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The purpose in this article is to demonstrate that buying more than one

ticket in a lottery is readily explicable in models of utility that permit

gambling at actuarially unfair odds. However, contrary to popular view, we

show this choice cannot be explained in terms of a variance–skew trade-off.

I. Introduction

Hirshleifer (1966) and Golec and Tamarkin (1998),

amongst others, point out that the observed beha-

viour of some gamblers to engage in repetitive small-

stake wagers, to buy more than one lottery ticket in a

draw or to bet on more than one runner in a race is

inconsistent with global risk-seeking behaviour.

Global risk-seeking behaviour is the traditional

explanation for explaining outcomes in gambling

markets. (e.g. Ali (1977) and Quandt (1986)).
It has become quite common to hypothesize that

betting at actuarially unfair odds might be explicable

in terms of a preference for positive skewness of

return, ceteris paribus. For instance Golec and

Tamarkin (1998) state that if bettors are interested in

moments other than the first two then betting more

than one horse in a race can be explained as attempts

by bettors to trade-off variance for skewness.

They also state that bettors may appear to prefer

variance when it is skewness they crave. This idea is

borrowed from the standard expected utility model

where it would appear that for utility functions that

can be legitimately approximated by a Taylor expan-

sion, agents exhibit a preference, ceteris paribus,

for positive skewness.1

In fact the argument is in incorrect in general for

the standard expected utility maximizer. Brockett and

Garven (1998) show that one can always construct

two distributions with a given moment ordering for

which neither stochastically dominates the other at

any degree of stochastic dominance.2

The purpose in this article is to demonstrate that

betting more than one runner in a race or buying

more than one ticket in a lottery is readily explicable

in models of utility that permit gambling at

actuarially unfair odds. However we show this

choice cannot be sensibly explained in terms of a

variance -skew trade-off or a preference for skewness.

The models we employ are an expected utility model

with an expo-cubic specification (see e.g. Friedman

and Savage (1948) and the nonexpected model of

utility of Markowitz (1952).3 We construct examples

in which the agent chooses between two lotteries,

*Corresponding author. E-mail: d.peel@lancaster.ac.uk
1 This is because the third derivative of the utility function of a globally risk-averse agent is positive and therefore appears to
imply a valid trade-off between mean, variance and skewness of return, that is, preferring a higher third moment for two
random variables having equal means and variances.
2 They prove and demonstrate with examples that expected utility preferences never universally translate into moment
preferences. Cain and Peel (2004) also illustrate the potential fallacy in the context of simple gambles.
3We can obtain the same outcomes in Cumulative Prospect theory proposed by Kahneman and Tversky (1979) and Tversky
and Kahneman (1992) or Rank-Dependent expected utility of Quiggin (1993). However probability distortion, a key element
of their models, demand more space than is available here.
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A and B and prefers to buy more than one ticket in
lottery A, even though it offers a lower expected
return and less positive skewness than lottery B,
which has the same variance.

The rest of the article is structured as follows.
In the next section we set out our analysis and the
final section of the article is a brief conclusion.

II. Some Analysis

The expo-cubic function

We model the Friedman–Savage expected utility
function by the expo-power form. This function has
the form envisaged by Friedman and Savage. It has
the properties that utility is initially concave, then
convex and finally concave over wealth. In addition
the function is bounded from above, a sufficient
condition for the resolution of the St Petersburg
Paradox. The function, which nests the standard
cubic specification. Utility, U, is given by

U ¼ 1

a
1� e�a w�bw2þcw3ð Þ
h i

where w is wealth and a, b and c are positive
constants with c > ð4b=3Þ to ensure that marginal
utility is everywhere positive. As a! 0 by L’Hopitals
rule we obtain the standard cubic function.
Our specification obviates the theoretical problem
of unbounded risk-seeking behaviour over
large enough wealth levels in the standard specifica-
tion. For ease of modelling, though the points made
are generic, we assume that a lottery has a fixed
number of tickets (T ) each costing $1. This is the
form many lotteries take, e.g. those in airports. The
set up is also applicable to betting on more than one
number at roulette. Buying more than one ticket in a
lottery is analogous to betting more than one runner
in the race but is a convenient simplification of the
analysis.

The moments of return for this type lottery are
given by

ER ¼ pTfðO� ðT� 1ÞÞg þ ð1� pT Þð�T Þ ¼ T�

�2 ¼ Tð1þ �Þ2ð1� pT Þ
p

�3 ¼
Tð1þ �Þ3ð1� pT Þð1� 2pT Þ

p2

� ¼ pO� ð1� pÞ

where ER is the expected return from purchasing T
tickets in the lottery. p is the probability of one ticket
winning. O are the odds against one ticket winning. �
is the expected return to a one unit bet (i.e. T¼ 1).

�2 is the variance of return and �3 the skewness

of return.
In order to gamble on the lottery we require that

expected utility, EU, from betting

EU ¼ pT 1� e�aðwþ��bðwþ�Þ
2þcðwþ�Þ3

h i

þ ð1� pT Þ 1� e�aðw�T�bðw�T ÞÞ
2þcðw�T Þ3

h i

is greater or equal to the utility of not betting.
We employ the following parameters in our

example.

a ¼ 0:0000001, b ¼ 0:5, c ¼ 0:43333:

The agent is risk-averse for wealth levels less than

0.385, risk seeking for wealth levels up 249.1 and risk-

averse for wealth levels greater than this.
Consider the choice between the two lotteries,

A and B.

In LotteryA : p ¼ 0:01, O ¼ 89,

ER ¼ �3:7, � ¼ �0:1
In lottery B : p ¼ 4:2882� 10�4,

O ¼ 2097:8, ER ¼ �0:1,� ¼ �0:1:

As we observe in Fig.1 in this example the agent

would optimally choose to buy 37 tickets in lottery A.

Purchasing one (or any number) ticket in lottery B

has negative net utility. However the moments of

lottery A and lottery B for purchasing 37 tickets and

1 ticket, respectively are given by

A : ERðAÞ ¼ �3:7,
�2ðAÞ ¼ 1888:1, �3ðAÞ ¼ 44182 and

B : ER ðBÞ ¼ �0:1, �2ðBÞ ¼ 1888:1,

�3ðBÞ ¼ 4:8881� 106:

In other words the variance of the two gambles

is equal but the expected return of and positive skew

of lottery A is lower than in lottery B. Nevertheless

lottery A is preferred from a utility perspective.

−0.002

−0.0015

−0.001

−0.0005

0

0.0005

0.001

0.0015

10 20 30 40 50 60
T

Fig. 1. Expected utility in excess of not gambling
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The Markowitz model

In a seminal paper Markowitz (1952) assumed that
from an agent’s customary or normal level of wealth
the agent was initially risk loving then risk-averse
over gains whilst initially risk-adverse then risk
seeking over losses. He also assumed that the typical
agent was loss averse so that the curve falls faster
to the left of the origin than it rises to the right.
(i.e. UðXÞ > jUð�XÞ,X > 0Þj00

For our parametric specification of the Markowitz
we employ the expo-power function (see Saha (1993))
and for the agent to gamble we require

EU ¼ pT 1� e�r�ðO�ðT�1ÞÞ
n

� �

� ð1� pTÞk 1� e��T
n� �
� 0

where r,�, k and n are positive constants with n>1
r� 1, k> r.

With n>1 the agent is risk–loving, (risk-averse),
over gains as (n� 1)/r�n is greater, (less), than
(O� (T� 1))n and risk-averse, risk loving over
losses as (n�1)/�n is greater, less, than T n.

The degree of loss aversion varies between r/k for
symmetric small gambles and 1/k for large symmetric
gambles.

Our parameter values are r¼ 50, k¼ 100,
�¼ 1� 10�9 and n¼ 1.5.

In Lottery A : p ¼ 1� 10�6, O ¼ 899999,

ER ¼ �5, � ¼ �0:1
In lottery B : p ¼ 2:00009996� 10�8,

O ¼ 4:499775� 107,

ER ¼ �0:1,� ¼ �0:1:

From a utility perspective, lottery A with a
purchase of 50 tickets is preferred to purchasing 1
ticket in lottery B even though the variance of return
in lottery B is identical to that in A and has a higher
expected return and higher positive skew.4

III. Conclusion

Depending on the parameters of the utility function
and the lottery structure an agent can optimally

choose to purchase zero, one or more tickets in

a lottery. We have constructed examples where

we model utility by either the Friedman–Savage or

Markowitz form and the agent optimally purchases

more than one ticket. These lotteries have the same

variances but lower expected returns and skewness of

returns than those generated by the purchase of one

ticket in alternative lotteries. Nevertheless they are

preferred from a utility perspective. The examples

therefore illustrate that arguments to explain

gambling based on higher moments, and in particular

a variance–skewness trade-off can be invalid.

References

Ali, M. M. (1977) Probability and utility estimates for
racetrack bettors, Journal of Political Economy, 85,
803–15.

Brockett, P. L. and Garven, J. R. (1998) A reexamination
of the relationship between preference and moment
orderings by rational risk averse investors, Geneva
Papers on Risk and Insurance Theory, 23, 127–37.

Cain, M. and Peel, D. A. (2004) Utility and skewness of
return in gambling, Geneva Papers on Risk and
Insurance Theory, 29, 145–63.

Friedman, M. and Savage, L. J. (1948) The Utility analysis
of choices involving risk, Journal of Political Economy,
LV1, 279–304.

Golec, J. and Tamarkin, M. (1998) Bettors love skewness,
not risk, at the horse track, Journal of Political
Economy, 106, 205–25.

Hirshleifer, J. (1966) Investment decision under uncer-
tainty: applications of the state-preference approach,
Quarterly Journal of Economics, 80, 252–77.

Kahneman, D. and Tversky, A. (1979) Prospect theory: an
analysis of decision under risk, Econometrica, 47,
313–27.

Markowitz, H. (1952) The utility of wealth, Journal of
Political Economy, 56, 151–4.

Quandt, R. E. (1986) Betting and equilibrium, Quarterly
Journal of Economics, 101, 201–7.

Quiggin, J. (1993) Generalized Expected Utility Theory: The
Rank-Dependent Model, Kluwer Academic Publishers,
Dordrecht.

Saha, A. (1993) Expo-power utility: a flexible form for
absolute and relative risk aversion, American Journal
of Agricultural Economics, 75, 905–13.

Tversky, A and Kahneman, D. (1992) Advances in prospect
theory: cumulative representation of uncertainty,
Journal of Risk and Uncertainty, 5, 297–323.

4 �2 (A)¼ 4.049� 107 �3(A)¼ 3.644� 1013. �2(B)¼ 4.049� 107 �3(B)¼ 1.82232� 1015. EU(A)¼ 1.465� 10�5, EU(B)¼
�7.99� 10�8.

Buying more than one ticket in a lottery 1031

D
ow

nl
oa

de
d 

by
 [

L
an

ca
st

er
 U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 0
3:

50
 1

5 
A

pr
il 

20
13

 



Appendix

Markowitz Utility Function

If we define the current level of wealth as W, and the

level of utility associated with W as U

U ¼ UþUðWþ xÞ ðaÞ

defines utility for increases in wealth above W, where

Wþx is wealth measured W to 1. We require

that marginal utility, @U=@x is positive and the

second derivative, @2U=@x2, is initially positive

then negative for an increase in wealth. For a

decrease in wealth below W, we define the utility

function as

U ¼ U�UðW� xÞ ðbÞ

where W � x is wealth measured 0 to W. We require

that the marginal utility, @U=@x, be positive and the

second derivative, @2U=@x2, be initially negative then

positive for a decrease in wealth as postulated by

Markowitz. These features are exhibited in our

calibrated examples below.
Expected Utility of a gamble over gains (G) and

losses (L) in the Markowitz model is given by

EU ¼ pUðGÞ � ð1� pÞUðLÞ ðcÞ

For our expo-power function and the definition of

gains and loses this gives

EU ¼ pT 1� e�r�ðO�ðT�1ÞÞ
n

Þ � ð1� pTÞk 1� e��T
n� ��

ðdÞ

For the utility function in (c), the degree of

loss aversion, (LA), is defined by the ratio of the

utility gain to the utility loss from a symmetric

gamble, given by

LA ¼
1� e�r�G

n� �
k 1� e��Lnð Þ G ¼ L ðeÞ

As stake size approaches zero, the assumption of

loss aversion requires that r/k<1, (by L’Hopital’s

Rule) and as it becomes large that 1/k<1.
From the definition of the moments for a T ticket

purchase in Lottery we obtain

ER ¼ pTfðO� ðT� 1ÞÞg þ ð1� pTÞð�TÞ ¼ T�

�2 ¼ Tð1þ �Þ2ð1� pT Þ
p

�3 ¼
Tð1þ �Þ3ð1� pT Þð1� 2pT Þ

p2

� ¼ pO� ð1� pÞ

Lottery, B, a one-ticket lottery, has moments

ER ¼ q� þ ð1� qÞð�1Þ ¼ �

�2 ¼ ð1þ �Þ
2ð1� qÞ
q

�3 ¼
ð1þ �Þ3ð1� qÞð1� 2qÞ

q2

where q is the probability of winning in Lottery B and

� are the odds. We set the expected returns for a one-

stake gamble to be equal in both lotteries. In order to

ensure that the variances are identical q is set equal to

the solution of

ð1þ �Þ2ð1� qÞ
q

¼ Tð1þ �Þ2ð1� pTÞ
p

This enables us to calculate �, given the rates of

return to a 1-unit gamble are the same.
All calculations were done in Scientific WorkPlace.
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