rela-
tionship between cautiousness and risk aversion will also reveal how Kimball’s
precautionary premium is related to pratt’s risk premium.

As in the previous context, given a utility function u(x), we always use
C(x) to denote its cautiousness. When the utility function u(x) has a hat or a
subscript, the corresponding C(x) will also have a hat or the subscript.

Lemma 3 Given two utility functions u1(x) and u2(x), assume for all x ∈
(0, A), C1(x) < (≤)C2(x). Then for all x ∈ (0, A), R1(x) > (≥)R2(x), if and
only if 1/R1(0) ≤ 1/R2(0).
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Proof: Since for all x ∈ (0, A), C1(x) ≤ C2(x), we have

(1/R1(x) − 1/R2(x))′ = C1(x) − C2(x) ≤ 0.

Thus if 1/R1(0)− 1/R2(0) ≤ 0, then for all x ∈ (0, A), 1/R1(x) − 1/R2(x) ≤ 0.
This proves the sufficiency part. The necessity part follows from the fact that if
1/R1(0)−1/R2(0) > 0, then for sufficiently small x > 0, 1/R1(x)−1/R2(x) > 0.
This completes the proof.

From the above lemma we have the following result.

Proposition 10 Given two utility functions u1(x) and u2(x), assume for all
x ∈ (0, A), 0 < C1(x) < (≤)C2(x). If u′

1(0) = +∞, then for all x ∈ (0, A),
R1(x) > (≥)R2(x).

Proof: Noting that the conditions u′
1(0) = +∞ and for all x ∈ (0, A), C1(x) > 0

imply that R1(0) = +∞. Hence we always have 1/R1(0) ≤ 1/R2(0). Applying
Lemma 3, we obtain the corollary. This completes the proof.

This result shows that if we use utility functions that have infinite marginal
utilities of zero wealth to model investors’ preferences, then with the same initial
wealth if an investor’s cautiousness become uniformly higher then the investor
will be uniformly less risk averse.

5 Cautiousness and Relative Risk Aversion

In this section we show the relationship between cautiousness and relative risk
aversion. This will help to understand the relation between problem (II′) and
problem (III). Similar to the last section, this section will also helps to un-
derstand the relation between precautionary premium and risk premium. For
example, after this section we will be able to answer the following question: if
an investor’s ratio of proportional precautionary premium to proportional risk
premium for a small proportional risk is larger than that of another investor,
what will be the relation between their proportional risk premiums?

Note that γ or γ with subscripts denote relative risk aversion.

Lemma 4 Given two utility functions u1(x) and u2(x), assume for w1 > 0,
w2 > 0, and all x ∈ (0, A), C1(w1x) < (≤)C2(w2x). Then for all x ∈ (0, A),
γ1(w1x) > (≥)γ2(w2x), if and only if 1/(w1R1(0)) ≤ 1/(w2R2(0)).

Proof: Let û1(x) = u1(w1x) and û2(x) = u2(w2x). Let R̂i(x) and Ĉi(x) be the
absolute risk aversion and cautiousness of ûi(x), i = 1, 2. Applying Lemma 3
on ûi(x), i = 1, 2 and noting that R̂i(x) = wiRi(wix) and Ĉi(x) = Ci(wix),
i = 1, 2, we immediately obtain Lemma 6. This completes the proof.

From the above lemma we have the following result.
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Proposition 11 Given two utility functions u1(x) and u2(x), assume for all
x ∈ (0, A), 0 < C1(w1x) < (≤)C2(w2x). If u′

1(0) = +∞, then for all x ∈ (0, A),
γ1(w1x) > (≥)γ2(w2x).

Proof: Noting that the conditions u′
1(0) = +∞ and for all x ∈ (0, A), C1(w1x) >

0 imply that R1(0) = +∞. Hence we always have 1/(w1R1(0)) ≤ 1/(w2R2(0)).
Applying Lemma 4, we obtain the corollary. This completes the proof.

This shows that utility functions that have infinite marginal utility of zero
wealth associate high cautiousness with low relative risk aversion when com-
pared with each other. Moreover, we have the following result.

Proposition 12 The following two statements are true.

1. If for all x ∈ (0, A) C(x) ≥ (>)C0 > 0, then for all x ∈ (0, A) γ(x) ≤
(<)1/C0.

2. If for all x ∈ (0, A) 0 < C(x) ≤ (<)C0, then for all x ∈ (0, A) γ(x) ≥
1/C0 if and only if u′(0) = +∞.

Proof: Let u1(x) ≡ u(x) and u2(x) ≡ x1−1/C0/(1 − 1/C0). Since C2(x) = C0

and γ2(x) = 1/C0, applying Proposition 11, we prove the first statement and
the sufficiency part of the second statement. The necessity part of the second
statement follows from the fact that for all x ∈ (0, A) γ(x) ≥ 1/C0 implies
u′(0) = +∞. This completes the proof.

The proposition tells us that given that an investor’s marginal utility of ze-
ro wealth is infinity, if an investor’s cautiousness is bounded above (below) by
some positive constant then his relative risk aversion is bounded below (above)
by the inverse of the constant.

For a power utility function u(x) = x1−ν/(1 − ν), it is straightforward that
the relative risk aversion γ(x) = ν and the cautiousness C(x) = 1/ν. Thus
in this special case we have C(x) = 1/γ(x). Only power utility functions and
logarithmic utility functions have this property. This can be shown by some
simple calculations.

C(x) = 1/γ(x) is equivalent to (1/R(x))′ = 1/[xR(x)]. It can be written as
d ln[1/R(x)]/d lnx = 1, which is equivalent to 1/R(x) = γx, where γ > 0 is a
constant. We rewrite it as xR(x) = γ, which implies that u(x) is a power utility
function or a logarithmic utility function.

For more general utility functions, however, we have the following result:

Proposition 13 The following two statements are true.

1. If 0 < C(∞) < +∞, then γ(∞) = 1/C(∞).

2. If 0 < C(0) < +∞, then γ(0) = 1/C(0), if and only if u′(0) = +∞.
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Proof:The first statement is proved in Appendix C. Thus we only prove the sec-
ond statement here. Since 0 < C(0) < +∞, given any δ ∈ (0, C0) for sufficiently
small ν > 0, for all x ∈ (0, ν), C(0) − δ < C(x) < C(0) + δ. Applying Proposi-
tion 12, we conclude that for all x ∈ (0, ν), 1/(C(0) + δ) < γ(x) < 1/(C(0)− δ)
if and only if u′(0) = +∞. This completes the proof.

This result tells us that when wealth approaches zero or infinity, if the limit
of the cautiousness exists, then the limit of the relative risk aversion also exists
and in limit they have the relationship, which holds for power utility functions.
This is not surprising since in limit the cautiousness is a positive constant and
it is natural for the utility function to behave like power utility functions, which
have positive constant cautiousness.

Proposition 14 The following two statements are true.

1. If its cautiousness is (strictly) increasing with wealth x ∈ (0, A), then its
relative risk aversion is (strictly) decreasing with wealth x ∈ (0, A) if and
only if u′(0) = +∞.

2. If its cautiousness is (strictly) decreasing with wealth x ∈ (0, A), then its
relative risk aversion is (strictly) increasing with wealth x ∈ (0, A).

Proof: For any x ∈ (0, A), arbitrarily given ∆x > 0, let w1 = x, w2 = x +
∆x, u1(w1y) ≡ u(w1y), and u2(w2y) ≡ u(w2y). Since the cautiousness of
u(x) is increasing with x, we have for all y ∈ (0, A/w2) C1(w1y) ≤ C2(w2y),
where Ci(x) denotes the cautiousness of ui(x), i = 1, 2. Applying Lemma 3,
we conclude that γ1(w1y) ≥ γ2(w2y) if and only if 1/(w1R1(0)) ≤ 1/(w2R2(0)),
which is equivalent to 1/(xR(0)) ≤ 1/(x + ∆x)R(0)). The last condition holds
if and only if R(0) = +∞. Noting that γ1(w1y) = γ(xy) and γ2(w2y) =
γ((x + ∆)y), from the above result we conclude that the relative risk aversion
is decreasing with x ∈ (0, A) if and only if R(0) = +∞. The last condition is
equivalent to u′(0) = +∞, given that C(x) is increasing with x ∈ (0, A). This
proves the second statement.

The second statement can be similarly proved. This completes the proof.

6 Extensions

All the results in previous sections related to relative risk aversion or relative
prudence can be generalized. Given a utility function u(x), let P (x) and R(x)
be its absolute prudence and absolute risk aversion. Define βb(x) ≡ (x−br)P (x)
and γb(x) ≡ (x−br)R(x), where b is a constant and r is the total return on a unit
money account. βb(x) and γb(x) are called partial relative prudence and partial
relative risk aversion respectively. All the results in Sections 2 and 3 related to
relative risk aversion or relative prudence will still hold if we replace β(x) and
γ(x) with βb(x) and γb(x) respectively and replace βi(wix), γi(wix), C(wix),
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and u′
i(wix) with βbi(bi +(wi−bi)x), γbi(bi +(wi−bi)x), C(bi +(wi−bi)x), and

u′
i(bi+(wi−bi)x) respectively. All the results in Sections 4 related to relative risk

aversion will still hold if we replace γ(x) with γb(x) and replace γi(wix), C(wix),
u′

i(0), and wiRi(0) with βbi(bi+(wi−bi)x), γbi(bi+(wi−bi)x), C(bi+(wi−bi)x),
u′

i(bir), and (wi − bi)Ri(bir) respectively. The proofs are virtually the same.
Note that if for some reasons an investor must hold a certain amount of

cash, say bi, then given his wealth x, he will consider to invest at most x − bi

units of wealth in risky assets. An example of such a case is an investor with a
utility function that has infinite marginal utility of bi units of wealth. Such an
investor cannot live with an amount of wealth below bi. Thus he always holds
(at least) bi units of cash to avoid this situation. In this case the investor’s
sonsumption-saving problem becomes:

(I′′) max
ĉ

ui(ĉ(wi − bi)) + ρEui(bir + (wi − bi)((1 − ĉ)r + ε)).

where wi is the investor’s initial wealth, ĉ is his first period consumption as a
proportion of his initial wealth minus bi, r is the total return on a unit money
account in the second period, and ε is the uncertainty in his wealth. Note 1− ĉ
is the proportion of his initial wealth minus bi the investor saves in his bank
account.

The investor’s investment problem in the equity market becomes:

(II′′) max
x̂

E[ui(wir + x̂(wi − bi)(ε − r))]

where ε is the total return of 1 unit of money invested in the equity market in
the second period and x̂ is the proportion of his initial wealth minus bi units of
cash he invests in the equity market.

The results on the relationship between partial relative prudence and partial
relative risk aversion and the relationship between cautiousness and partial rela-
tive risk aversion can be used in the exactly same way to explain the relationship
between the relationship of investors’ decisions in the above two problems as the
results on the relationship between relative prudence and relative risk aversion
and the relationship between cautiousness and relative risk aversion.

7 Conclusions

In this paper we have thoroughly investigated the relationships between pru-
dence, risk aversion, and cautiousness. This helps to understand how investors’
investment decisions in the money market, stock market, and option market
are related. We have shown that roughly speaking, if an investor’s (absolute or
relative) prudence has some feature then his (absolute or relative) risk aversion
will have similar feature (sometimes with a minor additional condition). We
have also shown that roughly speaking, if an investor’s cautiousness has some
feature then his relative risk aversion will have the opposite feature (sometimes
with a minor additional condition).
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We have shown the implications of prudence and cautiousness for risk aver-
sion; however, it is more difficult to show the implications of risk aversion for
prudence and cautiousness. This is due to the mathematical feature of the three
preference measures under the utility representation framework. Note that pru-
dence and cautiousness involve higher order derivatives of a utility function than
the risk aversion. Thus it is not surprising that both prudence and cautiousness
have implications for risk aversion. Mathematically, the higher order deriva-
tives have implications for the lower order derivatives given certain boundary
conditions. However, for the same reason it is difficult to find implications of
risk aversion for prudence and cautiousness9.

9Eeckhoudt and Schlesinger (1994) managed to reveal some implications of risk aversion
for prudence under certain conditions.
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Appendix A Proof of Proposition 1

We first prove the first statement. Let t = u′
2(w2((1 − c)r + ε)). Hence (1 −

ĉ)r + ε = u′−1
2 (t)/w2. It follows that

Eu′
1(w1((1 − ĉ)r + ε)) = Eu′

1(
w1

w2
u′−1

2 (t))

Using the analogy between risk aversion and prudence established by Kimball
(1990) and the result on interpersonal comparative risk aversion, we conclude
that the condition that for all x ≥ 0, β1(w1x) ≥ β2(w2x) is equivalent to
u′

1(
w1
w2

u′−1
2 (t)) is concave in t, which is equivalent to

Eu′
1(

w1

w2
u′−1

2 (t)) ≥ [>]u′
1(

w1

w2
u′−1

2 (Et)) (5)

for all t.
Assume ĉ is the solution to

u′
2(ĉw2) = ρrEu′

2(w2((1 − ĉ)r + ε))

Since ρr = 1, we have ĉ = 1
w2

u′−1
2 (Et), where t = u′

2(w2((1 − ĉ)r + ε)). Hence
we have

u′
1(ĉw1) − ρrEu′

1(w1((1 − ĉ)r + ε)) = u′
1(

w1

w2
u′−1

2 (Et)) − Eu′
1(

w1

w2
u′−1

2 (t))

This and (5) imply that Statement 1 is equivalent to u′
1(ĉw1)−ρrEu′

1(w1((1−
ĉ)r + ε)) ≤ [<]0. It follows that the statement is equivalent to ĉ1 ≤ ĉ [and < if
0 < ĉ1(w1, ε) < 1]. This proves the first statement.

Now we prove the second statement. Let ρ̂ ≡ ρr. We have

d

dt
[u′

1(
w1

w2
u′−1

2 (ρ̂t))− ρ̂u′
1(

w1

w2
u′−1

2 (t))] = ρ̂
w1

w2
[
u′′

1(w1
w2

u′−1
2 (ρ̂t))

u′′
2(u′−1

2 (ρ̂t))
−

u′′
1(w1

w2
u′−1

2 (t))

u′′
2(u′−1

2 (t))
]

Since

d

dt
ln

u′′
1(w1

w2
u′−1

2 (t))

u′′
2(u′−1

2 (t))
= −[β1(

w1

w2
u′−1

2 (t)) − β2(u′−1
2 (t))]u′′

2 (u′−1
2 (t))/u′−1

2 (t) > 0

for ρ̂ ≤ 1, we have
u′′

1(w1
w2

u′−1
2 (ρ̂t))

u′′
2(u′−1

2 (ρ̂t))
<

u′′
1(w1

w2
u′−1

2 (t))

u′′
2(u′−1

2 (t))

Hence we obtain

d

dt
[u′

1(
w1

w2
u′−1

2 (ρ̂t)) − ρ̂u′
1(

w1

w2
u′−1

2 (t))] < 0

Since u′
1(+∞) = u′

2(+∞) = 0, it follows that

u′
1(

w1

w2
u′−1

2 (ρ̂t)) − ρ̂u′
1(

w1

w2
u′−1

2 (t)) < 0 (6)
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Assume c is the solution to

u′
2(cw2) = ρ̂Eu′

2(w2((1 − c)r + ε))

we have c = 1
w2

u′−1
2 (ρ̂Et), where t = u′

2(w2((1 − c)r + ε)). Hence we have

u′
1(cw1) − ρ̂Eu′

1(w1((1 − c)r + ε)) = u′
1(

w1

w2
u′−1

2 (ρ̂Et)) − ρ̂Eu′
1(

w1

w2
u′−1

2 (t))

This, (5), and (6) imply that u′
1(cw1)− ρ̂Eu′

1(w1((1−c)r+ε)) ≤ [<]0. It follows
that c1 ≤ c [and < if 0 < c1(x1, ε) < 1]. This completes the proof.

Appendix B Proof of Lemma 3

We first prove the first statement. The necessity is rather obvious. Suppose for
all y ∈ (x, A) ∪ {A}, we have u′

1(y)/u′
1(x) > u′

2(y)/u′
2(x), then we have that

ln u′
1(y) − ln u′

1(x)
y − x

>
ln u′

2(y) − ln u′
2(x)

y − x
.

Let y → x, we immediately conclude that R1(x) ≤ R2(x).
Now we prove the sufficiency: Let u′

1(x) = t(u′
2(x)). The existence of the

function t(x) = u′
1(u

′−1
2 (x)) is rather obvious given that u′

2(x) is strictly de-
creasing in x. We have

P1(x) = −
u′′′

1 (x)
u′′

1(x)
= −

t′′(u′
2)

t′(u′
2)

u′′
2 + P2(x).

Since P1(x) > P2(x), we obtain t′′(x) > 0 (t′(x) > 0). We also have

R1(x) = u′
2(x)

t′(u′
2(x))

t(u′
2(x))

R2(x). (7)

Since there exists x◦ ∈ (x, A) ∪ {A}, such that u′
1(x◦)/u′

1(x) ≤ u′
2(x◦)/u′

2(x), if
u′

2(x
◦) 6= 0, we have

t(u′
2(x◦))

u′
2(x◦)

≤ t(u′
2(x))

u′
2(x)

= k.

It follows that

t(u′
2(x)) − t(u′

2(x
◦))

u′
2(x) − u′

2(x◦)
≥ ku′

2(x) − ku′
2(x

◦)
u′

2(x) − u′
2(x◦)

= k =
t(u′

2(x))
u′

2(x)
(8)

But if u′
2(x

◦) = 0, we must have u′
1(x

◦) = u′
2(x

◦) = 0, thus (8) naturally holds.
Hence we always have (8).

On the other hand, since t′′(x) > 0 (t′(x) > 0) and the utility function u2(x)
is concave, we conclude that

t′(u′
2(x)) >

t(u′
2(x)) − t(u′

2(x
◦))

u′
2(x) − u′

2(x◦)
. (9)
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From (8) and (9) we obtain

t′(u′
2(x)) >

t(u′
2(x))

u′
2(x)

. (10)

From (7) and (10) we immediately conclude that R1(x) > R2(x).
Hence the first statement is proved. The proof of the second statement is

similar. Q.E.D.

Appendix C Proof of Proposition 13

We have
C(x) = (

1
R(x)

)′

Since C(+∞) exists, limx→+∞(1/R(x))′ exists. Given sufficiently small ε > 0
for sufficiently large x, we have

C(∞) − ε < (
1

R(x)
)′ < C(∞) + ε.

Thus for sufficiently large a and x > a,

(C(∞) − ε)(x − a) <
1

R(x)
− 1

R(a)
< (C(∞) + ε)(x − a).

It can be written as

(C(∞) − ε)
x − a

x
<

1
xR(x)

− 1
xR(a)

< (C(∞) + ε)
x − a

x
.

Let x → +∞ and ε → 0, we conclude that limx→+∞ xR(x) exists and

γ(∞) =
1

C(∞)
.
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