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Linear programming (LP) is one of the great successes to emerge from operations research
and management science. It is well developed and widely used. LP problems in practice are
often based on numerical data that represent rough approximations of quantities that are
inherently difficult to estimate. Because of this, most LP-based studies include a postopti-
mality investigation of how a change in the data changes the solution. Researchers routinely
undertake this type of sensitivity analysis (SA), and most commercial packages for solving
linear programs include the results of such an analysis as part of the standard output report.
SA has shortcomings that run contrary to conventional wisdom. Alternate models address
these shortcomings.
(Philosophy of modeling. Programming: stochastic.)

Linear programming (LP) has played an impor-
tant role as a problem solving and analysis tool.

Researchers have addressed a variety of important
problems through linear programming. LP has been
widely accepted and used for several reasons: First,
it is taught in many educational settings. Students
in engineering, business, and mathematics study the
subject at some level, in some cases at the high school
level! In addition, high quality software is available to
assist researchers conducting LP-based investigations
in building models, solving problems, and analyzing
output.

Most authors of textbooks on LP discuss the need
for sensitivity analysis (SA). In analyzing output,
researchers use SA to explore how changes in the
problem data might change the solution to a linear
program, for example, how a change in production
costs or demand projections might affect a production
schedule. Because large-scale planning efforts often
rely on large amounts of data, much of which rep-
resents best-guess estimates, the ability to undertake
such sensitivity analyses is critical to the acceptance
of the methodology. Indeed, people who are uncer-
tain about data elements are often advised to use SA

to resolve the impact of uncertainty. The use of SA to
allay concerns about uncertainty draws attention to
an issue that rarely arises in the development of LP
models. While LP models often include time periods,
they are typically the times at which decisions take
effect (for example, production levels in a particular
month). LP models generally do not reflect the times
at which decisions are made. Nor do they distinguish
between what will be known, and what will remain
uncertain when the decisions are made. This lack of
distinction derives from the history of LP’s use pri-
marily for deterministic problem solving. However,
in planning under uncertainty, it is critical to prop-
erly reflect the manner in which decisions and infor-
mation are interspersed. Typically, LP models do not
offer such a reflection. As a consequence, the results
of sensitivity analyses can be misleading.

A Simple Example
Our example is a variation of a problem described by
Winston (1995):

The Dakota Furniture Company manufactures
desks, tables, and chairs. A desk sells for $60, a table
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Production Requirements

Resource Cost ($) Desk Table Chair

Lumber (board feet) 2 8 6 1
Carpentry (hours) 5�2 2 1�5 0�5
Finishing (hours) 4 4 2 1�5

Demand 150 125 300

Table 1: Dakota requires lumber and labor (carpentry and finishing) to pro-
duce its products (desks, tables, and chairs). The cost of these resources
varies. Resource requirements vary for each product.

sells for $40, and a chair sells for $10. The manufac-
ture of each type of furniture requires lumber and
two types of skilled labor: Carpentry and finishing
(Table 1).

We can determine how much of each item to pro-
duce and the resources required to meet this pro-
duction in a number of ways. Perhaps the easiest
method is a simple per-item profit analysis. A desk
costs $42.40 to produce and sells for $60, for a net
profit of $17.60. A table costs $27.80 to produce and
sells for $40, for a net profit of $12.20. That is, desks
and tables are profitable. In the absence of constraints
on resource availability, to maximize profit Dakota
should produce as many of these items as it can sell
(150 desks and 125 chairs). On the other hand, a chair
costs $10.60 to produce and sells for $10.00, for a net
loss of $0.60. Based on the information provided, to
maximize profit Dakota should stop producing chairs.

To produce 150 desks and 125 tables, Dakota needs:
—1,950 board feet of lumber,
—487.5 hours of labor for carpentry,
—850 hours of labor for finishing, and it anticipates

a profit of $4,165 from selling the 150 desks and 125
tables.

At this point, we should review the method of anal-
ysis. In reality, Dakota must settle three issues:

—How much of each resource should it acquire?
—How many of each item should it produce?
—How many of each item should it sell?
The model behind our analysis does not consider

these issues separately. Given the data in Table 1, we
draw correspondences between these three issues and
ensure that we produce only those items we can sell
and acquire only the resources we need to produce
them (Figure 1). Our model and analysis exploit the

  Decision  
Sequence: 

Model:

Acquire

Resources
Produce

Items 
Sell

Acquire

Produce

Sell

Figure 1: Dakota is actually faced with a sequence of three related deci-
sions: How much resources to acquire, how many items to produce, and
how many items to sell. The model represents these decisions as being
made simultaneously, not sequentially.

structural advantages that accompany deterministic
data and avoid representing potentially costly errors.
In reality, the decisions occur sequentially over time.

This textbook problem is pretty straightforward. We
do not need LP to solve it. However, for more compli-
cated problems, an LP model is indispensable, so we
describe one that considers each of the three decisions
explicitly. In the following, let
yd = number of desks to produce,
yt = number of tables to produce,
yc = number of chairs to produce,
xl = number of board feet of lumber to acquire,
xf = number of labor hours to acquire for finishing,
xc = number of labor hours to acquire for carpentry,
sd = number of desks to sell,
st = number of tables to sell, and
sc = number of chairs to sell.
With these variables, we can formulate Dakota’s

problem with the following LP:

Maximize −2xl−5	2xc−4xf +60sd+40st+10sc (P.0)

subject to

−xl + 8yd + 6yt + yc ≤ 0

−xc + 2yd + 1	5yt + 0	5yc ≤ 0


−xf + 4yd + 2yt + 1	5yc ≤ 0

sd ≤ 150

sd − yd ≤ 0


st ≤ 125

st − yt ≤ 0


sc ≤ 300

sc − yc ≤ 0

xl
xf 
xc
yd
yt
yc
sd
st
sc≥0	

If the data in Table 1 changes, the structure of
the model remains the same. For example, if Dakota
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raises the selling price of chairs from $10 to $11, we
need only to change the corresponding coefficient in
the objective function. This observation gives rise to
the investigation of the solution known as SA. Know-
ing that the structure of the problem does not change,
we can investigate how changes in individual data
elements change the optimal solution. If nothing else
changes when we increase the price of chairs from
$10 to $11, producing chairs becomes profitable, and
the nature of the solution changes considerably. On
the other hand, if the selling price of chairs remains
$10, and the demand for chairs drops from 300 to 200,
there would be no impact on the solution—Dakota
would still not produce chairs.

Researchers use SA to study the robustness of solu-
tions to LP models. That is, if they are concerned
about the accuracy of the data, they perform SA to see
how the solution might change if the data were dif-
ferent. A change in the solution or its structure would
indicate the need for further investigation. When nei-
ther changes, they consider the proposed solution an
appropriate guide for making the decision. The sense
of security they gain from SA, however, is not well
founded. Even when the solution and its structure
appear to be stable, the proposed solution may be
inappropriate in the face of uncertainty.

Uncertainty in LP Data
Demand for products may be uncertain, but low, most
likely, and high values may be available. We will
assume that the low values of demand for desks,
tables, and chairs (50, 20, and 200) occur with prob-
ability pl=0	3, the most likely values (150, 110, and
225) occur with probability pm=0	4, and the high val-
ues (250, 250, and 500) will occur with probability ph=
0	3. The possible demand scenarios and the corres-
ponding probabilities form a distribution that we can
use to describe future demand. The demand scenario
presented in Table 1 is the expected value associated
with the distribution in Table 2.

Analysis of the sensitivity of the solution to (P.0)
indicates that our solution, “produce as many desks
and tables as can be sold, but do not produce any
chairs” will remain valid for any set of (nonnegative)

Item Low Value Most Likely Value High Value

Desks 50 150 250
Tables 20 110 250
Chairs 200 225 500

Probability 0�3 0�4 0�3

Table 2: Dakota is faced with three possible demand scenarios: Low
demand values, most likely demand values, and high demand values.
Each of these scenarios is modeled with specified demand for each pro-
duct, and occurs with specified probabilities.

demands. Table 3 shows the optimal response to each
of the individual demand scenarios.

In all cases, we produce only desks and tables, not
chairs. We acquire resources to satisfy the produc-
tion schedule. The production and resource quanti-
ties in the expected-value column are the expected
values of the corresponding quantities in the remain-
ing columns. (This is a property of the simplicity of
the example; in general, the expected value of the
data does not correspond to the expected value of
the solutions.) Given the stability of the structure of
the solution and the relationship among the vari-
ous solutions, we might think that the solution with
the expected demand is an appropriate response for
Dakota’s problem.

However, if Dakota produces 150 desks and 125
tables, to meet the mean demand solution, it has a
30 percent chance of producing too many desks and
a 70 percent chance of producing too many tables.
If it produces 150 desks and 125 tables and the

Demand

Variables Expected Value Low Most Likely High

Production quantities
Desks 150 50 150 250
Tables 125 20 110 250
Chairs 0 0 0 0

Resource quantities
Lumber (board feet) 1�950 520 1�860 3�500
Finishing (hours) 850 240 820 1�500
Carpentry (hours) 487�50 130 465 875

Profit ($) 4�165 1�124 3�982 7�450

Table 3: Each demand scenario that Dakota considers corresponds to an
optimal solution. Production quantities and the resource acquisitions vary
widely across the scenarios.

Interfaces
Vol. 33, No. 4, July–August 2003 55



HIGLE AND WALLACE
Sensitivity Analysis

low-demand scenario occurs (50 desks and 20 chairs),
Dakota’s profit will be much lower than $4,165. The
costs for resources at this level are $9,835. Selling 50
desks and 20 chairs would bring in revenue of only
$3,800 for a net loss of $6,035. If Dakota produced 150
desks and 125 tables and experienced the most likely
demand, its net gain would be $3,565. Although not
a loss, this amount is well below the projected profit
of $4,165 suggested by the original LP solution.

No matter how we look at it, the analysis is flawed.
If a firm bases its production on uncertain data, how
great a potential error does it face? This may seem like
a question SA can answer. In reality, a confusion of
perspectives is at work. The LP model incorporates a
kind of tunnel vision: For particular data, it tells what
to do. The error analysis requires a broader view, a
comparison of the manner in which the output asso-
ciated with one set of data will perform if faced with
something different. SA does not address this issue.

LP Models with Uncertainty
When faced with uncertainty in the demand for prod-
ucts, we need a more thoughtful approach to model
development. In this case, we need to capture the
relationship between the times at which we will
make decisions and the time at which we will know
the demand. We can adapt decisions made after the
demand is known to the specific demand scenario—
something we cannot do for decisions made before
we know the demand. To provide a proper forum
for assessing the trade-offs among the various alter-
natives, we need a model that captures the flexibility
the decision process affords. Logically, three potential
information timings are of concern (Figure 2).

   1.     3.                  2. 

Demand?

Acquire Produce Sell

Figure 2: When will demand be known? When demand is uncertain, it is
important to know when it will be revealed to the decision maker. Will it
be known before resources are acquired, between acquisition and produc-
tion, or after production decisions are made?

That is, we should determine the point during the
decision sequence at which we know the demand. We
might have complete information about the demand
before making any decisions. At the other extreme,
we might not know the demand until after we acquire
resources and produce items. The demand determines
the actual sales quantities and consequently our rev-
enues. An intermediate possibility is that we acquire
resources while we are uncertain about the demand,
but we set the production schedules only after we
know the demand and thus have adapted to it.

These three possibilities give rise to three different
types of models. In the first case, we know demand
at the start and can base decisions about acquiring
resources, production, and sales on whether demand
is low, most likely, or high (Figure 3).

If demand is known at the start, our decisions
are not exposed to uncertainty, and we need no
cross-scenario evaluation. Because all uncertainty is
resolved before we make any decisions, we adapt
any decision to the specific scenario realized, and the
problem collapses into a collection of deterministic
problems; only the origin remains uncertain. To for-
mulate this problem, we need three separate sets of
variables, one for each possible demand scenario (low,
most likely, high). An LP model for this problem will
be separable by scenario. Working from (P.0), and let-
ting Dds denote the demand for desks under scenario s
(with Dts and Dcs similarly defined), we obtain

Maximize
∑

�s∈�l
m
h��

�−2xls−5	2xcs−4xfs+60sds+40sts+10scs�ps

(P.1)

        low 

        most likely 

              high 

Demand

Acquire

Produce

Sell

Acquire

Produce

Sell

Acquire

Produce

Sell

Figure 3: If demand will be known before any decision is made, the deci-
sion tree contains the deterministic model depicted in Figure 1. It is repli-
cated for each demand scenario.
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subject to

−xls + 8yds + 6yts + ycs ≤ 0
 s∈�l
m
h�


−xcs + 2yds + 1	5yts + 0	5ycs ≤ 0
 s∈�l
m
h�


−xfs + 4yds + 2yts + 1	5ycs ≤ 0
 s∈�l
m
h�


sds ≤ Dds
 s∈�l
m
h�


sds − yds ≤ 0
 s∈�l
m
h�


sts ≤ Dts
 s∈�l
m
h�


sts − yts ≤ 0
 s∈�l
m
h�


scs ≤ Dcs
 s∈�l
m
h�


scs − ycs ≤ 0
 s∈�l
m
h�


xls
xfs
xcs
yds
yts
ycs
sds
sts
scs≥0
 s∈�l
m
h�	

As indicated, (P.1) is separable by scenario. We can
consider each demand scenario separately, and we
can obtain scenario-specific solutions independently.
Only in calculating the objective value do we combine
them. At the other extreme, we determine both acqui-
sition and production before we know the demand
(2 in Figure 2) (Figure 4).

Once made, the decisions about acquisition and
production are fed into the demand uncertainty. Only
the sales levels respond to the acquisition and pro-
duction levels and the manner in which the demand
uncertainty is resolved. Any LP model of this problem
must capture the fact that the initial decisions must
be weighed against all possible demand scenarios. To
accomplish this, we use three separate sets of the sell
variables, and only one set of the acquisition and pro-
duction variables. As before, we work from (P.0) to
develop our model. To connect Figure 4 and the LP

      low 

        most likely 

         high 

Acquire

Produce

Sell

Sell

Sell

  Demand?

Figure 4: If demand is known after acquisition and production are deter-
mined, it will affect only the amount of product that is sold.

model, we use a bold font to identify decisions made
before demand is known.

Maximize

−2xl−5	2xc−4xf +
∑

�s∈�l
m
h��

�60sds+40sts+10scs�ps (P.2)

subject to

−xl + 8yd + 6yt + yc ≤ 0
−xc + 2yd + 1	5yt + 0	5yc ≤ 0

−xc + 4yd + 2yt + 1	5yc ≤ 0
sds ≤ Dds
 s∈�l
m
h�


−yd sds ≤ 0
 s∈�l
m
h�


sts ≤ Dts
 s∈�l
m
h�


yt sts ≤ 0
 s∈�l
m
h�


scs ≤ Dcs
 s∈�l
m
h�


−yc scs ≤ 0
 s∈�l
m
h�


xl
xf 
xc
yd
yt
yc
Sds
Sts
Scs≥0
 s∈�l
m
h�	

In contrast to (P.1), (P.2) is not separable by scenario.
Acquisition and production, represented by x and y,
are determined before demand is known and are held
constant across all scenarios. The second set of con-
straints models the manner in which sales depend on
the combination of production and demand. The lack
of separability arises because of the interaction of the
two types of variables in these constraints.

Finally, in the remaining case (3 in Figure 2), we
determine acquisition before we know the demand
and production and sales afterward (Figure 5).

As we work from (P.0) to develop an LP model for
this problem, we have a single set of acquisition vari-
ables, and three sets of production and sales variables:

Maximize

−2xl−5	2xc−4xf +
∑

�s∈�l
m
h���60sds+40sts+10scs�ps (P.3)

subject to

−xl + 8yds + 6yts + ycs ≤ 0
 s∈�l
m
h�


−xc + 2yds + 1	5yts + 0	5ycs ≤ 0
 s∈�l
m
h�


−xf + 4yds + 2yts + 1	5ycs ≤ 0
 s∈�l
m
h�


sds ≤ Dds
 s∈�l
m
h�


sds−yds ≤ 0
 s∈�l
m
h�


sts ≤ Dts
 s∈�l
m
h�


sts−yts ≤ 0
 s∈�l
m
h�


scs ≤ Dcs
 s∈�l
m
h�


scs−ycs≤ 0
 s∈�l
m
h�


xl
xf 
xc
yds
yts
ycs
sds
sts
scs ≥ 0, s∈�l
m
h�	
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           low 

               most likely 

           high 

Acquire

Produce

Sell

Produce

Sell

Produce

Sell

Demand?

Figure 5: If demand will be known after resources are acquired but before
production levels are determined, it will affect production quantities and
sales.

Similar to (P.2), (P.3) lacks separability. In general, sep-
arability does not occur when the LP model includes
uncertainty within the midst of the decision sequence.

Comments on Problem
Formulations and Solutions
The three LP models, (P.1) through (P.3), can be traced
back to the original model, (P.0), but they differ. They
represent three different models of the problem. We
have little need for a model such as (P.1). Because we
know the demand before making any decisions, we
do not need to solve (P.1). That is, we can wait until

(P.1) Scenarios
(P.0)
Mean

Variables Demand Low Most Likely High (P.2) (P.3)

Resource Quantities

Lumber 1�950 520 1�860 3�500 1�060 1,300
Finishing labor 850 240 820 500 420 540
Carpentry labor 487�5 130 465 875 265 325

Demand

Production Quantities Low Most Likely High

Desks 150 50 150 250 50 50 80 80
Tables 125 20 110 250 110 20 110 110
Chairs 0 0 0 0 0 200 0 0

Objective value 4�165 4�165 1�142 1�730

Table 4: Each of the problems (P.0) through (P.3) has a different optimal solution. The objective values differ as well, even when the structures of the
optimal solutions are similar.

we know the demand and solve the appropriate sce-
nario problem. As presented, the output of (P.1) pro-
vides the optimal solution and objective values for all
possible demand scenarios. For planning, this infor-
mation might be helpful.

The second model, (P.2), provides a proper mech-
anism for determining the expected revenues when
we must determine production before we know the
demand. This model accounts for the possibility that
production might exceed demand. In particular, when
we set production levels (which in turn determine the
levels of resource acquired), we base them upon a
model of the revenues that we can expect from selling
them.

The third model, (P.3), separates acquisition from
production. It is appropriate when we can make alter-
nate production plans depending on demand that
materializes from particular acquisitions. That is, it
models the case in which the firm can use resources
in a variety of ways to create products for which
there is demand. To further appreciate the differences
among the three models, we can compare their output
(Table 4).

Although the output to (P.2) is structurally similar
to that of the individual scenario problems in (P.1), the
values are different. In (P.2), the firm produces items
prior to knowing the demand. Unlike (P.1), the pro-
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duction levels suggested by (P.2) do not match any of
the demand scenarios. In (P.2), production levels are
set in a manner that balances the potential sunk cost of
producing items that cannot be sold against the poten-
tial revenue available from selling a larger number of
items. This balancing act shifts the production level
away from any one scenario. We cannot recognize the
need for this balance with a simple SA of the solu-
tion to (P.0). More important, the structure of the solu-
tion to (P.3), in which production decisions are delayed
until after the demand is known, is distinctly differ-
ent from the structures of the solutions to the other
models. It is the only model that includes the produc-
tion of chairs in the optimal solution and then only
in the low-demand scenario. The interpretation of this
solution is clear. Although chairs on their own are not
profitable, their production in some cases is advanta-
geous. The solution to (P.3) includes acquisition of a
larger amount of resource than the solution to (P.2).
When the demand is high enough, all of this resource
goes toward the production of desks and chairs (the
profitable items). However, when the demand is low,
production of chairs offers the firm an opportunity
to recoup much of the cost of the resources acquired.
The chairs provide the firm with a fallback position
that permits an aggressive resource acquisition plan.
Again, we cannot realize the advantages of this adap-
tation with a simple SA of the solution to (P.0).

The various objective values differ as well. It is
well known that solving an LP in which random
variables in the right-hand sides of the constraints
are replaced by their expected values yields an opti-
mistic objective value, as indicated in (P.0) compared
to the rest. Indeed, in this case, (P.0) is as optimistic as
(P.1), in which the decision maker knows all informa-
tion before making any decisions (although this need
not be the case in general)! That the objective value
for (P.3) exceeds that of (P.2) is no surprise; delay-
ing decisions until one has information usually brings
economic advantages. To determine the appropriate
model, one must identify the point at which informa-
tion about demand will be available.

Alternate Objective Functions
Our LP models have the objective of maximizing
expected profit. There are many valid criticisms of

Profit Generated

Demand Probability Alternative 1 Alternative 2 Alternative 3

Low 0.3 0 −100 −300
Most likely 0.4 0 0 −300
High 0.3 0 −100 700

Table 5: The three alternatives yield different profits for each demand sce-
nario. The expected value of the profits associated with all three alterna-
tives is zero.

this choice of objective function. Because the expected
value is a linear functional, gains and losses can can-
cel each other out. That is, suppose that we have three
alternatives that yield profit distributions as a func-
tion of demand (Table 5).

Given the objective of maximizing expected profit,
we would not distinguish between these three alter-
natives. This lack of distinction is inconsistent with
most people’s attitudes toward risk—most people
have a clear preference among these three alterna-
tives. The economist addresses this problem through
utility theory, using a utility function that encapsu-
lates the trade-off between expected profit and risk
to guide the decision-making process. In general,
optimization of expected utility requires a nonlinear
objective function, although piecewise linear approx-
imations can often be developed. In addition to the
changes in the constraints, uncertainty may also result
in a change in the objective function.

Discussion
Managing data when constructing LP models can be
challenging. Planning models often address decisions
to be made in the future. The farther into the future
we project, the less certain we may be about prices,
demands, supplies, and other quantities that typically
appear in LP models. As a result, the data used in LP
models is often clouded with uncertainty. For years,
we have looked to SA to assure us of the quality
of LP solutions when our data was uncertain. We
should recognize that these assurances are not free. If
we want to understand the impact of the uncertainty
in data, we have to develop models that specifically
incorporate uncertainty. In formulating such models,
we must consider the relationships between the times
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at which decisions are made and the times at which
we have certain data.

In most cases, the output of SA is misleading when
used to assess the impact of uncertainty. SA is most
appropriate when the basic structure of the model is
not altered by the presence of uncertainty—for exam-
ple, when all uncertainties will be resolved before
any decisions are made. When the decisions are to
be made, a deterministic model will be appropriate,
but as long as the data is uncertain, we do not know
which deterministic model will be appropriate. In this
situation, SA can help us to appreciate the impact of
uncertainty. In all other cases, we cannot count on it
to do so.

SA fails as a tool for gauging the impact of uncer-
tainty because it cannot capture the possibility of
a response to information. When we obtain infor-
mation during a decision sequence, we have the
opportunity to adapt to it. Whether the adaptation is
imposed, as when sales are constrained by demand,
or advantageous, as when production decisions can
be delayed until after demand is known, adaptation
causes changes in the LP model. The constraint matrix
changes considerably, affecting both the number of
constraints and the number of variables. Because SA
depends on an enduring structure in the LP model, it
is not an appropriate tool for identifying the impact
of uncertainty in these cases.

Conclusion
Under uncertainty, we cannot predict the conditions
we will face tomorrow. A decision made today affects
what we can do tomorrow. Similarly, what we ulti-
mately decide tomorrow will depend on what we
have learned today. Today’s decision should be bal-
anced against the conditions that we might face so
that we can be reasonably confident about the posi-
tion that we will be in tomorrow. When a model
is based on the presumption of deterministic data,
learning is absent in both the model and its output.
SA based on the output of such a model will not
reflect an ability to adapt to information that becomes
available within a sequential decision process. It does
not perform the balancing act required for decision
making under uncertainty.
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