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Abstract

In forecasting, data mining is frequently perceived as a distinct technological discipline without immediate relevance to
the challenges of time series prediction. However, Hand (2009) postulates that when the large cross-sectional datasets of data
mining and the high-frequency time series of forecasting converge, common problems and opportunities are created for the
two disciplines. This commentary attempts to establish the relationship between data mining and forecasting via the dataset
properties of aggregate and disaggregate modelling, in order to identify areas where research in data mining may contribute
to current forecasting challenges, and vice versa. To forecasting, data mining offers insights on how to handle large, sparse
datasets with many binary variables, in feature and instance selection. Furthermore data mining and related disciplines may
stimulate research into how to overcome selectivity bias using reject inference on observational datasets and, through the use
of experimental time series data, how to extend the utility and costs of errors beyond measuring performance, and how to find
suitable time series benchmarks to evaluate computer intensive algorithms. Equally, data mining can profit from forecasting’s
expertise in handling nonstationary data to counter the out-of-date-data problem, and how to develop empirical evidence beyond
the fine tuning of algorithms, leading to a number of potential synergies and stimulating research in both data mining and
forecasting.
c© 2009 Published by Elsevier B.V. on behalf of International Institute of Forecasters.
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1. Introduction

Hand (2009) foresees the creation of new oppor-
tunities in predictive modelling when the two areas
of forecasting based on large masses of data, and
using the tools of data mining come together. Not
only does he thus imply that data mining (DM) and
forecasting are complementary, or at least compati-
ble, disciplines, but he also ‘forecasts’ that a trajec-
tory of common research topics exists that may be
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extrapolated to meet in the foreseeable future. Possi-
bly not to his surprise, his view was not unanimously
received with enthusiasm by the forecasting commu-
nity, where the derogatory connotation of DM still pre-
vails for many with a rigorous statistical or economet-
rical upbringing. This view is not only echoed in the
commentary by Price (2009), who openly admits that
“it was never considered to be good”, and recent pa-
pers by Armstrong (2006) in this journal, but equally
shared by researchers in computer science and ma-
chine learning, despite their mutual passion for algo-
rithms associated with all three disciplines. From my
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personal experience (caught between the domains of
forecasting and DM in applying artificial neural net-
works (NN)), forecasters falsely remain sceptical re-
garding the value of DM and its relevance to their do-
main, decrementing DM purely to the application of
computer intensive methods such as NN, a particular
predictive task such as classification, or a general lack
of theory in model building, while in fact it has be-
come much more.

This commentary seeks to first establish an
(inherently subjective) link between predictive DM
and forecasting via the properties of the underlying
data, on which DM is anchored. Once similarities are
established in Section 2, we can discuss where fore-
casting can learn from DM (Section 3) and vice versa
(Section 4), regarding the common challenges iden-
tified by Hand (2009), and where these opportunities
have been missed. Given the limitations of my own
experience, I will restrict the discussion to the busi-
ness domain of forecasting and predictive DM, and
omit other prominent areas, such as DNA microar-
ray DM for genome and disease discovery, association
rule analysis and text mining.

2. Forecasting versus data mining

Data mining, introduced as ‘the science of extract-
ing useful information from large data sets’ (Hand,
Mannila, & Smyth, 2001), is a relatively new dis-
cipline, originating at the interface of statistics, ma-
chine learning, pattern recognition and computer
science (Hand, 1998). Historically, the notion of find-
ing and predicting useful patterns from data has been a
statistical endeavour. As a response to the (possi-
bly premature) claim of DM for this field, a num-
ber of survey articles have attempted to distinguish
DM from other disciplines, and in particular how DM
differs from statistics (Chatfield, 1995; Hand, 1998),
and how traditional ‘algorithmic’ approaches differ
from the ‘statistical learning’ methods employed in
DM (Breiman, 2001; Jain, Duin, & Mao, 2000). Chen,
Han, and Yu (1996) contrast DM techniques from
an informatics and database perspective. However, no
attempts have been made to distinguish DM from fore-
casting or market modelling nor to find synergies be-
tween them, despite their close relationship in predic-
tive decision making. Both Hand’s introductory and
detailed definitions of DM (Hand et al., 2001), and
his proposed opportunities in merging DM and fore-
casting, emphasise the properties of large datasets that
constitute DM, rather than particular algorithms or ap-
plications of DM. Although Hand has elaborated on
this extensively (Hand, 1997, 1998), I will seek to
summarise this notion further, to distinguish and rec-
oncile between forecasting and DM.

The characteristics of the datasets define the
preference of models and algorithms for DM
and forecasting. Datasets of DM often contain
millions of records used for predictive modelling
at an individual level (e.g. of individual customer
accounts), each characterised by dozens of nominal
variables translated into hundreds of binary attributes
in modelling. The resulting size of the datasets,
the number and heterogeneous scale of attributes
constitute some of the particular challenges in DM.
Predicting an individual’s decision (e.g. responding
to a direct mailing, defaulting on a loan) relates to
a nominal dependent variable of class membership
through classification. In contrast, cumulating the
binary decisions of many individuals to an aggregate
level suggests that forecasting frequently employs
a dependent variable of metric scale, and hence
regression. Although DM’s emphasis remains on
classification, as is reflected in the top 10 algorithms
in data mining (Wu & Kumar, 2008), neither the
scale of the dependent variable nor the algorithm
employed accurately discriminate between forecasting
and DM tasks (i.e. regression and classification,
respectively). Predictions of aggregate demand may be
modelled as either regression or classification (e.g. by
downscaling a regression of stock market price into
a classification of a rise-or-fall prediction). Also, a
disaggregate prediction may predict an individual’s
response using a binary variable of class membership
(e.g. of being a ‘good’ or ‘bad’ credit risk), the
probability of a ‘bad’ class membership, or the
actual profit/loss generated from the credit decision
in the form of regression (Finlay, 2008). Furthermore,
computer intensive algorithms such as NN are capable
of modelling both regression and classification,
further limiting a discrimination. Consequently, we
will instead employ the level of disaggregation to
distinguish between DM and forecasting, as it induces
the defining dataset properties.

Given the disparate datasets, and distinct aggre-
gate versus disaggregate modelling, how can DM and
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forecasting converge, as Hand has suggested? One ob-
vious transition follows the convergence of the dataset
properties. Time series data may be disaggregated, not
only with regard to the level of product hierarchies
or regions, but through an increase in the frequency
at which a time series is sampled in discrete time:
from low frequency time series of yearly, quarterly and
monthly data to high frequency data of weekly, daily
and intraday data (Engle, 2000; Granger, 1998).

With the increasing frequency, additional data-
points are generated for a given history (e.g., a history
of three years in order to model yearly seasonality, re-
gardless of whether we are using monthly or hourly
data), increasing the size of datasets. More impor-
tantly, additional data properties emerge that impact
the time series at smaller time intervals, and whose
magnitude may be either masked or compensated for
on longer intervals. For observations with different
forms of seasonality, e.g. in analysing retail sales, a
low time frequency of yearly data eradicates the effect
of any seasonality. At higher frequencies, a monthly
time series may display a single seasonality of month-
in-the-year, and daily time series may exhibit further
day-of-the-week, day-of-the-month (e.g. pay-day),
week-in-the-year and week-in-the-quarter seasonality.
Similarly, higher time frequencies may exhibit local
time trends, level shifts and outliers that would other-
wise not require explicit modelling.

In addition, the effect of an external event (e.g., the
calendar effects of Christmas, Easter and bank
holidays, marketing activities such as promotions,
pay day or extreme weather on retail sales) will
hardly be noticeable in quarterly or monthly data,
but its relative impact on smaller time intervals
of a week, day or hour is more pronounced. As
seasonal patterns and the relative effects of events
increase with more frequent recording intervals, they
require explicit modelling as explanatory (dummy-)
variables to capture calendar effects. Modelling these
exogenous effects – in addition to lead and lag effects
of different forms – extends the dataset characteristics
towards large scale datasets of observational data with
many variables of a heterogeneous, often binary, scale,
not unlike the dataset properties that constitute DM.

The resulting challenges can already be observed
in retail forecasting (and electrical load forecasting),
where retailers such as Tesco need to forecast the
demand for 10,000s of products across thousands of
stores every day, resulting in millions of forecasts
that need to automatically incorporate calendar events,
marketing activity and weather. As an increasing
time frequency leads to a convergence of the dataset
properties of forecasting and DM, opportunities are
thus created for forecasting to use the expertise of DM
in modelling large datasets.

3. Data mining lessons for forecasting

Large datasets of high-frequency data pose novel
challenges, e.g. in specifying models using statistical
tests. Given the abundance of data and the curse
of dimensionality, most variables and lags become
statistically significant, leading to overparameterised
and non-parsimonious models with long computation
times. As datasets in DM and forecasting share
similar properties as they converge, DM may
contribute established approaches in tackling issues of
forecasting large, high-frequency datasets. Amongst
others, issues of feature selection amongst the
many binary (and often multicollinear) explanatory
variables, the use of wrappers and filters in
model building, learning from imbalanced datasets
where interesting features are underrepresented, or
different approaches to combine individual models in
ensembles to deal with randomness in the data have
received substantial attention in DM, machine learning
and statistics. Furthermore, it seems plausible that
some of the existing problems of DM identified by
Hand (2009) may also be encountered by forecasting.
Here DM may help to identify lessons learnt on
selectivity bias, measuring accuracy and algorithms
that may stimulate future research in forecasting.
While some of these may even be extended to
conventional time series of lower frequency, they
require a more through review beyond the scope of this
commentary.

4. Forecasting lessons for data mining

Hand (2009) notes that the issues created by large
datasets are threefold: (a) searching through the vast
datasets; (b) issues of data quality; and (c) apparent
structure arising by chance (see also Hand, Blunt,
Kelly, & Adams, 2000). However, he neglects to draw
explicit attention to one important aspect which is
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Fig. 1. Weekly averages of binary variables across four years of data (Hand et al., 2000)
at the forefront of interest to forecasters: change,
in the form of nonstationarity (population drift in
DM) through local and global time trends, seasonality,
cyclical changes or heteroscedasticity, reflected in out-
of-date-data.

The use of out-of-date data is typical of
most DM research and practice: The DM sector
relies largely on algorithms to build non-dynamic
models, treating cross sectional data accumulated
over time as stationary, tracking performance and
rebuilding the models on a regular basis to adjust
for nonstationarities (Hand, 2009). Contrary to the
assumption of Price (2009), most DM neglects the
information contained in changes over time, and
even fails to provide time-stamps to the disaggregate
transactions, making changing population structures
undetectable (Hand, 1998). In credit scoring, e.g.,
where data is frequently gathered over a period of
two years to determine defaults, all instances are
presumed to have occurred at the same time, regardless
of seasonality or a rising credit crisis, and people that
default after 23 months are classed together with those
who default after only 4 weeks, despite possibly quite
different characteristics and implications for model
building.
However, empirical data, on an aggregated level
for forecasting or a disaggregated level for DM, is
mostly nonstationary: Fig. 1 shows four binary vari-
ables describing personal loan applicants, aggregated
to weekly averages. The graphs show how some at-
tributes of credit applicants such as customer age re-
main stationary, while other attributes change with
time: using a check card shows a clear downwards
trend, repayment method (1d) a level shift and het-
eroscedasticity due to a policy change of the bank,
and the purpose of using a loan for debt consoli-
dation shows an upwards trend with superimposed
yearly seasonality (Hand et al., 2000). Inferences
made on data collected at one time will have limited
applicability later on, requiring dynamic modelling of
both dependent and independent variables. Just as the
forecasting datasets are gradually enriched with ex-
planatory variables to derive better decisions on time
series of higher frequency, the DM datasets of the
future will be extended along the time domain,
recording the development of explanatory variables of
individual customers over time. Already, the popular
Recency-Frequency-Monetary-(RFM) approach in di-
rect marketing (Reinartz & Kumar, 2003) aims to cap-
ture evolving populations and time dependencies in a
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simplified version, and provides further evidence of
the importance of explicitly reflecting time. To date,
only a few sophisticated models of dynamic DM ex-
ist to cope with evolving data (e.g., Ganti, Gehrke, &
Ramakrishnan, 2001; and Park, Piramuthu, & Shaw,
2001), even in the academic literature. And it is here
that DM could draw on the experience of forecasting
in modelling nonstationary systems and dataset popu-
lation drift.

5. Conclusions

With most advances in DM being reported
elsewhere, it is not surprising that the merit of
DM research has eluded forecasters. In essence,
the two disciplines of DM and forecasting face
the same challenges of building predictive models
in a nonstationary and hierarchical reality, with
exogeneous factors and stochastic and chaotic
influences that have an impact on disaggregated
models of an individual’s responses, as well as
aggregated models of a product or service. They
merely employ different datasets that steer their
modelling decisions in different directions. Given
the shared objective of predictive analytics and
the possible convergence of datasets when (a) DM
datasets are extended into the time domain to capture
nonstationarities, and/or (b) forecasting datasets
are recorded at higher frequencies with additional
explanatory variables, potential synergies may arise.

To summarise: DM can learn from forecasting’s
experience in modelling non-stationary data, while
forecasting can draw upon DM’s expertise in large and
sparse data sets of heterogeneous scales. It is here that
the convergence of datasets can promise synergies in
learning from the two disciplines.
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