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Linkages between Shanghai and

Hong Kong stock indices

Shenqiu Zhang, Ivan Paya and David Peel*

Department of Economics, Lancaster University Management School,

Lancaster LA1 4YX, UK

This article examines the dynamics of the linkages between Shanghai and

Hong Kong stock indices. While the volatility linkage is analysed by a

Multivariate Generalized Autoregressive Conditional Heteroscedasticity

(MVGARCH) framework, the dependence of returns is examined by a

copula approach. Eight different copula functions are applied in this study

including two time-varying ones which capture the dynamics of the

linkage. The result shows significant tail dependence of the returns in the

two markets.

I. Introduction

Linkages between international asset returns are
important for fund managers in order to diversify
risk (Longin and Solnik, 1995), and also for
policymakers to monitor the potential for financial
contagion (Bae et al., 2003). There is a widespread
agreement that international equity markets are
linked to one another.1 However, the strength, type
and regional characteristics of those links are
still under scrutiny. Recent evidence of financial
contagion suggests that this effect appears
more pronounced in developing markets, such as
Latin America and Asia (Bae et al., 2003).2

The staggering increase in market capitalization
of the Chinese stock market in the last 15 years3

has encouraged the analysis of this market and
its links with other developed and developing
markets.4

Poon and Fung (2000) found significant volatility
spillovers between Shanghai and Hong Kong
by fitting an Autoregressive, AR(1)-Exponential
Generalized Autoregressive Conditional
Heteroscedasticity, EGARCH(1,1) model with
lagged values of the other indices returns and
volatilities in the mean and variance equations.
A similar result was found by Li (2007) employing
a Multivariate GARCH (MVGARCH) model.

*Corresponding author. E-mail: d.peel@lancaster.ac.uk
1 For a survey of methods and results on the topic, see Heimonen (2002).
2 The methodology used in the majority of the papers in this area is the conditional volatility GARCH framework introduced
by Engle and Kroner (1995), Engle (2002) and Tse and Tsui (2002). Worthington and Higgs (2004) reported volatility
spillovers from Hong Kong and Singapore to Thailand, and also from Japan to Indonesia, Korea, the Philippines and
Thailand. However, it is worth pointing out that lagged domestic volatility had a stronger effect on current domestic volatility
than the spillover effect. In a study on Central European countries, Kasch-Haroutounian and Price (2001) found spillover
effects from the Hungarian equity market to the Polish market, but not the other way round.
3 The stock market valuation of the Chinese equity market was 260 billion yuan in 1994 and 27 trillion yuan in 2008.
4 Studies on the Chinese market have found evidence of univariate GARCH(1,1) processes (Yu, 1996; Xu, 1999). However,
in the case of a price change limit in the stock market, Friedmann and Sanddorf-Kohle (2002) claimed that the most
appropriate model is the MA(1)-Glosten, Jagannathan and Runkle, GJR-GARCH(1,1). Bailey (1994) used single linear
equations to investigate linkages between eight individual stocks of the Chinese market. She found little or no correlation with
China related shares in Hong Kong and the US stock exchanges. Ma (1996) extended the dataset and analysed the market
return within the Capital Asset Pricing Model (CAPM) framework. Ma found additional evidence of correlation with an
international risk factor measured by the international beta from the CAPM model.
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Li (2007) investigated the relationship of volatility
between China, Hong Kong and the US using daily
data from January 2001 to August 2005 and found
spillover effects fromHongKong to Shanghai, but not
between China and the US.

However, the results of Li (2007) employing the
MVGARCH framework have the limitation of
assuming equal weight for small and large returns.
This specification will not appropriately capture the
differential impact, if it occurs, of abnormal move-
ments due to panic selling which may cause large
cross border co-movement (Longin and Solnik,
2001).5 A method that is able to capture such
behaviour is copulas. These have been widely used
in many disciplines, such as survival analysis and
hydrology (Genest and Favre, 2007) as well as in
many studies that examine the correlation between
variables. Nonetheless, it is probably the use in
finance that has accelerated the development of this
methodology. Copulas started to be used in risk
management, such as credit risk applications and
option pricing (Cherubini et al., 2004), and now they
are used in studying market co-movement and
financial contagions (Rodriguez, 2007).6

In this article we extend the analysis of the linkages
between the Shanghai and the Hong Kong equity
markets in two ways. First, we employ a longer data
set than previous studies in order to capture the
recent falls in the Chinese market. Second, we
analyse the dependence between the two markets
employing both MVGARCH models and a wide
variety of different copulas that allow flexible tail
behaviour.7 Our results suggest the lack of volatility
spillover effects using the MVGARCH model.
However, the time-varying Symmetrized Joe–
Clayton (SJC) copula provided evidence of tail
dependence between the Shanghai and the Hong
Kong return series.

The rest of this article is organized as follows.
Section II will discuss the MVGARCH model.
Section III will present the copulas and the method-
ology used for modelling marginal distributions.
Data and its summary statistics will be presented in
Section IV. Section V will discuss the empirical results
and its implications. Section VI will provide a brief
conclusion.

II. Multivariate GARCH

We analyse the returns, Rt, of Shanghai and Hong
Kong stock markets which are defined as the first
difference of the natural logarithm of each stock
index. We initially employ the MVGARCH model
proposed by Engle and Kroner (1995) where the
mean equation is specified as follows:

Rt ¼ Cþ�R0t�1 þ et, et � Nð0,HtÞ ð1Þ

where Rt is a 2� 1 vector. R11 is the Shanghai return
series, and R21 is the Hong Kong return series. Ht is
the following variance–covariance matrix:

Ht ¼ ��0 þ Aðet�1e
0
t�1ÞA

0 þ BHt�1B
0 ð2Þ

In the setting of the Baba, Engle, Kraft and Kroner
(BEKK) model, Ht is guaranteed to be positive
definite by construction. The conditional variance is
not only a function of all lagged conditional variances
and squared returns, but also a function of condi-
tional covariances and cross-product returns. The
diagonal elements in the parameter matrix B measure
the effect of lagged volatility, the off-diagonal
elements capture the cross market effects.

III. Copula

Copula functions

A copula is a function that constructs a joint
distribution from n marginal distributions. In other
words, the copula contains all the dependence infor-
mation between marginal distributions. The depen-
dence information is only available in a copula, and
not in the marginal distribution. This is proved by
Sklar in 1959 (Cherubini et al., 2004) (Appendix A).
Sklar’s theorem allows us to take advantage of flexible
univariate modelling methods to obtain depen-
dence information in a multivariate distribution.

We consider six bi-variate copula functions that
have different dependence features. These functions
are described in detail in Appendix B. The first two
copula functions assemble normal distributions and
do not consider the possibility of tail dependence.
However, since financial time series usually have fat

5 In a recent study, Longin and Solnik (2001) applied extreme value theory where a multivariate distribution of stock returns
tails was proposed and tested. Using monthly stock indices of the US, the UK, France, Germany and Japan from 1959 to
1996, they found that the correlation of returns increases during bear markets.
6Bartram et al. (2007) used copulas to examine the effect of the euro on the dependence between European stock indices. For a
survey of the copula method in finance, see Patton (2008).
7 The only study we are aware of that employs copulas in the analysis of the Chinese stock markets is Ane et al. (2008). They
studied the relationship between the Chinese markets of Shanghai and Shenzhen exchanges using the Cook–Johnson
(Clayton) copula over the period from January 1996 to December 2003. They found persistent features of dependence between
Shanghai and Shenzhen stock returns.

1848 S. Zhang et al.
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tails, the last four copula functions under consider-
ation exhibit tail dependence features that measure the
joint probability of extreme events.8 In this case, it is
possible to capture, for instance, greater correlation
for large price movements than for small price move-
ments. If the return of an investment is assumed to be
a white noise process, small movements represent low
or no risk. However, when there are large movements
in returns, investors will be alerted to the risk,
and some may be interested in hedging those risks.

Copula estimation

All the different types of copula functions considered
here can be estimated by the two-stage maximum
likelihood method proposed by Patton (2006a). The
first stage involves the estimation of the two marginal
distributions separately as described in the section
below. The conditional marginal distributions are
then used in the second stage of the methodology to
estimate the copula function. In this case, the log-
likelihood function is,

Lð�Þ ¼
XT
t¼1

lnCtðu, vjwÞ ð3Þ

where u and v are the marginal distributions defined
in Appendix A.

Conditional marginal models. Conditional volatility
GARCH models have been widely used to estimate
return series as they can capture stylized facts such as
volatility clustering (Berkowitz and O’Brien, 2002).
The GARCH family of models has been extended to
capture very persistent (or integrated) volatility with
the Integrated GARCH (IGARCH) model. To relax
such a restrictive case, Equation 4 presents a third
type of model that allows for volatility to be
fractionally integrated (Fractional Integrated
GARCH (FIGARCH)),

ht ¼ !þ �ht�1 þ ’ð1� LÞd"2t ð4Þ

where 0� d� 1, d¼ 0 represents the GARCH model
and d¼ 1 the IGARCH model. Given that the
persistence of volatility is a stylized fact in financial
series (Taylor, 1986), and especially in emerging
markets as shown by Ane et al. (2008), we specify
an AR(1)-FIGARCH-m as the mean equation

rt ¼ �þ �rt�1 þ �
ffiffiffiffi
ht

p
þ "t ð5Þ

We specify Hansen (1994) skewed-t distribution for
the likelihood estimation, in order to capture skew-
ness and leptokurtosis in the data.9 The density
function takes the following form:

f ðzj�, �Þ ¼

bc 1þ
1

�� 2

bzþ a

1� �

� �2
 !�ð�þ1Þ=2

z5 � a=b

bc 1þ
1

�� 2

bzþ a

1þ �

� �2
 !�ð�þ1Þ=2

z � �a=b

8>>>>><
>>>>>:

ð6Þ

where 25�51 and �15�51, z is the standardized
residual and the constants a, b and c are given by

a ¼ 4�c
�� 2

�� 1

� �
b2 ¼ 1þ 3�2 � a2

c ¼
�ð�þ12 Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

	ð�� 2Þ
p

�ð�2Þ

The models are estimated by maximizing the
following log-likelihood function of the skewed
Student’s t distribution:

l¼ n log�
�þ 1

2

� �
�

n

2
logð�Þ� n log �

�

2

� �� �
� n logð
Þ

�
�þ 1

2

Xn
i¼1

log 1þ
"2i
�
2

� �
þ
Xn
i¼1

logð f ðzij�,�Þ ð7Þ

The accuracy of the result obtained from a likeli-
hood estimation relies heavily on the specification
of the density function, and in order to test that
the density is correctly specified, we employ
Kolmogorov–Smirnov (KS) test.10

8 The dependence is measured by Spearman’s � or Kendall’s � statistics. Let us consider u¼F1(x), and v¼F2(y) to be the two
marginal distributions. Note that the Gumbel copula exhibits upper tail dependence and zero lower tail dependence, while the
Clayton copula has lower tail dependence and zero upper tail dependence. However, either the Student’s t and the SJC
copulas exhibit both tails dependence.
9 The skewed Student’s t distribution is more flexible than Student’s t distribution. Student’s t density is the special case of
skewed Student’s t when �¼ 0 (Equation 6).
10 The KS test is a nonparametric statistic that tests if a set of data comes from the hypothezised continuous distribution.
Thus, the test has the null hypothesis H0: the data follows the specified distribution; and Ha: the data does not follow the
specified distribution. The test statistic is,

D ¼ max
1�i�N

FðYiÞ �
i� 1

N
,
i

N
� FðYiÞ

� �

where F(Yi) is the theoretical cumulative distribution of the specified distribution. The statistics D is compared with tabulated
critical values.
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IV. The Data

Daily data for the Shanghai and Hong Kong com-
posite stock indices are obtained from the Thomson
One Banker database for the period 1 June 1996 to
1 October 2008. We use both indices denominated in
Chinese yuan. Observations in both series are removed
if there is a missing value in one of the series due to
holidays, as in Li (2007). As of January 2008, the
Shanghai stock exchange is the largest exchange in the
mainland with a market value of 22 trillion yuan and
5.6 trillion of tradable volume, while the Shenzhen
exchange has a market value of 5 trillion and 2.5
trillion in tradable volume. These figures are based on
A-shares which were initially only available to domes-
tic investors but since the end of 2002 are also open to
foreign investors through the Qualified Foreign
Institutional Investor (QFII) scheme. The other class
of shares are called B-shares. These shares are also
denominated in yuan, but subscribed to trade in either
US dollars or Hong Kong dollars. B-shares were only
available to foreign investors before 2001, but
since then domestic investors who have US dollars
or Hong Kong dollars can trade B-shares as well.

The summary statistics of the returns, defined by
changes in the logarithms of these indices times 100,
are shown in Table 1. The Shanghai series is negatively
skewed, while the Hong Kong series is positively
skewed. Both are leptokurtic and have a very low first-
order autocorrelation coefficient. Figures 1 and 2
plot the Shanghai and Hong Kong return series and
it becomes apparent that the Shanghai index has
more outliers than the Hong Kong counterpart.

V. Estimation Results

MVGARCH model

We specify the mean and the variance equations as in
Equations 1 and 2 for the MVGARCH model.

The mean equation includes any possibility of mean

return spillovers and we use the joint Student’s t

density functions due to heavy tails in the return

series.11We present theMVGARCH results in Table 2.

Table 1. Summary statistics

Mean SD Skewness Kurtosis AR(1)a AR(2)a

Shanghai 0.04 1.82 �0.21 7.81 0.009 0.005
Hong Kong 0.01 1.78 0.51 16.04 0.008 0.040

Notes: The table shows summary statistics of the returns of the Shanghai and Hong Kong stock market indices.
Indices are denominated in Chinese yuan. The sample period covers 1 June 1996 to 1 October 2008 and has 2878
daily observations in each series excluding holidays.
aAR(i) represents the i-th lag autocorrelation coefficient of returns.

0 500 1000 1500 2000 2500 3000
–15

–10

–5

0

5

10

Fig. 1. Shanghai index return from 1 June 1996 to

1 October 2008

0 500 1000 1500 2000 2500 3000
–15

–10

–5

0

5

10

15

20

Fig. 2. Hong Kong index return from 1 June 1996 to

1 October 2008

11 Initial values of the diagonal parameters are obtained from univariate model estimation and off-diagonal parameter initial
values are set to zero.
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The BEKKmodel provides evidence of return linkages
in the mean equation as �12 is significant. This result
implies return spillovers from Hong Kong to
Shanghai, but not from Shanghai to Hong Kong
given that �21 is insignificant. The positive coefficient
implies that the return of Hong Kong is transmitted
with the same sign to Shanghai in the next day, but not
the other way round. It is worth pointing out that the
linkage is weak as the spillover is only 4%. On the
other hand, we did not find any evidence of volatility
linkages between the two markets as the off-diagonal
terms in the variance equation are not significant.
These conclusions are different from those of Li
(2007), who found no linkage in the return series but
found volatility spillover from Hong Kong to
Shanghai. The difference might arise from the fact
that out study uses a more updated data set that
includes the most recent stock market crash.

Copula models

Result of conditional marginal models. Table 3 shows
the FIGARCH-m results of the two conditional
marginal models. Both return series display similar
patterns, and the value of the variance equation
parameters are very close. The fractional parameter d
is significant in both cases with values 0.59 for
Shanghai and 0.57 for Hong Kong. The parameter ’
is again similar and indicates a strong effect from past
squared conditional returns. � and � are the degrees of
freedom and skewness parameters. The estimated
value of these two parameters for Shanghai are very

close to those found in Ane et al. (2008). The
difference between Shanghai and Hong Kong is that
in the latter case returns do not have volatility effects
in the mean equation while in Shanghai they do.

Copula estimation. The conditional marginal densi-
ties estimated above are now used to estimate the
copula functions and Table 4 presents the log-
likelihood estimates.12 Considering first the constant
parameter copula function we find that the SJC and
the Student’s t copulas appears to have the highest
log-likelihood figures. Moreover, there seems to be an
improvement in the log-likelihood when the param-
eters in the copula functions are allowed to change
over time. In particular, the time-varying SJC copula
is significantly13 improved over the constant SJC
copula and implies that the dependence between the
two markets changes over time.

To further examine the tail dependence between
markets, Table 5 shows the estimates of the time-
varying SJC copula. The coefficients indicate that
there is different co-movement at both the lower and
upper tails. � and � are �7.18 (�18.28) and �19.45
(�14.27) at the lower(upper) tail and significantly
different from zero. The fact that the parameters
governing time-varying � and � are greater than the
constant parameter ! implies strong time-varying
effect. The implied correlation coefficient from this

Table 2. BEKK estimation

Shanghai Hong Kong

Estimate SE Estimate SE

C11 0.039 0.026 C21 0.047* 0.023
�11 0.016 0.020 �21 �0.007 0.014
�12 0.042* 0.015 �22 0.005 0.018
�11 0.736* 0.040 �21 0.503* 0.043
A11 0.301* 0.031 A21 �0.009 0.013
A12 �0.010 0.017 A22 0.192* 0.027
B11 0.933* 0.014 B21 0.007 0.005
B12 0.002 0.004 B22 0.975* 0.006

Statistic p-value Statistic p-value

Q(12) 48.73 0.00 24.51 0.22

Q2(12) 7.08 0.93 41.10 0.01

Note: * Indicates significance at 5% level.

Table 3. Result of conditional marginal models

Shanghai Hong Kong

Estimate SE Estimate SE

� �0.079* 0.041 0.055* 0.024
� 0.042* 0.013 – –
� 0.009 0.018 0.013 0.018
! 0.439* 0.086 0.210* 0.054
� 0.136* 0.073 0.158* 0.0482
’ 0.600* 0.131 0.695* 0.070
d 0.599* 0.119 0.574* 0.080

� 4.138* 0.080 5.567* 0.119
� �0.058* 0.024 �0.006 0.022

Statistic p-value Statistic p-value

Box–Pierce
Q(12)

43.167 0.000 21.935 0.292

Box–Pierce
Q2(12)

8.040 0.992 16.564 0.681

KS test 0.016 0.493 0.008 0.025
Log-likelihood �5291.61 – �5102.62 –

Note: * Indicates significance at 5% level.

12All copula functions are estimated in Matlab. The authors are grateful to Andrew Patton for making the codes publicly
available.
13 Indicated by Likelihood Ratio (LR) tests with 6 degrees of freedom at 5% significance level.
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Table 4. Log-likelihood of Copula estimation

Copula Log-likelihood AIC BIC

Constant SJC 47.4648 �94.9282 �94.9241
Student t 45.8692 �91.7369 �91.7328
Gumbel 42.0931 �84.1856 �84.1835
Gaussian 41.5751 �83.1496 �83.1475
Plackett 35.0474 �70.0942 �70.0921
Clayton 32.7873 �65.5740 �65.5719

Time-varying SJC 55.5064 �111.0086 �110.9962
Gaussian 49.8858 �99.7695 �99.7633

Note: AIC¼Akaike’s Information Criterion; BIC¼Bayesian Information Criterion.

Table 5. Time-varying SJC copula

Parameter Coefficient SE

!L 2.590* 1.19*
�L �7.18* 3.65*
�L �19.44* 5.45*
!U 1.51* 0.81*
�U �18.28* 7.78*
�U �14.27* 3.31*

Notes: SEs are calculated from Hessian matrix.
* Indicates significance at 5% level.

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8
SJC copula – lower tail

Time-varying

Constant

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8
SJC copula – upper tail

Time-varying

Constant

Fig. 3. Correlation implied by time-varying SJC
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estimate is shown in Fig. 3 and changes over time,
reaching a maximum of 0.5 in some cases. In this
sense, the copula approach provides additional
information to the MVGARCH methodology by
showing the dependence at the tails.

Robust analysis: the exchange rate effect

The data analysed are both denominated in Chinese
currency. However, Hong Kong stock markets are
traded in Hong Kong dollars. Thus, there exists a
possibility of an exchange rate effect. In order to
examine such effect, we analyse the Hong Kong
series in its native currency. Table 6 compares the
summary statistic of Hong Kong index return with
different currency denomination and their change.
As a further check we estimate the copula functions
using the Hong Kong series dominated in Hong
Kong dollars and we do not find any significant
change of results.14

VI. Conclusion

In this article we have examined the linkages between
the Shanghai and Hong Kong stock indices using two
different methodologies. On the one hand, the
MVGARCH model results suggest that there are
spillover effects in the mean of returns but not in the
volatility. The conditional marginal models estimated
by FIGARCH with skewed Student’s t density
showed that volatilities of the two indices returns
are persistent. However, the parametric GARCH
methodology does not allow for the dependence in
volatility to differ according to the size and sign of
changes in returns. In order to capture such effect,
we use six different copula functions and found
evidence of volatility linkages at both tails. The
SJC copula was found to provide the better fit among
all of them and we also estimated it using

time-varying parameters. The results again imply
significant tail dependence which has varied over time
in the past decade.
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Appendix A: Sklar’s Theorem

Let F1(x) be the marginal distribution of x, F2(y) the

marginal distribution of y, and H(x, y) the joint

distribution of (x, y). Then for every ðx, yÞ 2 < � < :

CðF1ðxÞ,F2ð yÞÞ is a joint distribution with margins

F1(x), F2( y):

CðF1ðxÞ,F2ð yÞÞ ¼ Hðx, yÞ ð8Þ

Conversely, if H(x, y) is a joint distribution function

with margins F1(x), F2( y), there exists a copula C,

such that

Hðx, yÞ ¼ CðF1ðxÞ,F2ð yÞÞ ð9Þ

the copula is unique if F1(x), F2(y) are continuous,

otherwise uniqueness is not guaranteed.

Appendix B: Copula Functions

Gaussian copula

The Gaussian copula describes the bi-normal joint

distribution which is the most basic distribution

function in finance.

Cncðu, vj�Þ

¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p exp

�ðu2 þ v2 � 2�uvÞ

2ð1� �2Þ
þ
1

2
ðu2 þ v2Þ

� �

ð10Þ

the parameter � is the pairwise correlation. The

Gaussian copula was used in Bartram et al. (2007)

who investigated the dependence in the European

financial markets. They found a significant change of

dependence structure in European equity market

after the introduction of euro.

Plackett copula

The Gaussian copula restricts � to be between

0 and 1. Hence it does not allow negative dependence.

The Plackett copula (PC) is designed to relax this

restriction.

Cpcðu,vj�Þ ¼
	
1þð�� 1Þðuþ vÞ� ½ð1þð�� 1Þðuþ vÞÞ2

� 4uv�ð�� 1Þ�1=2


� ½2ð�� 1Þ��1 ð11Þ

where �41 implies positive dependence, �51 implies

negative dependence and �¼ 1 implies independence.
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The dependence is described by Spearmans’s � as in
(Nelsen, 1998),

� ¼

� þ 1

� � 1
�

2�

ð� � 1Þ2
lnð�Þ if � 6¼ 1

0 if � ¼ 1

8<
: ð12Þ

Gumbel copula

The Gumbel copula exhibits upper tail dependence
and zero lower tail dependence.

Cgcðu, vj�Þ ¼ exp � ð� ln uÞ� þ ð� ln vÞ�½ �
1=�

n o
ð13Þ

The upper tail dependence equals 2� 21/�.

Clayton copula

Introduced by Clayton (1978), this copula is the
opposite of the Gumbel copula. It has lower tail
dependence and zero upper tail dependence.

max½ðu�� þ v�� � 1Þ�1=�, 0�

� ¼ �=ð�þ 2Þ
ð14Þ

The lower tail dependence equals 2�1/�.

Student’s t copula

The previous two copula functions model one tail
behaviour. Student’s t copula exhibits dependence in
both tails and the dependence is symmetric.

Ctcðu, vÞ ¼
�ðþ22 Þ

�ð2Þ	
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
� 1þ

t�1ðuÞ2 þ t�1ðvÞ2 � 2�t�1ðuÞt�1ðvÞ

ð1� �2Þ

� ��þ2=2
ð15Þ

where  is the number of degrees of freedom. If
 becomes large Student’s t copula becomes Gaussian
copula.

SJC copula

Student’s t copula exhibits symmetric dependence in
both tails. However, it might be reasonable to
assume that the dependence will be different
between bear and bull markets. In other words, the
dependence could be asymmetric. Joe (1997) intro-
duced the Joe–Clayton copula to capture such

behaviour,

CJCðu, vj�
U, �LÞ ¼ 1� ð1� f½1� ð1� uÞ����

þ ½1� ð1� vÞ���� � 1g�1=�Þ1=� ð16Þ

where � ¼ 1= log2ð2� �
UÞ, � ¼ �1= log2ð�

LÞ and �U 2
ð0, 1Þ�L 2 ð0, 1Þ. �L and �U are the two parameters of

this copula that measures lower and upper tail
dependence, respectively. One small problem is that
when �L and �U are equal, there is still asymmetry.
However, Patton (2006b) modified the Joe–Clayton

copula and obtained the SJC copula,

CSJCðu, vj�
U, �LÞ ¼ 0:5ðCJCðu, vj�

U, �LÞ

þ CJCð1� u, 1� vj�L, �UÞ

þ uþ v� 1Þ ð17Þ

Copula functions are complex and, therefore, it is
not useful to plot a copula function. Instead, we plot

the effect of the copula functions, that is, we plot the
joint probability distribution against its marginal
distributions. We show these plots in Figs A1–A3.
The plot shows different dependence structures

implied by different copulas. For instance, the
Clayton copula is showing the lower tail dependence
while the Gumbel copula is showing upper tail
dependence. A negative dependence is simulated by

the PC. Student’s t copula displays the symmetric tail
dependence, while the SJC copula can have different
tail dependence.

Conditional copula

As previously discussed, the Sklar’s theorem sepa-
rates the joint distribution into n marginal distribu-
tions and a copula. This potentially provides the
foundation to build on the success of univariate

modelling methods to study multivariate distribu-
tions. This involves specifying a model for the
marginal distributions and a copula. In economics
and finance, many series are conditional on some

other variables. An extension to conditional distri-
bution of Sklar’s theorem is therefore required and
this is provided by Patton (2006b).

Let w be an information set, F1(x|w) the condi-
tional marginal distribution of x conditional on w,

F2(y|w) the conditional marginal distribution of
y conditional on w, and H(x, y|w) the joint condi-
tional distribution of (x, y) conditional on w. Then
for every ðx, yÞ 2 < � < : CðF1ðxÞ,F2ð yÞÞ is a joint

distribution with margins F1(x), F2(y)

CðF1ðxjwÞ,F2ð yjwÞjwÞ ¼ Hðx, yjwÞ ð18Þ
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conversely, if H(x, y|w) is a joint conditional distri-

bution function with margins F1(x|w), F2(y|w), there

exists a copula C, such that

Hðx, yjwÞ ¼ CðF1ðxjwÞ,F2ð yjwÞjwÞ ð19Þ

the copula is unique if F1(x|w), F2(y|w) are contin-

uous, otherwise this is not guaranteed. Note that w is

the same for both marginal distributions. In other

words, the two marginal models need to be

conditional on the same information set. Therefore,
in empirical estimation, the same conditional vari-
ables should be used. However, conditional variables
are allowed to be insignificant.

Time-varying copulas

The dependence structure may change over time due
to changes in policy, such as changes in monetary
rules (Sims and Zha, 2006) or the introduction of
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Fig. A1. Copula simulation three-dimensional and contour plot, Normal and Placket copula

−2
0

2

−2
0

2
0

0.1

0.2

Gumbel copula, α = 2 Gumbel copula, α = 2 

−2 −1 0 1 2
−2

−1

0

1

2

−2
0

2

−2
0

2
0

0.1

0.2

Clayton copula, α = 1 Clayton copula, α = 1 

−2 −1 0 1 2
−2

−1

0

1

2

Fig. A2. Copula simulation three-dimensional and contour plot, Gumbel and Clayton copula
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a common currency such as euro (Patton, 2006b;

Bartram et al., 2007). Therefore, the copula may not

be constant (Busetti and Harvey, 2008). There are

two ways to handle a changing copula. One is to

specify a mixture copula function. The difficulty of

this option is that with so many copula functions, it is

difficult to specify the mixture. The alternative way is

to apply a time-varying copula, that is, a copula with

time-varying parameters as in Patton (2006b).

Equation 20 shows the time evolving parameter for

the time-varying normal copula. �Ut and �Ut in

Equations 21 and 22 are the time-varying parameters

for time-varying SJC copula:

�t ¼ f !þ��t�1þ�
1

n

Xn
j¼1

��1ðut�jÞ�
�1ðvt�jÞ

 !
ð20Þ

where f ðxÞ ¼ tanhðx2Þ ¼ ð1� e�xÞð1þ e�xÞ�1, this

transformation will guarantee � to be in (�1, 1).

�Ut ¼ f !U þ �U�Ut�1 þ �
U 1

n

Xn
j¼1

jut�j � vt�jj

 !
ð21Þ

�Lt ¼ f !L þ �L�Lt�1 þ �
L 1

n

Xn
j¼1

jut�j � vt�jj

 !
ð22Þ

where f ðxÞ ¼ ð1þ e�xÞ�1 is the logistic transforma-

tion, which will keep �U and �L in (0,1) at all times.

jut�j� vt�jj is a forcing variable used by

Patton (2006b) as an innovation term. Different

forcing variables have been tried by Patton

(2006b) and Bartram et al. (2007), and this is the

preferred one.
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Fig. A3. Copula simulation three-dimensional and contour plot, Student t and SJC copula
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