
What is a ‘generic’ hospital model?—a comparison
of ‘generic’ and ‘specific’ hospital models of emergency
patient flows

Adrian Fletcher & Dave Worthington

Received: 2 October 2008 /Accepted: 15 April 2009 /Published online: 9 May 2009
# Springer Science + Business Media, LLC 2009

Abstract The paper addresses the question in the title via a
survey of experienced healthcare modellers and an exten-
sive literature review. It has two objectives.

1. To compare the characteristics of ‘generic’ and ‘specific’
models and their success in hospitals for emergency
patients

2. To learn lessons about the design, validation and
implementation of models of flows of emergency patients
through acute hospitals

First the survey and some key papers lead to a proposed
‘spectrum of genericity’, consisting of four levels. We focus
on two of these levels, distinguished from each other by
their purpose. Secondly modelling work on the flow of
emergency patient flows through and between A&E, Bed
Management, Surgery, Intensive Care and Diagnostics is
then reviewed. Finally the review is used to provide a much
more comprehensive comparison of ‘generic’ and ‘specific’
models, distinguishing three types of genericity and
identifying 24 important features of models and the
associated modelling process. Many features are common
across model types, but there are also important distinc-
tions, with implications for model development.
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1 Introduction

The primary motivation for this paper was the experience of
one of the authors (AF) who had overseen the development
of a ‘generic’ Accident and Emergency (Emergency Room
in the US) Discrete Event Simulation (DES) model. This
model proved to be a valuable tool in the drive to improve the
performance of hospital Accident and Emergency (A&E)
departments in England, (Fletcher et al. [1]) and we were
interested to see whether this ‘generic’ approach could be
extended to a whole-hospital simulation, in the first place for
emergency patients. In addition to the value of improving
performance for emergency patients, our hope is that many
of the lessons learned for this important subgroup of patients
and subsection of hospital departments will also shed light
on the broader question of a ‘generic’ model for all hospital
patients. In particular we note the coverage of hospital
departments used by emergency patients is quite wide, and
models of these departments will need to include the impact
of elective patients and of a wide set of hospital departments.

Healthcare systems such as the NHS typically run many
hospitals with similar objectives, in the face of broadly
similar demands and resources. Hence in principle, ‘generic’
hospital models suggest a potential for understanding
general problems faced by hospitals and the potential general
solutions to improve service delivery.

Hospital models almost invariably imply a computer
model. ‘Genericness’ of software components implies the
potential for multiple uses as a component in a range of
programmes. Whilst random number generators and math-
ematical algorithms are good examples of transportable
software components, code to perform a specified set of
actions (e.g. a hospital model) is also transportable. Whether
or not it qualifies as ‘generic’ perhaps depends on whether
there is an application that requires the particular code.
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Enter the OR modeller who aims to represent a situation
in sufficient detail for decision making, but who is happy to
use whatever is available that is good enough to improve
understanding and aid decision making. If he/she is willing
to contemplate fitting a mathematical formula as an
adequate fit to the problem, why not use an existing model,
especially if it can be tailored to the particular problem?
Whilst such a transportable hospital model does not strictly
qualify as ‘generic’ in the two senses above, they are
nevertheless qualities to which it can aspire.

This paper reports the results of two exercises. The first
was an email request to experienced healthcare modellers
(mainly members of the European Working Group on
Operational Research Applied to Health Services—ORAHS)
about their experiences and thoughts on ‘generic’models. The
second was an extensive literature review based on an initial
list of over 350 potentially useful papers.

The research objectives of these exercises were:

1. To compare the characteristics of ‘generic’ and ‘specific’
models and their success or otherwise in modeling the
flow of emergency patients in acute hospitals;

2. To learn lessons about the design, validation and
implementation of these models with a view to the future
development of a ‘generic’ hospital model for emergency
patients.

The remainder of this paper is organised as follows.
Sections 2 and 3 describe the email survey and literature
review process respectively. Section 4 addresses objective 1
and presents an initial clarification of the term ‘generic’
based on the email survey and key papers from the literature
review. In particular ‘generic’ models are compared with
‘specific’models, and four levels of ‘genericity’ are defined.
Section 5 uses the literature review to focus on objective 2.
General lessons are highlighted and ‘generic’ models are
contrasted with ‘specific’ models for the main stages of
emergency patients’ routes through a hospital: A&E, bed
management, surgery, critical/Intensive Care and diagnos-
tics. The challenge of modelling multiple hospital depart-
ments is then discussed before a final subsection on general
lessons for the development of hospital simulation models.
Section 6 returns to objective one in the light of the literature
review. It proposes a further sub-division of ‘generic’
models, in particular highlighting their purpose. This enables
a systematic comparison of key factors between ‘generic’
and ‘specific’ models. Finally Section 7 draws conclusions
and indicates the direction of future work.

2 Email survey of experienced healthcare modellers

Our interest in the topic of ‘generic’ hospital models
coincided with the 2005 annual meeting of ORAHS at

Southampton University. Discussions with participants
indicated a high level of interest in the topic, plus a variety
of experiences and views. We followed up with an email
request to around twenty experienced healthcare modellers
in the group, plus a small number of OR practitioners in the
Department of Health asking:

1. What does a generic model mean to you?
2. Have you come across any good/bad attempts to devise

generic models?
3. What lessons can be drawn from these examples about

the value of developing generic models and associated
challenges?

The quantity and quality of the responses was excellent,
reflecting the importance of the issues to the interests and
experiences of healthcare modellers. Responses were re-
ceived from 20 modellers (see Acknowledgements for the
respondent list), ranging from a half page to a 14-page
discussion note! These responses anticipated many of the
issues identified in the literature review, and also provided
extra valuable insights and examples.

3 The literature review process

3.1 Stage 1

The search started with papers identified by a fellow
researcher, Murat Gunal, in his PhD literature review in a
related research area [2]. Forty three of these papers were of
particular relevance to our objectives, including an extensive
review of hospital simulationmodels by Jun et al. [3], in 1999.
These papers referenced a further 350 potentially interesting
papers, in addition to those referenced by Jun et al.

3.2 Stage 2

In order to focus on the defined objectives we prioritised
papers by subject matter (based on the paper title), as
shown in Table 1.

Our review then concentrated on papers in categories1–3.
The extent and content of papers and books in these
categories were sufficient to cover our objectives. Specifi-
cally, they provided extensive coverage of models of
emergency care provision in and across hospital depart-
ments, plus lessons about building and implementing DES
models in hospitals and elsewhere. In addition they provided
many examples of ‘specific’ and ‘generic’ models.

Searches for the category 1–3 references found around
100 of the 250+ in the Lancaster University library. Many
papers were from more obscure conference proceedings or
journals that were not immediately available. These papers
covered the objectives well.
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3.3 Stage 3

In order to check that no recent relevant papers had been
missed, the journals which had published the 100 papers
were searched for papers published after 1998 with titles
containing any of the following key words: occupancy,
emergency, hospital, operating, theatre, surgery, surgical,
simulation, staffing, schedule, scheduling, Intensive Care,
ICU, bed, admission, patient, modelling, capacity, critical
care, health, resource, biochemistry, radiology, CT, clinical,
laboratory. 1998 was chosen to complement a key review of
hospital simulation models by Jun et al. [3] in 1999. This
search identified 15 extra category 1–3 references. In total,
copies of 105 papers and ten books were obtained.

3.4 Stage 4

Once copies of all the references were examined, some
were rejected as being not relevant enough to the objectives.
Combining these papers with the relevant papers from Jun
et al. [3] generated our final list of references.

4 Preliminary definitions of ‘generic’ and ‘specific’
models

To help set the context for the literature review, we attempt
an early definition of ‘generic’ and ‘specific’ models using
papers that specifically address this issue, the survey and
our own personal experience in conducting OR projects.
These sources indicate that the term ‘generic’ has meaning
in terms of: (i) model abstraction and transportability, (ii)
software and programming language, and (iii) model reuse.

4.1 Model abstraction and transportability

In general terms Lowery [4] asserts that a model should be
general, flexible, intuitive and simple, and include default
values for system parameters. Sinreich et al. [5] discuss
three levels of genericity—the most generic being highly

abstract models covering any system and scenario, the least
generic being models of one specific system. In the middle
are models of any provider of a similar process. The
responses to the informal survey generated one extra level.
Using the key dimensions of abstraction and transportabil-
ity we therefore propose four broad types of model.

Level 1 A broad ‘generic principle’ model—e.g. a gener-
alised theoretical queuing model. These models are not
setting/industry specific.

Level 2 A generic framework that could be developed into
a toolkit. For example, healthcare is characterised by issues
of waiting, staff and equipment availability, beds, theatre
time etc. These issues could be grouped into a theoretical
healthcare modelling framework or toolkit with modules
that represented these generic processes. Combined with
local knowledge and input data, this toolkit could enable
the user to generate a locally specific model. For example,
the toolkit might contain a generic operating theatre. This
could be adapted by the user to generate a specific
operating theatre. It could also be used to illustrate general
principles as in ‘level 1’ models. For example, it could
show that operating theatres of certain throughputs need a
certain number of beds to support them.

Level 3 A setting-specific generic model. For example, a
generic model of an A&E department, or an outpatient
department. Such a model could be used for general
insights into the issues faced in delivering those services,
and potentially also for multiple use by any providers of the
same service. The model structure is unchanged, and
changes in input data would be used to represent different
providers.

Level 4 A setting-specific model. A model of a particular
local service that is not (necessarily) transportable to another
provider of the same service.

These levels of genericity are summarised in Fig. 1
(using A&E as an example)

Table 1 Prioritising literature search papers

Priority Subject matter Number of
papers

1 Modelling A&E departments 37

2 Modelling other components of emergency care provision (bed management, critical care, surgery, diagnostics) 99

3 Hospital wide modelling. General discrete event simulation or system dynamic model design, validation and
implementation techniques

120

4 Modelling other hospital provision (e.g. outpatients) 82

5 Simulation modelling in other industries 34
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4.2 Software and programming issues

Some responses to the survey suggested an alternative
viewpoint—to consider modelling in terms of a software/
programming dimension:

& Programming language—most generic
& Simulation package
& Modelling frameworks (e.g. health) within a package/

language
& Generic model built within a package/framework/

language for broad applicability
& Specific model built within a package/framework/

language—most specific

Interestingly, consideration of this dimension did not
arise in detail in the literature search apart from brief
consideration in Robinson et al. [4].

4.3 Model reuse

Robinson et al. [6] discuss a spectrum of reuse, from “code
scavenging” up to full model reuse and weigh these
considerations against development cost. They propose a
cycle of “grabbing and gluing” old ideas/models/pieces of
code, running them, using if workable, otherwise rejecting
and retrying. The key benefits of model reuse are identified
as time, cost and consistency of output; obstacles being
extra time/cost on projects to support future reusability, plus
systems architecture issues. Significant pitfalls are around
required levels of abstraction, and “force fitting” inappro-
priate models.

Further material on the general question of model reuse
is also available from the military field—see Steele et al. [7]
initially.

4.4 Generic and specific models—initial summary

For the remainder of this paper we focus on ‘generic’
according to model abstraction and transportability as
defined in Fig. 1, and in particular on level 4 (specific)
and level 3 (generic) models.

Figure 1 implies that the only difference between these
two types of model is the design objective of transport-
ability. In fact there many more dimensions beyond
transportability on which it is possible to compare generic
and specific models. For example, the authors’ work on
development of a generic A&E model [1] showed that
fundamentally similar models might be used for distinct
purposes. In particular the A&E model was developed as a
national model that could identify and improve understand-
ing of the key issues facing A&E departments. However it
was subsequently used as a consultancy tool to aid
struggling hospitals to improve their A&E departments.

A key objective of the literature search is to identify a
wider set of dimensions on which to compare generic and
specific models. We will return to this question in section 6,
after the literature review.

5 Modelling flows of emergency patients in acute
hospitals

This section first summarises the key lessons learnt from
the literature review of generic and specific patient flow
models through the following hospital departments:

& A&E
& Bed Management
& Surgery
& Intensive Care
& Diagnostics

Abstraction

Transportability

Specific model
single provider,
single service chain 
single industry

Generic model
Multiple provider
Single service chain
Single industry

Generic framework
Multiple provider
Multiple service chains
Single industry

Generic principle
Multiple provider
Multiple service chains  
Multiple industries

E.g a simulation model of A&E department x

E.g a simulation model of A&E 
departments in England

E.g a healthcare toolkit in  
a simulation package

    
 

E.g a principle that service users queue longer  
for  staff utilised at > 80%

 

Level 4

Level 3

Level 2

Level 1

Fig. 1 The spectrum of
genericity
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Each section (5.1–5.5) starts with an introduction, which
draws mainly on the Jun et al. [3] survey of DES in health
care modelling. Whilst this survey did not use a generic/
specific distinction it nevertheless provides an excellent
starting point for each section. Subsequent sub-sections
then examine the range of generic and specific models in
detail, before summarizing the evidence.

For each model, an attempt is made to summarise the
findings in the key project stages of initiation, design and
build, data, validation and implementation.

In the validation stage, the broad categorisation sug-
gested by Pidd [8] is used. He suggests two key validation
techniques—“black box” and “open box” validation. Black
box validation is where the model output is numerically
tested against known characteristics of the system. Predic-
tive accuracy is important. Open box validation is a critical
assessment of the variables and relationships in the model.
Performed in partnership with experts on the system being
modelled, it generates mutual agreement that the model
accounts for the key ‘real world’ issues. Both validation
techniques were used here.

Section 5.6 then reviews material on modelling flows
between departments.

5.1 A&E

5.1.1 A&E—introduction

There has been a long history of attempts to model A&E
departments and Jun et al. [3] in 1999 identifies numerous
applications of DES in A&E departments. The key output
in all these papers [9–23] was patient time in A&E. The
models examined the impact of a range of changes to practice
in A&E and linked departments (e.g. diagnostics, critical
care). These included patient routings, working practices,
staffing levels and workforce scheduling algorithms. This
review indicated the potential for insight against our two key
objectives. The rest of this section on A&E describes the
findings in detail for generic and specific models from
recent papers.

5.1.2 A&E—generic models

Fletcher et al. [1] describe a centrally developed DES model
to identify the key barriers to delivering the national target in
England for 98% of A&E attendances to be completed
within 4 h. They developed generic patient flows, required
resources (staffing) and process times for each A&E process.
The impact of diagnostics and bed management was
modelled. Validation was against a national survey of A&E
patient flows. The model was used nationally with key
stakeholders to identify key issues and high impact inter-
ventions. The model was then used locally with hospitals

struggling to meet the A&E target. The process of using a
centrally developed generic model locally was described and
discussed.

Sinreich et al. [5] discuss a generic A&E simulation
model. They draw on Lowery [4] to assert that models should
be general, flexible, intuitive and simple, and include default
values for system parameters. The paper discusses three
levels of genericity. Their model is aimed at the middle
level—applicable to numerous A&E departments. By observ-
ing five different A&Es, five key patient types were identified
and generic process charts were developed. Mathematical
modelling suggested that a simulation tool based on a unified
process was possible. Patient arrivals are modelled by time of
day (TOD), grouped by testing requirements. Validation and
implementation are not discussed.

Miller et al. [24] discuss a generic simulation modelling
approach to Emergency Departments (EDs) using a reusable
generic simulation framework—EDSim. They draw on case
studies in America to discuss typical modelling interventions.
EDSim can investigate issues such as discharging policy,
overall capacity, lab processes, demand rises etc. Validation is
not discussed. The consultancy process is described, including
process modelling workshops, interviews and data collection
to identify key bottlenecks. Numerous successful projects
are claimed using this tool.

Centeno et al. [25] describe a model that combines
Linear Programming (LP) with DES to reduce staffing costs
in an ED. They define generic patient flows and service
time distributions for nurses and doctors at each process.
Inter-arrival times of patients are estimated by TOD, and
optimal resources and shift patterns are generated using LP
for different demands. Validation methods were not clear.
The paper suggests a particular ED, but results are
presented as generic. Implementation is not discussed.

5.1.3 A&E—specific models

Takakuwa et al. [26] discuss a DES model of an ED in
Japan. Coverage includes A&E processes, plus surgery. It is
unclear how bed availability for surgery is modelled.
Patients are grouped by type (ambulance, walk ins) with
assigned routes. Resources include clerks, treatment cubi-
cles, medical staff, nurses and diagnostic rooms. It is
unclear how TOD and day of week (DOW) are modelled.
The modelled outcomes are “congestion factor” and total
patient time under different scenarios (e.g. staffing, beds
etc). There is no discussion of validation techniques or
implementation.

Blasak et al. [27] discuss a DES model of an ED and
“Medical Telemetry” unit (like a medical admissions unit)
in Boston, US. The objective was to reduce ED patient
time, including waits for beds. Patients are categorised by
arrival time, type (walkins, ambulance, direct) and urgency.
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Processes/resources were diagnostics, staff (doctors, nurses,
healthcare assistants), patient transport, cleaning, rooms,
beds, other hospital transfers (in telemetry unit). Outputs
were patient time by process and total, queue length by
process, and utilization of staff, rooms and beds. Validation
was not discussed. Results were reported to have “directed
the change process”. The Operations Director was involved
and is one of the authors.

Rossetti et al. [28] discuss a DES model of an ED in
Virginia, US to increase patient throughput and optimise
staff utilization by altering staff schedules. Design covered
patient groups, doctors and nurses, beds and diagnostics.
TOD and DOW patterns were modelled. Validation
included computer system and on site data collection, local
discussions of model design and results, and comparison
with waiting time data. Site data collection included patient
arrival and wait characteristics, staff service times, and
transport and routing times. Staffing schedules were
compared for effects on throughput and staff utilization.
Implementation was not discussed.

Baesler et al. [29] discuss a DES model of an ER in
Chile. Demand increases were expected. The model
showed potential impact on (non admitted) patient waiting
time. Doctors, rooms, paramedics, reception staff and
testing were included. TOD and DOW were not obviously
modelled. Validation was not discussed. Scenarios based on
demand rises and capacity changes generated recommended
staff levels. Implementation was not discussed.

Miller et al. [30] discuss a DES model of an ED in the
US. A six sigma methodology generated potential improve-
ments. A conceptual model was developed in Visio with
clients. There is no discussion of model design or validation.
Key improvements modelled included a changed discharge
process, more beds, and improved testing. The key consul-
tancy issue was defining scope with clients—20 design
iterations were required. The model was reported to have
been “handed over”.

Wiinamaki et al. [31] describe a DES model at an ED in
the US which required a new build to cope with extra
demand. All A&E processes, clinical decision and admis-
sions units are modelled. Validation was not discussed.
Some recommendations were accepted—extra X Ray
space, new triage and less acute beds.

Blake and Carter [32] discuss a DES study in a
children’s ED in Canada to help reduce waiting times for
patients with primary care conditions. All key processes
and personnel were included. Existing hospital data plus
direct observation was used for data (particularly doctors
multitasking workloads). Key outputs were total time and
time to first assessment. TOD/DOW factors were modelled.
Validation was against actual data. ANOVA modelling
suggested doctor availability was key. A fast track minor
stream was also modelled. The model supported imple-

mentation of new practices such as a fast track and a new
clinic.

Badri and Hollingsworth [33] discuss a DES of an ER in
the UAE. ER activities were included for five patient
groups (but nothing on diagnostics or bed waits). Service
times at each process were generated. Medical, pharmacist
and admin staffing levels were modelled, plus ER beds.
There was no obvious recognition of TOD/DOW demand,
but staff shift patterns were incorporated. Validation was
through interviews with local experts and comparison of
total time data. Changed patient priorities, diversion of
minor patients and staffing profiles were modelled, which
generated recommendations which were implemented (and
monitored).

Lane et al. [34] discuss a system dynamics (SD) model
of an A&E department, (including bed management) in
England. The objective was to reduce patient time in A&E
(particularly admitted patients). SD was chosen for a
more strategic system perspective. The model included
all A&E processes (including testing), bed management
(including electives) and doctor utilization. TOD was includ-
ed. Validation was through discussion with local experts and
comparison with data. Scenarios included changes in bed
capacity and demand patterns. Implementation was not
discussed.

Komashie and Mousavi [35] describe an A&E DES
model in England to understand the drivers of patient time
(average and variability). Scope included the Medical
Admissions Unit and diagnostics. A&E doctors and nurses
were modelled. TOD was modelled. Process times were
generated through observation, plus computerised data.
Validation was through demonstration to key experts and
comparison with Key Performance Indicators (KPI’s).
Scenarios included adding cubicles or staff, and improved
admission processes. Significant potential improvements
were observed, but implementation is unclear.

Samanha et al. [36] discuss a DES model of an American
ED. Objectives were to show the ED process and bottle-
necks and assess improvement options to reduce patient
time in the ED. Coverage was the ED, including impact of
testing and bed availability. Data on arrival and process
times was collected through observation. ED resources
modelled were rooms, doctors and other staff. Validation
was primarily ‘open box’. Scenarios included changed
pathways, ED resizing, and fast-tracking of patients. The
model found that process changes would avoid the need for
expansion. The results were implemented.

Mahapatra et al. [37] discuss a DES model of an
American ED. The objective was to reduce patient time
using a fast-track centre. Data was collected on patient
arrival times by case mix, waits by process and staff
schedules, and combined with interviews and observation.
Patient flow through triage, assessment, testing, treatment
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and discharge/admission was modelled. The ED was split
into three sections—Critical care for the most acute, and
Intermediate/Alterna care for less acute. These, plus triage,
diagnostics and follow-up treatment were all modelled.
TOD and DOW were modelled. Validation was by open
and black box methods. Scenarios showed that expansion
of the fast-track area would improve throughput. Imple-
mentation was not discussed.

Gonzalez [38] discusses a DES model of an ED in
Spain. Patient time and queue length are key outputs.
Doctors and nurses are key resources, testing, assessment,
treatment and waits for bed are key processes. Open and
black box validation were used. Scenarios around staffing
and patient routing were run. Implementation was not
discussed.

5.1.4 Summary—A&E models

There is more evidence of specific A&E models than
generic models. Many examples are in American ERs,
which have different designs to English A&E. Key outputs
are typically time in A&E, queue length and staff/room
utilization. Models often include A&E medical, nursing
and clerical staffing, examination cubicles, diagnostics,
decision to admit and bed management. Specific patient
types are often modelled, often by TOD and DOW.
Models occasionally include inpatient bed management,
diagnostics and surgery modules, but the effects of these
are often modelled simply as time distributions. Tech-
niques are mainly DES, but there is some evidence of
scheduling, queuing models and SD. Design is usually
through discussion with local experts. Data collection is
generally through computer records, but also occasionally
through work studies and local consultation. Validation is
discussed less, but is usually through comparison with
computerised records, and/or ‘open box’ type validation
with local experts. Scenarios include workforce schedul-
ing, changed roles, bed management, fast-track patients,
diagnostic changes and overall capacity changes. Imple-
mentation is not widely discussed, but there is evidence
that generic and specific models have been used with
similar success.

5.2 Bed management

5.2.1 Bed management—introduction

The Jun et al. survey [3] indicates that bed management
models [39–48] concentrated on issues such as waits for
bed (emergencies), cancellations (electives), misallocation
of patients and occupancy/bed numbers overall, often by
specialty. Simulation and integer/linear programming were
the typical techniques used.

5.2.2 Bed Management—generic models

Bagust et al. [49] discuss a generic, spreadsheet based
simulation model of emergency inpatient bed requirements
at a hypothetical acute hospital. Notional emergency bed
capacity was defined, and randomised admission rates per
day and LOS around seasonal and DOW patterns were
generated. Data from two hospitals were used for valida-
tion. TOD was not included. The KPI is risk of non
admission of emergency patients. Validation techniques
were unclear. Scenarios included growths in emergency
demand, occupancy levels, LOS changes, resource pooling.
Nothing was implemented—the model was developed as a
discussion tool.

Nguyen et al. [50] present a generic model to generate an
optimal number of beds in a unit, illustrating the balance
between transfers, “refused” unscheduled admissions and
unoccupied beds, i.e. the department must not overflow,
nor remain too empty. The algorithm minimises the mean
and standard deviation of each of these. The model was
validated on surgery and medicine departments, and
improved performance compared to current bed allocation
methods.

Gorunescu et al. [51] discuss a bed management model
using queuing theory. The model is validated on a hospital
but is generalisable. By assigning costs of refused access,
occupied and unoccupied beds, the model generates the
optimal number of beds.

Mackay [52] discusses a generic model, useable at
regional, hospital or specialty level in South Australia.
Required data is patient type, occupancy and LOS. Patients
were split into two types (e.g. short/long LOS) and daily/
monthly occupancy rates are calculated. The model was
validated on actual occupancy data, and the author suggests
the model is generalisable.

Harrison [53] discusses the use of mixed exponential
occupancy distributions and patient flow models for health
care planning. He finds that in Britain, combining two
exponential distributions better represents long term care
patients. This is not the case in US hospitals, implying
different management practices.

5.2.3 Bed management—specific models

Harper and Shahani [54] discuss a DES model for an
English hospital. Inputs included hourly, daily and monthly
arrival and discharge rates, LOS and beds by patient
“CART” category. “Refusal rates” were modelled (a bed
is unavailable in the preferred unit). Validation was against
a year’s occupancy/refusal rates. Recommendations have
been implemented, including bed requirements (allowing
for variability), combining bed pools, patient categorisation
and admissions policies.
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Harris [55] describes a DES model of surgery ward beds
(pre/post op). Surgery schedules by type of patient and
consultant, and LOS and variability for each patient type
were required. The model calculated average (and variabil-
ity of) bed requirements. Scenarios included improved
theatre schedules and bed management policies. Implemen-
tation was not discussed, although it was to be used in a
South Wales hospital.

Dumas [56] describes a model in a US hospital to
improve bed allocation and patient placing policies between
specialties. Demand, the admission process, and inpatient
patient movements through to discharge were modelled.
Specialty level demand was generated and the process of
assigning the demand to bed pools was modelled. LOS’s
are sampled from specialty level distributions. Admission
and discharge profiles were by DOW. KPI’s were occu-
pancy and misplacements. Validation was through structured
discussion sessions with bed managers. Numerous patient
placement rules were tested, and better bed allocations by
specialty were generated to reduce misplacements and
standardise occupancy. Implementation was not discussed.

Vissers [57] discusses a bed allocation procedure by
specialty in a hospital. The model took projections in
demand and LOS to generate optimal bed allocations based
on actual use. Implementation was not discussed.

5.2.4 Summary—bed management models

There is an even spread of published literature between
generic and specific bed management models. Models can
cover anything from a single specialty, to hospital level, to
health authority level. Surgery capacity was sometimes
modelled. KPI’s were typically risks of beds being unavail-
able, misplacements, “trolley waits” and surgery cancella-
tions. Simulation was commonly used, but often using
spreadsheets and occasionally combined with LP/IP to
determine optimal bed mixes by assigning costs of rejections
and unoccupied beds. Key modelled factors were projected
bed occupancy using patient arrival patterns (by type), LOS
and known variability. Most models worked at the daily
level. Most accounted for DOW, but most did not include
TOD issues. Computerised data was usually used for design
and validation. Scenarios were typically effects of bed
reallocation, impact of different average occupancy, reduc-
tions in LOS (or variability of), more beds or altered surgery
schedules. Implementation issues were not widely discussed.

5.3 Surgery

5.3.1 Surgery—introduction

In their review of papers describing surgery models [55,
57–65] Jun et al. [3] indicated that DES was the key

technique used to examine the number of staff, theatres and
beds required to achieve the required patient throughputs or
“service levels” (e.g. reducing cancellations/waiting times),
often using alternative scheduling algorithms.

5.3.2 Surgery—generic models

Blake et al. [66] built a “generic” DES model used in four
hospitals in Canada. It covered surgical patient flows
through admission, operating theatre, beds and discharge.
Theatre lists were developed for each day. Key character-
istics were surgeon, service, age, sex and procedure. Key
constraints were beds, nurses, operating theatre capacity
and doctors. The model was validated against historic
activity in beds and theatres. Validation issues prompted
further investigation by management, confirming operating
room practice was different to theory. The model was used
to justify theatres reducing from 14 to 13 at one site,
adequacy of resources, increased cardiac surgery and beds
in holiday periods.

5.3.3 Surgery—specific models

Lowery [67] discusses a surgery simulation model in
America to examine a hospital’s theatre capacity. . Key
factors were schedules accounting for specialty, theatre,
DOW, arrival time and block start/stop times. Surgery times
were sampled from history by specialty/surgeon, adding
clean up time. Surgery downtime (due to staff, patient,
equipment) was also modelled . Modelled throughput was
tested against actual throughput by specialty. Results were
discussed with surgeons. A baseline was generated and
alternative schedules, extra time and case time reductions
were modelled. General hospital policy changed, so the
proposals were not implemented.

Centeno et al. [68] discuss a DES model in US of theatre
and pre/post-operation requirements. Data was collected
on procedures, times, probability of cancellation, arrival
patterns and returning patients. TOD and DOW arrival
patterns were generated. Personnel, equipment and supply
cost were modelled. Performance measures included
theatre idle time, throughput, waits for theatre, and costs.
Scenarios were on reduced support, extra theatres and
different schedules. Validation and implementation were
not discussed.

Ramis et al. [69] describe a DES model of surgery in
Chile. The objective was increased throughput. Coverage is
pre-op preparation, operation and then post-op recovery and
support. Modelled resources were beds by area and staffing.
Process times for different procedures were agreed with
surgeons. Validation was through discussion and against
historic data. Scenarios included extra patient preparation
areas. Implementation was unclear
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Kwak [70] describes a DES model of a theatre in US.
Coverage was of the surgery and recovery suite. Patients
were categorised by major/minor and specialty. Process
times and variability in the theatre and recovery rooms were
generated from hospital logs. Validation techniques are
unclear. Alternative scheduling rules and patient categori-
sation were tested against the baseline hospital policy of
randomised allocation. All managed strategies were improve-
ments. Hospital management chose and implemented one
of the strategies.

Wright [40] describes a surgical bed DES model for
Lancaster Health District. The objective was to assess
potential reductions in surgical beds. Beds were split by
hospital, specialty and type (gender, children). Theatre
session data were collected (by specialty, major/minor, day,
am/pm). Bed data included emergencies/electives per day,
LOS (pre- and post-op) and sex of patient. Simulated theatre
sessions were generated using current hospital policy.
Validation was against historical bed occupancy. Scenarios
included changes in demand, theatre capacity and beds. The
model was used to plan responses to bed cuts.

Bowers [71] discusses a series of DES experiments to
examine potential expansion of surgery and beds. Data was
from a hospital in England on admission rates, LOS and
theatre time. Distributions of required beds and theatre usage
were generated, leading to recommendations for capacities
and scheduling rules under base case and expansion
scenarios. The model was felt to be generalisable. Imple-
mentation was not discussed.

5.3.4 Summary—surgery models

Surgery models generally model patient throughput through
theatres and pre and post op processes. Key outputs are
patient throughput and theatre utilization. Coverage is
typically some combination of beds, pre-op preparation,
theatres and post-op recovery. Other key factors include
theatre turnaround times, staff availability and patient type
(minor/major, specialty, procedure, gender/age etc). Tech-
niques are typically simulation and/or scheduling. DOW
and TOD issues are often modelled. Design is typically
through consultation with local experts. Data collection and
validation is usually through computer systems, plus open
box validation with local experts. Scenarios included
changes in scheduling policies, theatre capacity and inpatient
beds. There is only limited evidence of implementation.

5.4 Critical/intensive care (ICU)

5.4.1 Critical/intensive care—introduction

The Jun et al. [3] review of models [72–82] indicated that
ICU simulation models generally assessed the required

levels of staffing and beds, which in ICU tend to be high
cost. Demand patterns from different departments is a key
factor, with waits for admission, and inappropriately long
stays being the key patient focussed issues.

5.4.2 Intensive care—generic models

Costa et al. [83] discuss a DES model for planning ICU
capacity. The model examines flows of patients through the
unit, by casemix, arrival pattern and LOS, numbers of beds
and typical variability. Key factors were admission status
(elective, emergency), source (theatre, A&E, wards, hospi-
tal transfers, others), specialty and age. This generated
patient groups with similar needs. Validation was against
actual data. The model was run at two hospitals, the key
factors being beds vs. occupancy, deferral rate and transfer
rate. The model was generic, allowing local casemixes,
admission criteria, priorities and LOS. There is no evidence
of implementation.

Demire et al. [84] discuss a DES model to investigate
allocation of surgery time and beds by specialty (including
ICU). Key factors include pre-op surgery preparation,
operation time, post-op recovery and beds. KPIs are through-
put, time in system and patients rejected for admission. There
is no discussion of validation or implementation.

Ridley et al. [85] discuss a method for grouping ICU
patient types generated in one hospital using CART and
tested on three hospitals. The dependent variable was ICU
LOS. Independent variables were source (e.g. A&E), age
and specialty. Nine groups emerged which fitted all three
hospitals well.

5.4.3 Intensive care—specific models

Griffiths et al. [86] discuss a DES model of an ICU in Wales.
Key resources are beds and nursing staff. Admissions by
DOW and TOD from each route (elective/emergency
surgery, A&E, ward, other hospital, high dependency unit,
X ray) are modelled. LOS distributions for each patient
type generate nursing requirements. Nurse roster costs are
compared using bank and agency nurse costs. Data on
arrivals, LOS and nurses was used for validation. The
model examined numbers of rostered nurses, scenarios
on referral rates, outreach programmes and increased
demand. Optimal numbers of nurses were generated and
implemented.

Cahill and Render [87] describe a DES model of an ICU
in the US plus feeder and surrounding beds. Data was
collected over one year on time/day of ICU admissions,
discharges, diagnoses, LOS in ICU and surrounding units,
transfers between units, ER activity and delays. LOS was
modelled by diagnosis. Validation was using historic data
on utilisation, discharges and LOS. Scenarios were different
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numbers of beds in each unit. KPIs were utilization and
service levels.

Bonvissuto [88] discuss a model of ICU bed require-
ments in a hospital in the US. Data was collected on ICU
occupancy, diagnosis, LOS and transfers. Interviews were
conducted with key personnel. The hospital advised on
appropriate levels of Intensive Care, step down beds, and
transfer criteria. Nothing on implementation.

Ridge et al. [89] describe a DES model of an ICU in
England to calculate optimal number of ICU beds to
preserve service levels at lowest cost. Process flows and
priority rules for each patient type were defined. A simple
mathematical queuing model generated basic results, then a
simulation was built. Patient volumes, LOS, numbers of
beds, and arrival rates by DOW (but not TOD) were
generated from computer records. The KPI was number/
percentage of patients transferred due to lack of beds. This
was validated against historical records. Scenarios included
number of beds, patient prioritisations, emergency bed
reservations, and changed DOW policies. Results showed
that better scheduling of planned admissions could have
significant benefits. There was no evidence of implemen-
tation. The authors claim the methodology has high generic
potential.

Kim et al. [90] describe a DES and a queuing model of
an ICU in China. Routes into ICU were from wards, A&E,
and emergency/elective theatre. Patients were split by
specialty. Patient attributes were illness severity, age, LOS
and probable outcome. Patient volumes, arrival rates and
LOS were generated by route. TOD/DOW issues were
not modelled. It is not clear what validation techniques
were used. The model showed that the management was
suboptimal. The authors claim the model is generalisable.

Shmueli et al. [91] describe a queuing model to optimise
the size of an ICU in Israel. Health benefit was modelled
as dependent on wait time for admission. Costs of ICU
beds were compared to modelled values of health benefit
to find optimal bed numbers. Validation was against computer
data. Nothing is reported on implementation. The technique is
claimed to be generalisable.

5.4.4 Intensive care—summary

There is evidence of generic and specific models in
Intensive Care. KPIs were typically bed utilisation and risk
of bed unavailability. Coverage was typically ICU linked to
feeder beds and lower intensity/non Intensive Care beds.
Techniques were typically simulation, with some use of
queuing models. Design was usually through local dis-
cussion with experts. Key factors are patient mixes by
different sources (e.g. surgery, A&E, wards, inter-hospital
transfers), specialty and potential health benefit. Nursing
requirements by skill level, beds, LOS. TOD and DOW

issues were often included. Computer systems usually
contained enough data for modelling. Identification of groups
of patients was key (often using “CART” techniques).
Validation was usually against computerised data, with some
‘open box’ validation with experts. Scenarios included
impact of expansion and contraction of beds and nurses,
demand changes, costing models, optimal sizing of unit
and DOW modelling. There was only limited evidence of
implementation.

5.5 Diagnostics

5.5.1 Diagnostics—introduction

Jun et al. [3] only report on three papers [92–94] in this
area, each of which uses simulation to examine the impact
of staff allocations on patient throughput.

5.5.2 Diagnostics—generic models

Ramis et al. [95] describe a DES of a multidiagnostic clinic
in Chile to reduce patient waiting times cost effectively
across 40+ labs. Factors were TOD demand and staffing,
staff groups, test specific rooms and equipment, and staff/
test specific service times. Results were validated against
data and with staff. Alternative staff schedules were tested,
and better (cost neutral) configurations were identified. It is
unclear whether the model was implemented.

Berchtold [96] describes a DES of clinical laboratories.
A department in Germany helped establish general princi-
ples and test data. The paper discusses specific vs. generic
issues, material on workcells, and the generic nature of a
flexible laboratory simulation. Key factors were equipment,
staff, demand types, TOD/DOW profiles, and work
planning methodologies. The model was developed and
validated, but it is unclear whether it was implemented.

5.5.3 Diagnostics—specific models

Couchman et al. [97] discuss a DES model of a clinical
biochemistry lab to model increases in workload. The
model showed the changes in working practices, new
equipment, or extra resources required to keep response
times acceptable. Pre-simulation queuing analysis assessed
potential impacts. Design was through interview and
process walking with lab staff and managers, plus collec-
tion of timing data. Demand profiles by TOD and DOW
were collected. Resources were equipment and lab staff (by
type). Validation was against lab performance by TOD and
with lab managers. Scenarios included changes in working
practices, likely future performance, new instruments and
automated handling. It is unclear whether the model was
implemented.
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Ramakrishnan et al. [98] discuss a DES of a CT Scan
area in the US to model patient throughput and report
generation time with a new service. Process mapping
identified key flows, and computer and observation
based data was collected. TOD demand by patient type
was included. Key resources were radiologists, technol-
ogists and clerks. Validation was against data on
throughput and report generation time. Scenarios includ-
ed increased machine use and numbers of radiologists.
There was significant improvement potential on
throughput and report generation time. Implementation
was not discussed.

Van Merode et al. [99] describe a DSS for a hospital in
the Netherlands, to improve laboratory workflows. Cover-
age is a multifunctional lab with numerous workstations.
Data was collected on demand profiles, process times and
technicians. Workstations and technicians were modelled
with different layouts. Implementation was not discussed.

O’Kane [92] discusses a generalisable simulation of a
diagnostic radiology department in Northern Ireland. Demand
was from A&E, outpatient clinics, appointment patients,
hospital wards by TOD. Key constraints were rooms,
equipment, radiographers and turnaround times. Some
patients needed multiple tests.. Inputs were patient arrival
patterns, examination requirements and durations, number/
type of rooms, radiographers. KPIs were mean, max, min of
patients seen by source/day/week, waiting times and queues,
staff and room utilisation. Validation was by comparison
against a pilot data collection. Scenarios included numbers of
radiographers, streaming by hospital department, room usage,
demand changes, and appointment changes. Implementation
was not discussed.

5.5.4 Summary—diagnostics models

There was less material in this area than for other hospital
departments, but generic and specific models were found.
Key issues were to maximise patient throughput, minimise
patient waits and optimize resource utilization (machines,
rooms, staff). Coverage was usually self-contained diag-
nostics departments of two types—clinical laboratories and
radiology departments. The technique used was usually
simulation, but there was also some other modelling
concerning alternative layouts and some queuing analysis.
Design was usually through local discussion. Key modelled
issues were patient demand by type, TOD, DOW, test
requirements, staff by specialty/skill level, number of rooms,
types of machine. Validation was through computer data,
some open box validation and some observation studies.
Scenarios included different test scheduling practices, staff
numbers, skill matching and scheduling, demand changes,
appointment changes, new machinery. Little evidence of
implementation was presented.

5.6 Modelling flows between the above departments,
and whole system models

Jun et al. [3] identify multi-facility simulation models
conducted by Hancock and Walters [100], Swisher et al.
[101] and Lowery and Martin [74].

Moreno et al. [102] discuss a generic simulation of a
whole hospital, with interactions with human resources and
hospital management. Discussion centres on design issues,
choice of simulation technique and software, technical
simulation issues, and generalisability—e.g. how to account
for different hospitals with different flows etc. Specific
issues of data collection, validation and implementation are
not discussed.

Pitt [103] describes a generic simulation modelling
framework used with West Yorkshire health authority. It
covered all aspects of acute health delivery. The project
created a “shell” with features of ease of use, transparency,
interactivity, flexibility, versatility and ease of validation.
The case study focussed on bed usage and allocations and
covered demographic issues, demand fluctuations, admis-
sions, ward configuration, LOS and day case rates. The
output was projections of optimal number of beds in
hospitals/health authority. Validation was against hospital
data. Implementation is not discussed.

Dittus et al. [104] discuss a simulation to improve doctors
work schedules in an acute hospital. They acknowledged
that doctors work in a multi tasking environment with
multiple objectives, and their model defines generic activities
and assesses allocation of time between them. The model
generates schedules, which proved to be accurate when
implemented.

Harper [105] presents a framework for modelling whole
hospitals. Key issues identified include: representing
complexity, demand uncertainty, variability, limited resour-
ces, consideration of function of the model—e.g. is it a
planning, or a management tool? Work with a group of
hospitals generated the following user requirements: flex-
ibility and versatility, ease of use, integration, validity,
appropriate outputs. CART techniques generated patient
types. A system, referred to as PROMPT, was built using
this methodology and used in a hospital to estimate surgery,
workforce and bed needs. It is not clear whether the model
was implemented.

In summary, the published literature suggests only a
small amount of work in this area, and that generic models
are more common than specific when considering hospital
wide models. The design and coverage of the whole
hospital models is dependent on the objectives—ranging
from all aspects of healthcare delivery to models specifi-
cally focused on planning doctors schedules. Some valida-
tion of such models appears possible against actual data and
also using open box techniques. There appear to be similar
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issues with implementation as with the single department
models discussed earlier.

6 Generic models vs. specific models

Returning to the first objective of the research (to compare
the characteristics of ‘generic’ and ‘specific’ models) we
now revisit Fig. 1, in particular level 4 (specific) and level 3
(generic) models, and the two dimensions of abstraction
and transportability.

Combining the literature review with the survey we
propose a much more detailed set of twenty four dimensions
which we group under five main headings: project initiation,
design and build, data, validation and implementation. We
also suggest that an understanding of the nature of ‘generic’
models can be better achieved if Level 3 models (as defined
in Fig. 1) are split into two: ‘generic’ models designed for
central use (level 3A) and ‘generic’ models designed for
multiple local use (level 3B).

Using this structure we can compare and contrast the
model characteristics in terms of the twenty four dimensions
grouped by the five key project stages for models at levels
3A, 3B and 4. We also provides a similarity indicator for

each dimension, in which *** means that there are no clear
differences between any of the three model types, ** means
that two of the model types are similar but one is different,
and * means there are clear differences between all types of
model.

Table 2 shows the key dimensions in project initiation.
For generic models the purpose, and the target level of use
must be very clearly defined with key stakeholders. For
example, is the model to be designed for central use to
provide general insights, or as a locally applicable model,
or both? Realistic assessments of levels of insight and
accuracy of the different types of model must be made
before development. The requirement to clearly define
scope is common to all three model types.

Table 3 shows the key dimensions identified for model
design and build, the key differences are the possible extra
step in the design objective of generic models to assess
appropriateness for central and local use: and the design
process of consulting central and local experts for generic
models to model key common processes only, as some
local issues may be too detailed for a generic model. As a
result, some generic models may not be locally applicable.
There is also potential in specific models to represent local
processes through the model structure (rather than changing

Table 2 Key factors in generic and specific models—project initiation

Issue Level 3A: generic model—
central

Level 3B: generic model—multiple
applicability

Level 4: specific model Similarity

Scope Depends on problem Depends on problem Depends on problem ***

Purpose Some or all of the following: To be transportable enough to achieve
some or all of purposes 1-4 in a number
of specific local services.

Some or all of the following: **

1. To make general
observations about the
design and performance of
a service.

5. To model the local system, and
proposed changes, in detail

1. To make observations about
the design and performance
of a local service.

2. To identify high impact
interventions to improve
the service

2. To identify high impact
interventions to improve the
local service

3. To build common
understanding of the
system amongst key
stakeholders

3. To build common
understanding of the system
amongst key local
stakeholders

4. To build greater understanding
of the theoretical capability
of the system

4. To build greater understanding
of the theoretical capability of
the system

5. To model the current system, and
proposed changes, in detail

Level of insight Broad discussion of issues and
potential high impact
interventions

From broad discussion of issues to
accurate and detailed local improvement
strategies

From broad discussion of issues
to accurate and detailed local
improvement strategies

**

Level of accuracy Possibly lower Possibly higher Possibly highest **

Conflict with
existing models

Addresses perceived/actual gaps
in existing central models

May conflict with existing local models,
or may have been designed to fill a
perceived local gap.

Addresses perceived/actual gaps
in existing local models

**

Target level of use Centrally In multiple providers In a single provider *
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input data). This may lead to greater user knowledge of the
model structure. There are no clear differences between any
of the model types in the potential for code/model reuse.

In terms of data, Table 4 identifies the key issues.
Differences lie in the types of test data used (e.g. national
average data for and/or local data as well), and the possibility
for specific models of extra accessibility to particular locally
available data, or for making special collections. The level of
data quality required is not specific to any of the three model
types

Table 5 shows the key dimensions identified for
validation. The differences are most marked between type
3A models and the other two types. For type 3A validation
will be against ‘average’ data and will require that results
are broadly accurate, whilst types 3B and four require
validation against local data and a greater level of accuracy

and granularity. Validation techniques (i.e. open or black
box) are similar for the three model types.

Finally, Table 6 illustrates the key factors for imple-
mentation. The model, whatever the type, to be handed
over to a user. If handover is required, user capability and
support becomes an issue. Most demanding in this respect
are type 3B generic models, where supporting numerous sites
would require the user front end and documentation to be
very clean and clear to reduce the requirement for site visits.
In this case it would be particularly beneficial for the model
to require no particular local hardware/software requirements.

A locally developed specific model (type 4) might imply
a greater local desire to use it, but local politics are still a
factor, and there is no evidence in the literature that specific
models are more likely to be implemented. Type 3B generic
models will have to prove to local management that they are

Table 3 Key factors in generic and specific models—design and build

Issue Level 3A: generic model—
central

Level 3B: generic model—
multiple applicability

Level 4: Specific model Similarity

Levels of code/model
reuse

Depends on previous work by
the modeller or organisation,
degree of knowledge sharing
or availability of generic
software code/modules

Depends on previous work by
the modeller or organisation,
degree of knowledge sharing
or availability of generic
software code/modules

Depends on previous work by the
modeller or organisation, degree of
knowledge sharing or availability of
generic software code/modules

***

Design process Working with central experts,
plus local service(s)

Working with central experts,
plus local service(s)

Working with local expert(s) **

Representation of
local issues

Not necessarily required in
detail.

By changing data inputs, not
model structure.

Potentially better representation—
through model structure and design as
well as input data

**

Appropriateness of use Clearly defined systems and
problems for which the model is
applicable. Model may be
adjustable to fit different
problems

Need to clearly define when
model can be appropriately
used—i.e. when modification
of input data is appropriate to
model the problem.

Greater likelihood of local adjustment of
model structure to fit the problem

**

Level of detail Inclusive of common significant
processes in multiple providers

Inclusive of common significant
processes in multiple providers

Inclusive of significant (locally agreed)
processes in the particular provider

**

Design objective To model common processes in
a range of providers.

To model common processes
but ideally flexible enough to
model some local process
differences through input data

To model one local system. The local
process may be similar to other
providers, but not a design objective

**

User knowledge of
structure and inner
workings of model

If users have been involved in
developing model, possibly
high.

Initially low (local users weren’t
involved in design),

Local user(s) likely to have been
involved in model build, so probably
higher?

**

Table 4 Key factors in generic and specific models—data

Issue Level 3A: generic model—central Level 3B: generic model—
multiple applicability

Level 4: Specific model Similarity

Data quality Depends on type of model/
required accuracy

Depends on type of model/
required accuracy

Depends on type of model/required
accuracy

***

Data accessibility Ideally easily accessible from
standard operational systems

Ideally easily accessible
from standard operational
systems

Ideally easily accessible from standard
operational systems. Extra local collections
possible.

**

Test “starting” data Possibly “national average”, plus
local examples and national
estimates

Possibly “national average”,
plus local examples

Local historical data **
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sufficiently accurate, and that local operating practices are
adequately reflected. However the process of establishing
any of the three model types as operational tools will require
similar processes—e.g. demos, site visits, early model
runs.

The similarity scores in Tables 2 to 6 indicate many
strong similarities between the three levels of model from

a modelling point of view. For seven of the dimensions
(classed as ***) there are no clear differences between
any of the three model types. For a further sixteen dimensions
(classified as **) two of the model levels have no clear
differences. However for each of these 16 one of the model
levels (split approximately equally between levels 3A, 3B
and 4) has important differences from the other two. For

Table 5 Key factors in generic and specific models—validation

Issue Level 3A: generic model—central Level 3B: generic model—
multiple applicability

Level 4: Specific model Similarity

Technique “Open box” with national and local
experts, “black box” with national/
local data

“Open box” with national and
local experts, “black box” with
local data

“Open box” validation with local
experts, plus “black box” with
local data

***

Representation “General” level only A range of individual providers One provider **

Required accuracy Depends on purpose of model Depends on purpose of model Depends on purpose of model **

Broad accuracy against average data
may be enough

Medium to high levels of
accuracy against local data.

High levels of accuracy probably
required.

Table 6 Key factors in generic and specific models—implementation

Issue Level 3A: generic model—central Level 3B: generic model—multiple
applicability

Level 4: Specific model Similarity

Capability to use it May not be handed over. May not be handed over. May not be handed over. ***

If handed over, ideally low required
user capability, clean and
transparent input/output interfaces.
If user was involved in
development, may be less need for
this.

If handed over, ideally low required
user capability, clean and
transparent input/output interfaces.

If handed over, ideally low required
user capability, clean and
transparent input/output interfaces.
If user was involved in
development, may be less need for
this.

Establishing model
as operational tool

Demo and workshops of validated
model with key stakeholders. Use
on currently important issues/
scenarios. Demonstration that
model works on “real” important
issues.

Depending on model, local site
visits, demo/workshops, validation
and supported model runs may be
required. Use on currently
important issues/scenarios.
Demonstration that model works
on “real” important issues.

Demo and workshops of validated
model with key stakeholders. Use
on currently important issues/
scenarios. Demonstration that
model works on “real” important
issues.

***

Post development
user support or use
of model

If not handed over, modelling team
must be geared up to quickly
perform runs and communicate
results effectively.

If not handed over, modelling team
must be geared up to quickly
perform runs and communicate
results effectively. This may be
“remote” support.

If not handed over, modelling team
must be geared up to quickly
perform runs and communicate
results effectively.

***

If handed over, geared towards
handover to user(s) at the
particular department. If the users
are technically proficient or
involved in model development,
less need for “clean” user
interfaces, documentation etc.

If “handed over”, geared towards
multiple (geographically spread)
users and/or regional/national
teams with clean user interface and
user guide/documentation.

If handed over, geared towards
particular central user(s). If the
users are technically proficient or
involved in model development,
less need for “clean” user
interfaces, documentation etc.

Desire to use it Should be high, as model was
commissioned, but central politics
still a factor.

Depends on perception of quality,
coverage, plus existence of other
models and local politics.

Should be high, as model was
locally commissioned, local
politics still a factor.

**

Depends on perception of quality,
coverage, plus existence of other
models

Depends on perception of quality,
coverage, plus existence of other
models

Hardware/software
requirements

Ideally inexpensive or free, but
some investment in software may
be needed.

Probably more important that no
investment in software is required.

Ideally inexpensive or free, but
some investment in software may
be needed

**
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only one dimension, ‘target level of use’, (classified *) is
there a clear difference between all three model levels.

7 Conclusions

The conclusions present a summary of the findings against
the two major objectives.

7.1 To compare the characteristics of ‘generic’ and ‘specific’
models and their success or otherwise in modelling the flow
of emergency patients in acute hospitals

Using evidence from the literature, an informal survey, and
personal experience, a simple initial framework of four
levels ranging from specific models to generic principles,
was proposed. It is summarised in Fig. 1 and is based on
the key dimensions of transportability and abstraction.

Further analysis then suggested a much richer picture
and Tables 2 to 6 provide a systematic comparison of level
3 (divided into 3A and 3B) and level 4 models, in terms of
24 dimensions organised under five main headings: project
initiation, design and build, data, validation and implemen-
tation. There is much common ground between the model
types, but also some crucial distinctions for the model
builder.

Further work could be possible to compare these findings
generated from a health setting to findings from other
settings, such as military based models.

7.2 To learn lessons on the design, validation
and implementation of these models with a view
to the future development of a ‘generic’ hospital model
for emergency patients

There is much evidence of models, especially simulation
models developed in the main areas of acute hospitals that
deal with emergencies—A&E, inpatient beds, surgery,
Intensive Care and diagnostics.

A&E models usually focus on time of day and day of
week demand issues, staff scheduling, changing working
practices, physical constraints such as cubicles and whole
system issues such as diagnostics and bed management.
KPIs are typically patient time and lengths of queues in A&E
and utilization of key resources such as cubicles and staff.

Bed management models typically examine the impact
of variability in demand by day of week and source, and
often by specialty. Elective and emergency patients must be
modelled. Key resources are typically beds (staffing is
usually not modelled). TOD issues are usually excluded.
Key factors are average/variability of LOS by DOW. KPIs
are typically occupancy and ‘service failures’, e.g. surgery
cancellations and/or ‘trolley waits’ in A&E.

Surgery models tend to concentrate on bed requirements
pre and post surgery, plus preparation and turnaround
issues, staffing requirements, surgery time and post op
recovery. Emergency and elective patients both use thea-
tres. Theatre scheduling algorithms are sometimes attemp-
ted. Time of day and day of week are key factors. KPIs are
usually patient throughput and utilization of beds, theatres
and staff.

Intensive Care models usually focus on beds and specialist
nurses. Time of day and day of week are important for demand
and staffing requirements. Demand is from emergency and
elective surgery, A&E, wards and other hospitals. There are
often problems with moving patients to lower dependency
beds where appropriate. Costs of specialist beds and nurses
are key. KPIs are utilization of beds and nurses, patient
throughput and risks of non admission of patients.

Diagnostic models are of two types, clinical laboratory
models (e.g. blood tests) and radiology models (i.e. X Rays).
Both have similar features—time of day/day of week
demands, staff to test skill mixes, equipment availability.
Demand is from wards, outpatients, community and A&E.
Common issues are multitasking, working practices and test
batching. KPIs include patient waiting time and throughput
and utlilization of staff and equipment.

Across all the above models there are similar features of
design, data, validation and implementation. Design is
typically through discussion with local experts, although
bed management models appear to be more intuitively
designed with less involvement of local expertise. A common
approach to design is process mapping. Data collection is
typically either through computer systems or observation and
consultation—and often both. Validation is typically a
combination of comparison against historical data and
discussion with local experts. Implementation is surprisingly
rare. There are usually no reasons offered for this—in most
cases there appeared to be good engagement with the local
stakeholders in the design, data collection and validation
stages. Lack of implementation perhaps indicates that this is
the hardest part of most projects, requiring a change in
working practices or funding. There is no clear difference
between generic and specific models in implementation
rates. Some papers provided an analysis of the key success
factors in getting models implemented, but there was
surprisingly little consensus on the key factors beyond
ensuring client involvement. This lack of agreement on key
success factors may provide some clues as to the variability
in observed implementation rates.

Overall, there have been examples of successful models
in every department that deals with emergency patients.
There is also a significant consensus about the key issues
and resources to be modelled and about key outputs.

There are a few examples of attempts to model whole
hospitals. However the published literature focuses on what
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we have described as flexible ‘generic frameworks’ rather
than generic whole hospital models.

When considering connectivity between single depart-
ment models, TOD and DOW considerations will be
important, and the following relationships will be important:

– A&E departments often include the effects of bed
management in the ‘wait for bed’ process, and the
impact of diagnostics in patient waits for X Ray/blood
test results. However, this is usually modelled as the
impact of these processes (i.e as unconstrained time
distributions), rather than capacity constrained submo-
dels of those processes.

– Bed management models usually model the following
sources of admission: A&E, direct emergency admis-
sions and elective patients pre and post surgery

– Surgery models usually have demand inputs from
inpatient and daycase beds, ICU, A&E and direct
emergency admissions.

– Flows into ICU are from elective/emergency surgery,
A&E, direct emergency admissions and wards. The
ICU typically discharges patients into lower intensity
inpatient beds.

– Finally, diagnostics models usually have demand inputs
from inpatient beds, outpatients, A&E and community
sources (e.g. GPs). Immediate discharge is assumed.

8 Further work

As noted in the introduction, this paper is part of an
ongoing project to investigate the potential in extending the
idea of a ‘generic’ model to a whole hospital. As a next
stage the authors intend to develop a (type 3A) generic
model of flows of emergency patients through all key
departments in acute hospitals. The hope is that the model
will be used to identify the general issues faced by acute
hospitals in managing the flow of emergency patients,
whilst also accounting for the needs of elective and other
patients
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