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We examine themetrics that arise when a finite set of points is em-

bedded in the real line, in such away that thedistancebetweeneach

pair of points is at least 1. These metrics are closely related to some

other known metrics in the literature, and also to a class of com-

binatorial optimization problems known as graph layout problems.

We prove several results about the structure of these metrics. In

particular, it is shown that their convex hull is not closed in general.

We then show that certain linear inequalities define facets of the

closure of the convex hull. Finally, we characterize the unbounded

edges of the convex hull and of its closure.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

For a given positive integer n, let [n] denote {1, . . . , n}. Ametric on [n] is a mapping d: [n] × [n] →
R+ which satisfies the following three conditions:

• d(i, j) = d(j, i) for all {i, j} ⊂ [n],
• d(i, k) + d(j, k) � d(i, j) for all ordered triples (i, j, k) ⊂ [n],
• d(i, j) = 0 if and only if i = j.

Metrics are a special case of semimetrics, which are obtained by dropping ‘and only if’ from the third

condition. There is a huge literature onmetrics and semimetrics; see for example [12]. The inequalities

in the second condition are the well-known triangle inequalities.
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In this paper we study the metrics d on [n] that arise when n points are embedded in the real line,

in such a way that the distance between each pair of points is at least 1. More formally, we require that

d satisfies the following two properties:

• there exist real numbers r1, . . . , rn such that d(i, j) = ∣∣ri − rj
∣∣ for all {i, j} ⊂ [n];

• d(i, j) � 1 for all {i, j} ⊂ [n].
We remark that one could easily replace the value 1 with some arbitrary constant ε > 0; the results

in this paper would remain essentially unchanged.

We call themetrics in question ‘R-embeddable 1-separated’metrics.We believe that thesemetrics

are a natural object of study, and of interest in their own right.We have, however, two specificmotives

for studying them. First, they are closely related to certain well-known metrics that have appeared in

the literature. Second, they are also closely related to an important class of combinatorial optimization

problems, known as graph layout problems.

As well as studying the metrics themselves, we also study their convex hull. It turns out that the

convex hull is not always closed, which leads us to study also the closure of the convex hull. Among

other things, we characterize some of the (n − 1)-dimensional faces (i.e., facets) of the closure, and

some of the one-dimensional faces (i.e., edges) of both the convex hull and its closure.

The structure of the paper is as follows. In Section 2, we review some of the relevant literature

on metrics and graph layout problems. In Section 3, we present various results concerned with the

structure of the metrics and their convex hull. Next, in Section 4, we present some inequalities that

define facets of the closure of the convex hull. In Section 5, we give a combinatorial characterization of

the unbounded edges of the convex hull and of its closure. Finally, some concluding remarks are given

in Section 6.

We close this section with a word on notation. To study convex geometric properties, we view

metrics aspoints inavector spaceS0
n. Inournotation,S0

nwill beeither thevector spaceof all symmetric

functions [n] × [n] → R or the vector space of all real symmetric (n × n)-matrices whose diagonal

entries are zero, and we will switch freely between them. For the latter, the inner product is defined

as usual by

A • B := tr(A�B) =
n∑

k=1

n∑
l=1

Ak,lBk,l.

Weunderstand ametric both as a function and amatrix, andwewill switch between the two concepts

without further mentioning.

By S(n)we denote the set of all permutations of [n]. We occasionally view S(n) as a subset of Rn by

identifying the permutationπ with the point (π(1), . . . ,π(n))�. Furthermore we let ın := (1, . . . , n)
the identity permutation in S(n).Weomit the indexnwhenno confusion can arise.1 is a columnvector

of appropriate length consisting of ones. Similarly0 is a vectorwhose entries are all zero. If appropriate,

we will use a subscript 1k, 0k to identify the length of the vectors. The symbol 0 denotes an all-zeros

matrix not necessarily square, and we also use it to say “this part of the matrix consists of zeros only.”

By 1n we denote the square matrix of order nwhose (k, l)-entry is 1 if k /= l and 0 otherwise. As above

we will omit the index nwhen appropriate. We denote by CU the complement of the set U.

2. Literature review

In this section, we review some of the relevant literature. We cover related semimetrics in Section

2.1 and graph layout problems in Section 2.2. To facilitate reading we have summarized all matrix sets

discussed in Table 1.

2.1. Some related semimetrics

The following four classes of semimetrics on [n], which are closely related to the R-embeddable

1-separated metrics, have been extensively studied in the literature (see [12] for a detailed survey):
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Table 1

Sets of matrices.

CUTn �1-embeddable semimetrics (cut cone)

HYPn Hypermetrics, see (1)

NEGn Negative-type cone, see (2)

ML2
n �2-embeddable semimetrics

MR
n R-embeddable semimetrics

MR1
n R-embeddable 1-separated metrics

Qn Convex hull ofMR1
n

Qn Closure of Qn

Pn Permutation metrics polytope, see (5)

• The �1-embeddable semimetrics, i.e., those for which there exist a positive integer m and points

x1, . . . , xn ∈ Rm such that d(i, j) = ∣∣xi − xj
∣∣
1

:=∑m
k=1

∣∣xik − xjk
∣∣ for all {i, j} ⊂ [n].

• The�2-embeddable semimetrics,whicharedefinedas in the�1 case, except thatd(i, j) = ∣∣xi − xj
∣∣
2

:=
√∑m

k=1(xik − xjk)2.

• The R-embeddable semimetrics, which are the special case of �1- (or �2-) embeddable semimet-

rics obtained whenm = 1.

• The hypermetrics, which are semimetrics that satisfy the following hypermetric inequalities [10]:

∑
{i,j}⊂[n]

bibjd(i, j) � 0

⎛
⎝∀b ∈ Zn :

n∑
i=1

bi = 1

⎞
⎠ . (1)

It is known [4] that the set of �1-embeddable semimetrics on [n] is a polyhedral cone in R(n2). In fact,

it is nothing but the well-known cut cone, denoted by CUTn. The set of all hypermetrics on [n], called
the hypermetric cone and denoted by HYPn, is also polyhedral [11].

We will let ML2
n and MR

n denote the set of �2- and R-embeddable semimetrics, respectively. It

is known that ML2
n and MR

n are not convex (unless n is small), and that the convex hull of ML2
n and

MR
n is CUTn. It is also known [21] that a symmetric function d lies in ML2

n if and only if d2 (i.e., the

symmetric function obtained by squaring each value) lies in the so-called negative-type cone. The

negative-type cone, denoted by NEGn, is the (non-polyhedral) cone defined by the following negative-

type inequalities:

∑
{i,j}⊂[n]

bibjd(i, j) � 0

⎛
⎝∀b ∈ Rn :

n∑
i=1

bi = 0

⎞
⎠ . (2)

The structure ofMR
n and related sets is studied in [5].

In recent years, there has been a stream of papers on so-called negative-type semimetrics (also

knownas�22-semimetrics) [2,3,9,16–18]. These are simply semimetrics that lie inNEGn. Theyhavebeen

used to derive approximation algorithms for various combinatorial optimization problems, including

the graph layout problems that we mention in the next section.

The following inclusions are known: MR
n ⊂ ML2

n ⊂ CUTn ⊂ HYPn ⊂ NEGn. Denoting the set of all

R-embeddable1-separatedmetricsbyMR1
n ,weobtain fromtheirdefinitionMR1

n ⊂ MR
n .Wewill explore

the relationship between MR1
n , MR

n and CUTn further in Section 3.1.

2.2. Graph layout problems

Given a graph G = (V, E), with V = [n], a layout is simply a permutation of [n]. If we view a layout

π ∈ S(n) as a placing of the vertices on points 1, . . . , n along the real line, the quantity |π(i) − π(j)|
corresponds to the Euclidean distance between vertices i and j. Several important combinatorial

optimization problems, collectively known as graph layout problems, call for a layout minimizing a

function of these distances (see the survey [13]). For example, in the Minimum Linear Arrangement
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Problem (MinLA), the objective is to minimize
∑

{i,j}∈E |π(i) − π(j)|. In the Bandwidth Problem, the

objective is to minimize max{i,j}∈E |π(i) − π(j)|.
Now, let d(i, j) for {i, j} ⊂ [n] be a decision variable, representing the quantity |π(i) − π(j)|. It has

been observed by several authors that interesting relaxations of graph layout problems can be formed

by deriving valid linear inequalities that are satisfied by all feasible symmetric functions d. To our

knowledge, the first paper of this kind was [19], which presented the following star inequalities:∑
j∈S

d(i, j) ��(|S| + 1)2/4	. (3)

Here, i ∈ [n] and S ⊂ [n] \ {i} is such that every node in S is adjacent to i.

Apparently independently, Even et al. [14] defined the so-called spreadingmetrics. These aremetrics

that satisfy the following spreading inequalities:∑
j∈S

d(i, j) � |S| (|S| + 2)/4 (∀i ∈ [n],∀S ⊆ [n] \ {i}). (4)

Note that the spreading inequalities are more general than the star inequalities, but have a slightly

weaker right-hand sidewhen n is odd. Spreadingmetricswere used in [14,20] to derive approximation

algorithms for various graph layout problems.

In [8,15], it was noted that one can get a tighter relaxation of graph layout problems by requiring

the spreading metrics to lie in the negative-type cone NEGn. The authors called the resulting metrics

�22-spreadingmetrics.

A natural way to derive further valid linear inequalities for graph layout problems is to study the

following permutation metrics polytope:

Pn = conv {d |∃π ∈ S(n) : d(i, j) = |π(i) − π(j)| ∀{i, j} ⊂ [n]} . (5)

Surprisingly, thiswas not doneuntil very recently [1]. In [1], it is shown that Pn is of dimension

(
n

2

)
− 1

and that its affine hull is defined by the equation
∑

{i,j}⊂[n] d(i, j) =
(
n + 1

3

)
. It is also shown that the

following four classes of inequalities define facets of Pn under mild conditions:

• pure hypermetric inequalities, which are simply the hypermetric inequalities (1) for which b ∈
{0,±1}n;

• strengthened pure negative-type inequalities, which are like the negative-type inequalities (2) for

which b ∈ {0,±1}n, except that the right-hand side is increased from 0 to 1
2

∑
i∈[n] |bi|;• clique inequalities, which take the form

∑
{i,j}⊂S

d(i, j) �
(|S| + 1

3

)
, (6)

where S ⊂ [n] satisfies 2� |S| < n;

• strengthened star inequalities, which take the form

(|S| − 1)
∑
i∈S

d(r, i) − ∑
{i,j}⊂S

d(i, j) �
⌊
(|S| + 1)2(|S| − 1)/12

⌋
, (7)

where r ∈ V and S ⊆ V \ {r} with |S| � 2.

It is pointed out in the same paper that each star inequality (3) with |S| � 2 is dominated by a clique

inequality (6) and a strengthened star inequality (7). Therefore, very few of the star inequalities define

facets of Pn.

Finally, wemention that somemore valid inequalities were presented recently by Caprara et al. [7].

Some of them were proved to define facets of the dominant of Pn, though not of Pn itself.

We will establish an interesting connection between MR1
n , CUTn and Pn in Section 3.2.
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3. OnMR1
n and its convex hull

3.1. On MR1
n and related sets

We now study MR1
n and its relationship with MR

n , Pn and CUTn. We will find it helpful to recall the

definition of a cut metric:

Definition 3.1. For a setU ⊂ [n], we let dU be themetricwhich assigns to two points on different sides

of the bipartition U,CU of [n] a value of 1 and to points on the same side a value of 0.

We will say that the set U induces the associated cut metric. In other words, if we let Dk,l(x) :=
|xk − xl| for every vector x ∈ Rn (and identify, as promised, functions andmatrices), thendU = D(χU).

With this notation, CUTn is the convex cone with apex 0 in S0
n generated by the points dU , i.e.,

CUTn := cone

{
dU

∣∣∣∣ dU is the cut metric for U ⊂ [n]
}

.

It is known [6] that each cut metric defines an extreme ray of CUTn.

We will also need the following notation. For a given permutation π ∈ S(n), let Nπ be the set

of x ∈ Rn which satisfy xπ(i) � xπ(i+1) for i = 1, . . . , n − 1. Now let M(π) denote the set of metrics

d for which there exists an x ∈ Nπ with d = D(x). Also, for a given π and for k = 1, . . . , n − 1, we

emphasize that D(χπ−1([k])) is the cut metric induced by the set U = {π−1(1), . . . ,π−1(k)}. (So, for
example, if n = 4 and π = {2, 3, 1, 4}, then D(χπ−1([2])) is the cut metric induced by the set {2, 3}.)

We have the following lemma:

Lemma 3.2. M(π) is a polyhedral cone of dimension n − 1 defined by the n − 1 cut metrics

D(χπ−1([1])), . . . , D(χπ−1([n−1])).

Proof. Let d∗ ∈ M(π) and let x1, . . . , xn be the corresponding points in R. One can check that:

d∗ =
n−1∑
k=1

(xk+1 − xk)D(χπ−1([k])).

From the definition ofM(π), we have xk+1 − xk � 0 for k = 1, . . . , n − 1. Thus, d∗ is a conical combi-

nation of the n − 1 cut metrics mentioned. This shows thatM(π) is contained in the conementioned.

The reverse direction is similar. �

This enables us to describe the structure of MR
n .

Proposition 3.3. MR
n is the union of n!/2 polyhedral cones, each of dimension n − 1.

We define the antipodal permutation of π ∈ S(n) by

π− := (n + 1) · 1 − π.

This is the permutation obtained by reversing π . A swift computation shows that D(π) = D(π−).

Proof. From the definitions, we have MR
n = ⋃π∈S(n) M(π). From the above lemma, the set M(π) is

a polyhedral cone of dimension n − 1. Now, note that, for any π ∈ S(n), we have M(π) = M(π−).
Thus, the union can be taken over n!/2 permutations, instead of over all permutations. �

We note in passing that every cut metric belongs to M(π) for some π ∈ S(n). This explains the

well-known fact, mentioned in Section 2.1, that the convex hull ofMR
n is equal to CUTn.
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Fig. 1. The convex set Q3.

Now, we adapt these results to the case of MR1
n . We define M1(π) similar to M(π): we denote

by M1(π) the set of all metrics d which are of the form D(x) for an x ∈ Rn which satisfies xπ(i) +
1� xπ(i+1) for i = 1, . . . , n − 1.

Note that the D(π) are nothing but the metrics associated with feasible layouts, which by a result

in [1] are the extreme points of Pn. Note also that the setsM1(π) are disjoint.

We have the following lemma:

Lemma 3.4. M1(π) is the Minkowski sum of the point D(π) and the cone M(π):

M1(π) = D(π) + D(Nπ ).

Proof. This can be proven in the same way as Lemma 3.2. The only difference is that we decompose

d∗ ∈ M1(π) as:

d∗ = D(π) +
n−1∑
k=1

(rk+1 − rk − 1)D(χπ−1([k])),

and note that rk+1 − rk − 1� 0 for k = 1, . . . , n − 1. �

We can now derive an analog of Proposition 3.3.

Proposition 3.5. MR1
n is the union of n!/2 disjoint translated polyhedral cones, each of dimension n − 1.

Proof. Fromthedefinitions,wehaveMR1
n = ⋃π∈S(n) M

1(π). FromLemmas3.2and3.4, eachsetM1(π)
is a translated polyhedral cone of dimension n − 1. As in the proof of Proposition 3.3, the union can

be taken over only n!/2 permutations. �

3.2. On the convex hull of MR1
n and related sets

Wenow turn our attention to the convex hull ofMR1
n , whichwedenote byQn. To give some intuition,

we present in Fig. 1 drawings of MR1
n and Q3 from three different angles. (Of course, the drawing is

truncated, since Q3 is unbounded.) The three co-ordinates represent d(1, 2), d(1, 3) and d(2, 3). The
three coloured regions represent the three disjoint subsets of MR1

3 mentioned in Proposition 3.5.

One can see that Q3 is a three-dimensional polyhedron, with one bounded facet, six unbounded

facets, three bounded edges and six unbounded edges.

For n� 3, Qn is closed (and therefore a polyhedron). We will show in Section 5, however, that Qn is

not closed for n� 4. Therefore, we are led to look at the closure of Qn, which we denote by Qn.
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Our next result shows that there is a close connection between the polyhedron Qn, the polytope Pn,

and the cone CUTn:

Proposition 3.6. Qn is the Minkowski sum of Pn and CUTn.

Proof. We use the same notation as in the previous section. By definition, every point inMR1
n belongs

to M1(π) for some π ∈ S(n). From Lemma 3.4, every point in M1(π) is the sum of the point D(π)
and a point in the cut cone CUTn. Moreover, the point D(π) is an extreme point of Pn. Thus, every

point in MR1
n is the sum of an extreme point of Pn and a point in CUTn. Since Qn is the closure of the

convex hull ofMR1
n , it must be contained in the Minkowski sum of Pn and CUTn. The reverse direction

is proved similarly, noting that every cut metric is of the form D(χπ−1([k])) for some π ∈ S(n) and

some k ∈ [n − 1]. �

This immediately implies the following result:

Corollary 3.7. Qn is full-dimensional (i.e., of dimension

(
n

2

)
).

We also have the following result:
Proposition 3.8. Pn is the unique bounded facet of Qn.

Proof. As mentioned in the previous section, all points in Pn satisfy the equation
∑

{i,j}⊂[n] d(i, j) =(
n + 1

3

)
. Moreover, every point in CUTn satisfies

∑
{i,j}⊂[n] d(i, j) > 0. Since Qn is the Minkowski sum

of Pn and CUTn, it follows that the inequality
∑

{i,j}⊂[n] d(i, j) �
(
n + 1

3

)
is valid forQn and that Pn is the

face of Qn exposed by this inequality. Since Qn and Pn are of dimension

(
n

2

)
and

(
n

2

)
− 1, respectively,

Pn is a facet of Qn. It must be the unique bounded facet, since all extreme points of Qn are in Pn. �

In the next section, wewill explore the connection betweenQn, Pn and CUTn inmore detail. To close

this section, wemake an observation about how the individual ‘pieces’ ofMR1
n , called theM1(π) in the

previous section, are positioned within Qn:

Proposition 3.9. For any π ∈ S(n), the set M1(π) is an (n − 1)-dimensional face of Qn.

Proof. By definition, Qn satisfies all triangle inequalities. Now, without loss of generality, suppose that

π is the identity permutation. Every point in M1(π) satisfies all of the following triangle inequalities

at equality:

d(i, j) + d(j, k) � d(i, k) (∀1� i < j < k � n).

Moreover, no other point in MR1
n does so. Thus, M1(π) is a face of Qn. It was shown to be

(n − 1)-dimensional in the previous section. �

4. Inequalities defining facets of Qn

In this section, we study linear inequalities that define facets ofQn, i.e., faces of dimension

(
n

2

)
− 1.

Section 4.1 presents some general results about such inequalities, whereas Section 4.2 lists some

specific inequalities.
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4.1. General results on facet-defining inequalities

In this section, we prove a structural result about inequalities that define facets of Qn, and show

how this can be used to construct facets of Qn in a mechanical way from facets of either Pn or CUTn.

We will need the following definition, taken from [1]:

Definition 4.1 (1).

Let αTd � β be a linear inequality, where α, d ∈ R(n2). The inequality is said to be ‘canonical’ if:

min∅ /=S⊂[n]
∑
i∈S

∑
[n]\S

αij = 0. (8)

By definition, an inequality αTd � 0 defines a proper face of CUTn if and only if it is canonical. In

[1], it is shown that every facet of Pn is defined by a canonical inequality. The following lemma is the

analogous result for Qn:

Lemma 4.2. Every unbounded facet of Qn is defined by a canonical inequality.

Proof. Suppose that the inequality αTd � β defines an unbounded facet of Qn. Since Qn is the

Minkowski sum of Pn and CUTn, the inequality must be valid for CUTn. Therefore, the left-hand side

of (8) must be non-negative. Moreover, since the inequality defines an unbounded facet, there must

be at least one extreme ray of CUTn satisfying αTd = 0. Therefore the left-hand side of (8) cannot be

positive. �

We remind the reader that only one facet of Qn is bounded (Proposition 3.8).

Now, we show how to derive facets of Qn from facets of Pn.

Proposition 4.3. Let F be any facet of Pn, and let αTd � β be the canonical inequality that defines it. This
inequality defines a facet of Qn as well.

Proof. The fact that the inequality is valid for Qn follows from the fact that Qn is the Minkowski sum

of Pn and CUTn. Now, since F is a facet of Pn, there exist
(
n

2

)
− 1 affinely-independent vertices of Pn

that satisfy the inequality at equality. Moreover, since the inequality is canonical, there exists at least

one extreme ray of CUTn that satisfies αTd = 0. Since Qn is the Minkowski sum of Pn and CUTn, there

exist

(
n

2

)
affinely-independent points in Qn that satisfy the inequality at equality. Thus, the inequality

defines a facet of Qn. �

Now, we show how to derive facets of Qn from facets of CUTn:

Proposition 4.4. Let αTd � 0 define a facet of CUTn, and let β be the minimum of αTd over all d ∈ Pn.
Then the inequality αTd � β define a facet of Qn.

Proof. As before, the fact that the inequality αTd � β is valid for Qn follows from the fact that Qn

is the Minkowski sum of Pn and CUTn. Now, since the inequality αTd � 0 defines a facet of CUTn,

there exist

(
n

2

)
− 1 linearly-independent extreme rays of CUTn that satisfy αTd = 0. Moreover, from

the definition of β , there exists at least one extreme point of Pn that satisfies αTd = β . Since Qn is

the Minkowski sum of Pn and CUTn, there exist

(
n

2

)
affinely-independent points in Qn that satisfy

αTd = β . Thus, the inequality αTd � β defines a facet of Qn. �
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4.2. Some specific facet-defining inequalities

The results in the previous section enable one to derive awide variety of facets ofQn. In this section,

we briefly examine some specific valid inequalities; namely, the inequalities mentioned in [1].

First, we deal with the clique and pure hypermetric inequalities:

Proposition 4.5. The clique inequalities (6) define facets of Qn for all S ⊆ [n] with |S| � 2.

Proof. It was shown in [1] that the clique inequalities define facets of Pn when S is a proper subset of

[n]. In this case, the inequalities are canonical and so, by Proposition 4.3, they define facets of Qn as

well. The case S = [n] is covered in the proof of Proposition 3.8. �

Proposition 4.6. All pure hypermetric inequalities define facets of Qn.

Proof. It was shown in [6] that all pure hypermetric inequalities define facets of CUTn. It was also

shown in [1] that every pure hypermetric inequality is satisfied at equality by at least one extreme

point of Pn. The result then follows from Proposition 4.4. �

As for the strengthened pure negative-type and strengthened star inequalities, it was shown in [1]

that they define facets of Pn under certain conditions. Since they are canonical, they define facets of

Qn under the same conditions. In fact, using the same proof technique used in [1], one can show the

following two results:

Proposition 4.7. All strengthened pure negative-type inequalities define facets of Qn.

Proposition 4.8. Strengthened star inequalities define facets of Qn if and only if |S| /= 4.

We omit the proofs, for the sake of brevity.

5. Unbounded edges of Qn and Qn

5.1. Unbounded edges of Qn

Wenow investigatehow thepolyhedral conesM1(π) = D(π) + D(Nπ ) are subsets ofQn. In Fig. 1, it

can be seen that in the case n = 3, the three cones are faces ofQ3 (recall thatQ3 is a polyhedron, which

means that we can safely speak of faces). In the following proposition, we show that this is the case for

all n, and we also characterize the extremal half-lines of Qn. This will be useful in comparing Qn with

its closure: We will characterize the unbounded edges issuing from each vertex for the polyhedron

Qn = Pn + CUTn in the following section.

We are dealing with an unbounded convex set of whichwe do not knowwhether it is closed or not.

(In fact, we will show that Qn is almost never closed). For this purpose, we supply the following fact

for easy reference.

Fact 5.1. For k = 1, . . . , m let Kk be a (closed) polyhedral cone with apex xk. Suppose that the Kk are

pairwise disjoint and define S := ⊎m
k=1 Kk. Let x, y be vectors such that x + R+y is an extremal subset of

conv(S). It then follows that there exists a λ0 ∈ R+ and a k such that x + λy ∈ Kk for all λ � λ0. Since
x + R+y is extremal, this implies that there exists a λ1 ∈ R+ such that xk = x + λ1y and xk + R+y =
{x + λy|λ � λ1} is an extreme ray of the polyhedral cone Kk.

Definition 5.2. We say that a permutation π and a non-empty set U � [n] are incident, if

U = {π−1(1), . . . ,π−1(k)}, where k := |U|.
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Proposition 5.3

1. For every π ∈ S(n), each edge of the cone D(π) + D(Nπ ) is an exposed subset of Qn.
2. The unbounded one-dimensional extremal sets of Qn are exactly the defining half-lines. In other

words, every half-line X + R+Y which is an extremal subset of Qn is of the form D(π) + R+D(χU)
for a π ∈ S(n) and a set U incident to π. In particular, for every vertex D(π) of Qn, the unbounded

one-dimensional extremal subsets of Qn containing D(π) are in bijection with the non-empty proper

subsets of [n] incident to π. Thus there are precisely n − 1 of them.

Proof. (i) By symmetry it is sufficient to treat the caseπ = ı := (1, . . . , n)�, the identity permutation.

Consider the matrix

C :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 −1

1 0 1 0

1

. . .

1

0 1 0 1

−1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ S0
n.

It is easy to see that the minimum over all C • D(π),π ∈ S(n), is attained only in π = ı , ı− with the

value 0.Moreover, for any non-empty proper subsetU of [n], we have C • D(χU) = 0 ifU is incident to

ı and C • D(χU) > 0 otherwise. Hence, we have thatD(ı) + D(Nı ) is equal to the set of all points inQn

which satisfy the valid inequality C • X � 0 with equality. Out of this matrix C we will now construct

a matrix C′ and a right-hand side such that only some of the subsets incident to ı fulfill the inequality

with equality. To do so let U0 be a subsets of [n] incident to ı . If, for each U ⊂ [n] incident to ı but

different from U0, we increase the matrix entries Cmax U,max U+1 and Cmax U+1,max U by one, we obtain

an inequality C′ • X � 0which is valid forQn and such that the set of all points ofQn which are satisfied

with equality is precisely the edge of D(ı) + D(Nı ) generated by the half-lines D(ı) + R+D(χU0).
(ii) That the defining half-lines are extremal has just been proved in i. The converse statement

follows from Fact 5.1 and the fact that the extreme points of Qn are precisely the vertices of Pn, which

are of the form D(π), for π ∈ S(n). �

5.2. Unbounded edges in Qn

We have just identified some unbounded edges of Qn = Pn + CUTn starting at a particular vertex

D(π) of this polyhedron. We now set off to characterize all unbounded edges of Qn. Clearly, the

unbounded edges are of the form D(π) + R+D(χU), but not all these half-lines are edges. For a

permutationπ and a non-empty subsetU � [n], we say thatD(π) + R+D(χU) is the half-line defined
by the pair π↗U. In this section, we characterize the pairs π↗U which have the property that the

half-lines they define are edges. For this, we make the following definition.

Definition 5.4. Let π be a permutation, and let U be a subset of [n]. We say that U is almost incident

to π , if there exists a k ∈ [n − 1] such that U = π−1([k − 1] ∪ {k + 1}).
We can now state our theorem.

Theorem 5.5. For all n� 3, the unbounded edges of Qn are precisely the half-lines defined by those pairs

π↗U, for which neither U nor CU is almost incident to π.

From Theorem 5.5, we have the following consequences.

Corollary 5.6. For n� 4, the number of unbounded edges issuing from a vertex of

Qn = Pn + Cn is 2n−1 − n.
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Corollary 5.7. For n� 4, the extremal half-lines containing an extreme point of Qn are a proper subset of

the unbounded edges issuing from the same vertex of Qn.

Proof. We have n − 1 < 2n−1 − n if n� 4. �

Corollary 5.8. The convex set Qn is closed if and only if n� 3.

Major parts of the proof of the above stated theoremwork in an inductive fashion by reducing to the

case when n ∈ {3, 4, 5, 6}. We will present the cases n = 3 and n = 4 as examples, which also helps

motivating the definitions we require for the proof.

Wewill switch to amore “visual” notation of the subsets of [n] by identifying a set U with a “word”

of length n over {0, 1} having a 1 in the jth position iff j ∈ U — it is just the row-vector (χU)�.

Example 5.9 (Unbounded edges of Q3).

We deal with the case n = 3 “visually” by regarding Fig. 1. There are two edges starting at each

vertex. In fact, with some computation, it can be seen that the unbounded edges containing D(ı) are

M

⎛
⎝12
3

⎞
⎠+ R+M

⎛
⎝10
0

⎞
⎠ =

⎛
⎝0 1 2

1 0 1

2 1 0

⎞
⎠+ R+

⎛
⎝0 1 1

1 0 0

1 0 0

⎞
⎠ , and

M

⎛
⎝12
3

⎞
⎠+ R+M

⎛
⎝11
0

⎞
⎠ =

⎛
⎝0 1 2

1 0 1

2 1 0

⎞
⎠+ R+

⎛
⎝0 0 1

0 0 1

1 1 0

⎞
⎠ ; while

M

⎛
⎝12
3

⎞
⎠+ R+M

⎛
⎝10
1

⎞
⎠ =

⎛
⎝0 1 2

1 0 1

2 1 0

⎞
⎠+ R+

⎛
⎝0 1 0

1 0 1

0 1 0

⎞
⎠

is not an edge. This agrees with Proposition 5.3, because the sets 100 and 110 are incident to ı , while

101 and 010 are not.

Moreover, the set 101 is almost incident to ı and 010 is its complement. Thus, Theorem 5.5 is true

for the special casewhenπ = ı . For the other permutations, the easiest thing to do is to use symmetry.

We describe this in the next remark.

Remark 5.10. For every σ ,π ∈ S(n) and U ⊂ [n] we have the following.

1. Due to symmetry the pair π↗U defines an edge of Qn if and only if the pair π ◦ σ↗σ−1(U)
defines an edge of Qn.

2. U is incident to π if and only if σ−1(U) is incident to π ◦ σ .

3. U is almost incident to a permutation π if and only if σ−1(U) is almost incident π ◦ σ .

4. CU is almost incident to a permutation π if and only if U is almost incident to π−.

Proof. Canbe checkedusing thedefinitions ofπ↗U andU being incident, respectively, almost incident

of π . �

We now give the first general result as a step towards the proof of Theorem 5.5.

Lemma 5.11. Ifπ ∈ S(n) and U ⊂ [n] is almost incidentπ , then the half-line D(π) + R+D(χU) defined
by the pair π↗U is not an edge of Qn.

Proof. By the above remarks on symmetry, it is sufficient to prove the claim for the identity permuta-

tion ı ∈ S(n). Consider a k ∈ [n − 1], and let π ′ := 〈k, k + 1〉 be the transposition exchanging k and
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k + 1, and let U := [k − 1] ∪ {k + 1}. Then a little computation shows that D(χU) can be written as

a conic combination of vectors defining rays issuing from D(ı) as follows:

D(χU) = D(χ [k]) +
(
D(π ′) − D(ı)

)
.

Hence D(ı) + R+D(χU) is not an edge. �

Note that by applying Remark 5.10, the Lemma 5.11 implies that if CU is almost incident π , then

the pair π↗CU does not define an edge of Qn.

Before we proceed, we note the following easy consequence of Farkas’ Lemma.

Lemma 5.12. The following are equivalent:
1. The half-line D(ı) + R+D(χU) defined by the pair ı↗U is an edge of Qn.
2. There exists a matrix D satisfying the following constraints:

D • D(π) > D • D(ı) ∀ π /= ı , ı−, (9a)

D • D(χU′
) > D • D(χU) = 0 ∀ U′ /= U,CU. (9b)

3. There exists a matrix C satisfying

C • D(π) � C • D(ı) ∀ π /= ı , ı−, (10a)

C • D(χU′
) � 0 ∀ U′ /= U,CU, (10b)

C • D(χU) < 0. (10c)

Condition (9) is easier to check for individual matrices, but condition (10) will be needed in a proof

below.

Wemove on to the next example which both provides some cases needed for the proof of Theorem

5.5 and motivates the following definitions.

LetU be a subset of [n] and consider its representation as aword of length n. We say that amaximal

sequence of consecutive 0s in this word is a valley of U. In other words, a valley is an inclusion-wise

maximal subset [l, l + j] ⊂ CU. Accordingly, a maximal sequence of consecutive 1s is called a hill. A

valley and a hillmeet at a slope. Thus the number of slopes is the number of occurrences of the patterns

01 and 10 in the word, or in other words, the number of k ∈ [n − 1]with k ∈ U and k + 1 /∈ U or vice

versa. If all valleys and hills of a subset U of [n] consist of only one element (as for example in 10101)

or, equivalently, if U has the maximal possible number n − 1 of slopes, or, equivalently, if U consists

of all odd or all even numbers in [n], we speak of an alternating set.

Lemma 5.13. For every set {W1, . . . , Wr} of non-empty proper subsets of [n] incident on π , there is a

matrix C such that the minimum C • D(σ ) over all σ ∈ S(n) is attained solely in π and π−, and that

C • D(χU′
) � 0 for every non-empty proper subset U′ of [n] where equality holds precisely for the sets Wi

and their complements. This implies that D(π) + cone{D(χW1), . . . , D(χWr )} is a face of the polyhedron

Qn = Pn + CUTn.

Proof. Follows from Proposition 3.9. �

Example 5.14 (Unbounded edges of Q4). We consider the edges of Q4 containing D(ı) = D(ı−) (this is
justified by Remark 5.10). We distinguish the sets U by their number of slopes. Clearly, a set U with a

single slope is incident either to ı or to ı−, and we have already dealt with that case in Lemma 5.13.

The following sets have two slopes: 0100, 0110, 0010, 1011, 1001, and 1101. We only have to consider

1011, 1001, and 1101, because the others are their complements. The first one, 1011, is almost incident
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to ı−, and the last one, 1101, is almost incident to ı , so we know that the pairs ı↗1011 and ı↗1101

do not define edges of Q4 by Lemma 5.11. For the remaining set with two slopes, 1001, the following

matrix satisfies property (10) with C replaced by C1001 and U by 1001:

C1001 :=
⎛
⎜⎜⎝
0 1 −2 1

1 0 3 −2

−2 3 0 1

1 −2 1 0

⎞
⎟⎟⎠ .

The two alternating sets (i.e., sets with tree slopes) are 1010 and 0101, which are almost incident to ı
and ı−, respectively. This concludes the discussion of Q4.

Having settled some of the cases for small values of n, we give the result by which the reduction

to smaller n is performed, which is an important ingredient for settling Theorem 5.5. The following

lemma shows that unbounded edges of Qn can be “lifted” to a larger polyhedron Qn+k .

Lemma 5.15. Let U0 be a non-empty proper subset of [n] whose word has the form a1b for two (possibly
empty) words a, b. For any k � 0 define the subset Uk of [n + k] by its word

Uk := a 1 . . . 1︸ ︷︷ ︸
k+1

b.

If the pair ın↗U0 defines an edge of Qn, then the pair ın+k↗Uk defines an edge of Qn+k.

Note that the lemma also applies to consecutive zeroes, by exchanging the respective set by its

complement.

Proof. Let C ∈ S0
n be amatrix satisfying conditions (10) for U := U0. Fix k � 1 and let n′ := n + k. We

will construct a matrix C′ ∈ S0
n′ satisfying (10) for U := Uk . For a “big” real number ω � 1 define a

matrix Bω ∈ S0
k+1 whose entries are zero except for those connecting j and j + 1, for j ∈ [k]:

Bω :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ω
ω 0 ω 0

ω
. . .

ω
0 ω 0 ω

ω 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We use this matrix to put a heavy weight on the “path” which we “contract.”

For our second ingredient, let la denote the length of the word a and lb the length of the word b

(note that la = 0 and lb = 0 are possible). Then we define

B− :=

⎛
⎜⎜⎜⎜⎝
+1 . . . +1

0k−1 . . . 0k−1

−1 . . . −1

⎞
⎟⎟⎟⎟⎠ ∈ M((k + 1) × la) and

B+ :=

⎛
⎜⎜⎜⎜⎝
−1 . . . −1

0k−1 . . . 0k−1

+1 . . . +1

⎞
⎟⎟⎟⎟⎠ ∈ M((k + 1) × lb),

where 0k−1 stands for a column of k − 1 zeros. Putting these matrices together we obtain an n′ ×
n′-matrix B:
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B :=
⎛
⎜⎝0 B�− 0

B− Bω B+
0 B�+ 0

⎞
⎟⎠ .

Now it is easy to check that for any π ′ ∈ π [n′] we have B • D(π ′) � B • D(ı). Moreover let π ′ ∈
π [n′] satisfy B • D(π ′) < B • D(ı) + 1. By exchanging π ′ with π ′−, we can assume that π ′(1) <
π ′(n′). It is easy to see that such a π ′ then has the following “coarse structure”

π ′([la])⊂[la]
π ′([n′] \ [n′ − lb])⊂[n′] \ [n′ − lb]
π ′(j) = j ∀ j ∈ {la + 1, . . . , la + k + 1}.

(11)

Thus thematrix B enforces that the “coarse structure” of aπ ′ ∈ π [n′]minimizing B • D(π ′) coincides
with ı . We now modify the matrix C to take care of the “fine structure”. For this, we split C into ma-

trices C11 ∈ S0
la
, C22 ∈ S0

lb
, C12 ∈ M(la × lb), C21 = C�

12 ∈ M(lb × la), and vectors c ∈ Rla , d ∈ Rlb as

follows:

C =
⎛
⎝C11 c C12
c� 0 d�
C21 d C22

⎞
⎠ .

Then we define the “stretched” matrix Č ∈ S0
n′ by

Č :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C11 c 0 0 C12
c� 0 0 0�

0 0 0

0� 0 0 d�
C21 0 0 d C22

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where the middle 0 has dimensions (k − 1) × (k − 1). Finally we let C′ := B + εČ, where ε > 0 is

small. We show that C′ satisfies (10).
We first consider C′ • D(χU′

) for non-empty subsets U′ � [n′]. Note that, if U′ contains {la +
1, . . . , la + k + 1}, then for U := U′ \ {la + 1, . . . , la + k + 1}, we have C′ • D(χU′

) = C • D(χU).
Thus we have C′ • D(χUk) = C • D(χU0) < 0 proving (10c) for C′ and Uk . For every other U′ with

C′ • D(χU′
) < 0, ifω is big enough, then eitherU′ orCU′ contains {la + 1, . . . , la + k + 1}, andw.l.o.g.

we assume that U′ does. By (10b) applied to C and U, we know that this implies U = U0 or U = CU0

and hence U′ = Uk or CU′ = Uk . Thus, (10b) holds for C
′ and Uk .

Second, we address the permutations. To show (10a), let π ′ ∈ S(n) be given which minimizes

C′ • D(π ′). Again, by replacing π ′ by π ′− if necessary, we assume π ′(1) < π ′(n′) w.l.o.g. If ε is small

enough, we know that π ′ has the coarse structure displayed in (11). This implies that we can define a

permutation π ∈ S(n) by letting

π(j) :=
⎧⎨
⎩
π ′(j) if j ∈ [la],
π ′(j) = j if j = la + 1,

π ′(j − k) + k if j ∈ [n] \ [la + 1].
An easy but lengthy computation (see [22] for the details) shows that

C′ • D(π ′) − C′ • D(ın′) � ε

[
C • D(π) + k · C •

(
0la×la 1

1 0lb×lb

)

−
(
C • D(ın) + k · C •

(
0la×la 1

1 0lb×lb

))]
=ε [C • D(π) − C • D(ın)]� 0.

Thus (10a) holds. �
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Example 5.16. We give an example for the application of Lemma 5.15.

For n = 5, consider the half-line defined by the pair ı↗11001. The set 11001 can be reduced to 1001

by contracting the hill 1–2. To do so we set

C11001 := ε

⎛
⎜⎜⎜⎜⎝
0 0 0 0 0

0 0 1 −2 1

0 1 0 3 −2

0 −2 3 0 1

0 1 −2 1 0

⎞
⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎝
0 ω −1 −1 −1

ω 0 1 1 1

−1 1 0 0 0

−1 1 0 0 0

−1 1 0 0 0

⎞
⎟⎟⎟⎟⎠

for a small ε > 0 and a big ω � 1.

After these preparations we can tackle the proof of the theorem.

Proof of Theorem 5.5. By Remark 5.10, we only need to consider π = ı . We distinguish the sets U by

their numbers of slopes.

One slope. This is equivalent to U or CU being incident to ı . We have treated this case in Lemma 5.13.

Two slopes. The complete list of all possibilities, up to complements, and how they are dealt with

is summarized in Table 2. In this table, 0 stands for a valley consisting of a single zero while 0 . . . 0

Table 2

List of all sets with two slopes (up to complement).

Word Edge? Why?

Hill 1 Valley Hill 2

1 0 1 No Almost incident to ı

1 0 1 . . . 1 No Almost incident to ı−
1 0 . . . 0 1 Yes Reduce to n = 4, 1001, by Lemma 5.15

1 0 . . . 0 1 . . . 1 Yes Reduce to n = 4, 1001, by Lemma 5.15

1 . . . 1 0 1 No Almost incident to ı

1 . . . 1 0 1 . . . 1 Yes Reduce to n = 5, 11011, by Lemma 5.15

1 . . . 1 0 . . . 0 1 Yes Reduce to n = 4, 1001, by Lemma 5.15

1 . . . 1 0 . . . 0 1 . . . 1 Yes Reduce to n = 5, 11011, by Lemma 5.15

Table 3

List of all sets with three slopes (up to complement).

Word Edge? Why?

Hill 1 Valley 1 Hill 2 Valley 2

1 0 1 0 No Almost incident to ı

1 0 1 0 . . . 0 No Almost incident to ı

1 0 1 . . . 1 0 Yes Reduce to n = 5, 10110, by Lemma 5.15

1 0 1 . . . 1 0 . . . 0 Yes Reduce to n = 5, 10110, by Lemma 5.15

1 0 . . . 0 1 0 Yes Reduce to n = 5, 10010, by Lemma 5.15

1 0 . . . 0 1 0 . . . 0 Yes Reduce to n = 5, 10010, by Lemma 5.15

1 0 . . . 0 1 . . . 1 0 Yes Reduce to n = 5, 10010, by Lemma 5.15

1 0 . . . 0 1 . . . 1 0 . . . 0 Yes Reduce to n = 5, 10110, by Lemma 5.15

1 . . . 1 0 1 0 No Almost incident to ı

1 . . . 1 0 1 0 . . . 0 No Almost incident to ı

1 . . . 1 0 1 . . . 1 0 Yes Reduce to n = 5, 10110, by Lemma 5.15

1 . . . 1 0 1 . . . 1 0 . . . 0 Yes Reduce to n = 5, 10110, by Lemma 5.15

1 . . . 1 0 . . . 0 1 0 Yes Reduce to n = 5, 10010, by Lemma 5.15

1 . . . 1 0 . . . 0 1 0 . . . 0 Yes Reduce to n = 5, 10010, by Lemma 5.15

1 . . . 1 0 . . . 0 1 . . . 1 0 Yes Reduce to n = 5, 10010, by Lemma 5.15

1 . . . 1 0 . . . 0 1 . . . 1 0 . . . 0 Yes Reduce to n = 5, 10010, by Lemma 5.15



A.N. Letchford et al. / Linear Algebra and its Applications 433 (2010) 1760–1777 1775

Table 4

Matrices certifying unbounded edges of Qn .

n Slopes Matrix

4 2 C1001 :=

⎛
⎜⎜⎜⎜⎝

0 1 −2 1

1 0 3 −2

−2 3 0 1

1 −2 1 0

⎞
⎟⎟⎟⎟⎠

5 2 C11011 :=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 8 −6 −1 −1

8 0 2 9 −3

−6 2 0 5 −7

−1 9 5 0 11

−1 −3 −7 11 0

⎞
⎟⎟⎟⎟⎟⎟⎠

5 3 C10110 :=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 2 2 1 −3

2 0 0 −2 2

−2 0 0 2 0

1 −2 2 0 1

−3 2 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

5 3 C10010 :=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 2 −2 2 −2

2 0 4 −3 1

−2 4 0 1 1

2 −3 1 0 1

−2 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

5 4 C10101 :=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 3 −2 −1

0 0 1 1 −2

3 1 0 1 3

−2 1 1 0 0

−1 −2 3 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

6 5 C101010 :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 −1 0 0

0 0 1 1 −2 0

1 1 0 1 3 −2

−1 1 1 0 0 1

0 −2 3 0 0 1

0 0 −2 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

stands for a valley consisting of at least two zeros (the same with hills). The matrices for the re-

duced words satisfying (10) can be found in Table 4. The condition (10) can be verified by some case

distinctions.

Three slopes. This case can be tackled using the same methods we applied in the case above. Table 3

gives the results.

s� 4 slopes. Using Lemma 5.15, we reduce such a set to an alternating set with s slopes showing that

for all these sets U the pair ı↗U defines an edge of Qn. This is in accordance with the statement of the

theorem because sets which are almost incident to ı can have at most three slopes. The statement for

alternating sets is proven by induction on n in Lemma 5.17 below. Note that the starts of the inductions

in the proof of that lemma are n = 5 and n = 6 for even or odd s, respectively.

This concludes the proof of the theorem. �

We now present the inductive construction which we need for the case of an even number of s� 4

slopes.

Lemma 5.17. For an integer n� 5 let U be an alternating subset of [n]. The pair ı↗U defines an edge of Qn.
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Proof. We first prove the case when n is odd.

The proof is by induction over n. For the start of the induction we consider n = 5 and offer the

matrix C10101 ∈ S0
5 in Table 4 of the appendix satisfying (9).

We will need this matrix in the inductive construction.

Now set E5 := C10101 and assume that the pair ı↗U− defines an edge of Qn where U− is an

alternating subset of [n]. W.l.o.g., we assume that U− = 10 . . . 01. There exists a matrix E− ∈ S0
n

for which (9) holds. We will construct a matrix E ∈ S0
n+2 satisfying (9) for U := 010 . . . 010.

We extend E− to a (n + 2) × (n + 2)-Matrix

Ê :=

⎛
⎜⎜⎜⎝
E− 0 0

0� 0 0

0� 0 0

⎞
⎟⎟⎟⎠ .

We do the same with E5, except on the other side:

Ê5 :=

⎛
⎜⎜⎜⎝
0 0 0�
0 0 0�

0 0 E5

⎞
⎟⎟⎟⎠ .

Now we let E := Ê + Ê5 and check the conditions (9) on E. These are now easily verified.

For the even case we guarantee the start of induction investigating n = 6. We give a matrix C101010

satisfying (9) in Table 4 in the appendix. (Note that 101010 is the only set which is not incident to ı , is
not almost incident to ı or ı−, cannot be reduced by Lemma 5.15 and is no complement of sets of any

of these three types.) The induction is proved in the same way by using the matrix E6 := C101010. �

6. Concluding remarks

TheR-embeddable 1-separatedmetrics are anatural and fascinating class ofmetrics,which are also

of somepractical importance due to their connectionwith graph layout problems.Wehave established

some fundamental properties of such metrics, and also initiated a study of their convex hull and its

closure.

There are several possible avenues for future research. First, one could search for new valid or facet-

defining inequalities. Second, one could study the complexity of the separation problems associated

with various families of inequalities, which would be essential if one wished to use the inequalities

within a cutting-plane algorithm. Third, it would be interesting to know whether the bounded edges

of the convex hull, or its closure, have a simple combinatorial interpretation.
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