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In models of decision making under uncertainty we often are faced with the problem of
representing the uncertainties in a form suitable for quantitative models. If the uncertain-

ties are expressed in terms of multivariate continuous distributions, or a discrete distribution
with far too many outcomes, we normally face two possibilities: either creating a decision
model with internal sampling, or trying to find a simple discrete approximation of the given
distribution that serves as input to the model. This paper presents a method based on non-
linear programming that can be used to generate a limited number of discrete outcomes
that satisfy specified statistical properties. Users are free to specify any statistical proper-
ties they find relevant, and the method can handle inconsistencies in the specifications. The
basic idea is to minimize some measure of distance between the statistical properties of the
generated outcomes and the specified properties. We illustrate the method by single- and
multiple-period problems. The results are encouraging in that a limited number of generated
outcomes indeed have statistical properties that are close to or equal to the specifications.
We discuss how to verify that the relevant statistical properties are captured in these speci-
fications, and argue that what are the relevant properties, will be problem dependent.
(Scenario Generation; Asset Allocation; Nonconvex Programming )

1. Introduction and Motivation
In models of decision making under uncertainty, it
is essential to represent uncertainties in a form suit-
able for computation. If random variables are repre-
sented by multidimensional continuous distributions,
or by discrete distributions with large numbers of out-
comes, computation is difficult because the models
explicitly or implicitly require integration over such
variables. To avoid this problem, we normally resort
to either internal sampling or procedures that replace
the distribution with a small set of discrete outcomes.
In stochastic programming, which provides the moti-
vation for this paper, internal sampling is used in
models of stochastic decomposition (see, for example,
Higle and Sen 1991) and importance sampling (see,
for example, Infanger 1994 and the references therein).

We can also resort to sampling when a continuous
distribution is to be represented by a discrete approx-
imation. To make sure that the distribution properties
of the sample are close to those of the continuous dis-
tribution, the number of outcomes has to be large.
However, this may easily result in another situation
where the decision model fails because of the implied
integration. Therefore, there is a need for a means of
generating the outcomes in a more intelligent way
than by sampling, irrespective of whether that sam-
pling is stratified or not.
Spetzler and Holstein (1975) define probability encod-

ing to be “the process of extracting and quantify-
ing individual judgement about uncertain quantities.”
Two additional steps in Merkhofer (1987) expand
the original process, which consisted of five stages.
This paper addresses the final step in the expanded
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process, discretizing the continuous probability
distribution.
The standard approach for approximating a contin-

uous distribution by a discrete distribution is the fol-
lowing: (1) divide the outcome region into intervals,
(2) select a representing point in each interval, and
(3) assign a probability to each point. An example of
such an approach is the “bracket mean” method. The
intervals are found by dividing the outcome region
into N equally probable intervals, the representative
point is the mean of the corresponding interval, and
the assigned probability is 1/N . Miller and Rice (1983)
point out that “bracket mean” methods always under-
estimate the even moments and usually underesti-
mate the odd moments of the original distributions.
They illustrate a method that overcomes this flaw. The
procedure, which is based on Gaussian integration
rules, generates an N -point distribution that matches
the first 2N − 1 moments of the continuous distri-
bution. Smith (1993) reviews different methods of
constructing discrete distributions, and proposes
an efficient method for accurately computing the
moments of an “output distributions” (or value lot-
tery) given the moments of the input distribution.
Keefer (1994) draws attention to the fact that even
though the discrete distribution matches the first
several moments of the continuous distribution, the
approximation of the expected utility (EU) or cer-
tainty equivalent (CEV) (which are the bases for the
decisions) can be poor. He proposes six different
three-point approximations that lead to quite accu-
rate estimations of the CEVs when the risk level and
the continuous distributions are within reasonable
bounds.
Some of the literature described above discusses

multiple-variable problems—see, for example,
Smith (1993) and Keefer and Bodily (1983). These
approaches construct (multivariable) scenario trees
by discretizing each variable individually (condition-
ally). The proposed method in this paper approx-
imates multiple-variable outcomes simultaneously.
In contrast to what we have found in the literature,
we also address multiple-period problems. The idea
behind the method is to minimize some measure of
distance between the specifications and the statistical
properties of the discrete approximation. A part of

the problem therefore is to specify which properties
are relevant in a given case.
When empirical analysis is used to determine the

distribution properties of the uncertain variables,
possibly with expert judgments added, checking
for inconsistencies in the specifications is especially
important. Consider the estimation of distribution
properties based only on empirical analysis. Often
empirical data consists of time series of various
lengths for different variables. For example, if we
have two series of data, one longer than the other,
we would use the long series whenever possible,
but would have to use the intersection of the two
series for covariance calculations. This will almost
certainly create inconsistencies between the variance
in the variance/covariance matrix and the variance
stemming from the long series. In many situations
it is rational to determine some statistical properties
based on expert judgment and others on empirical
analysis. For example, the decision-maker may wish
to base the estimation of the variance/covariance
matrix on empirical data, but for the estimation of the
mean, his own subjective views are used. The vari-
ance/covariance matrix is then based on the empirical
mean, which probably is different from the subjective
mean. Hence, the specified distribution properties
(mean and variance/covariance) might not be inter-
nally consistent. In such a case we may find that an
underlying distribution with the specified properties
does not exist.
The method presented here can handle inconsis-

tencies in the specifications. If the specifications are
inconsistent, it will of course not be possible to obtain
a full match. In that case, the decision-maker might
reconsider the specifications, or he may accept a set of
outcomes with statistical properties that only approx-
imately match the specifications. The decision-maker
can weight the different specifications to obtain the
correct trade-off between them.
The method is flexible with regard to user speci-

fications. Users can specify the structure of the out-
comes to be constructed and whatever distribution
properties they find relevant. The model can, at least
in principle, handle any moments of the distribution,
and interperiod dependencies. We address the crucial
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question of what are the relevant statistical properties
in §4.2.
The motivation for developing the method pre-

sented in this paper is the implementation of a
stochastic multistage asset allocation model (Høyland
1998). In this context, the generation of discrete
outcomes for the random variables is referred to as
scenario generation. One scenario in such a model rep-
resents realizations of all random variables in all time
periods. An adequate way of generating scenarios
is essential for the validity of the asset allocation
models.
Cariño et al. (1994) developed the first genuine

commercial application of an asset allocation model
for a Japanese insurance company. The most recent
publications describing the model are found in works
by Cariño and Ziemba (1998) and Cariño et al. (1998).
Three different methods are applied for scenario
generation. The first assumes independence between
returns in each time period. The decision-maker has
to provide a pool of joint outcomes in each time
period. The outcomes are obtained either from empir-
ical data, random sampling from an asset return
model, or a combination of forecasting models and
expert judgments. The pool will usually be larger than
the model can handle. A method for reducing the
number of outcomes in each time period while pre-
serving the mean and the variance of the marginal
distribution is therefore applied. The idea of pre-
serving certain statistical properties is also used in
this paper, but our methodology is different, and we
take a more general approach as to which properties
may be important. The second scenario generation
method takes the dependencies between time periods
into account. Factor analysis and time series processes
for the factors are applied to generate the scenarios
for the uncertain variables. In the last approach the
decision-maker has total flexibility in describing the
scenarios as the returns are constructed manually.
Zenios (1995) applies a discrete space binomial pro-

cess for generating interest rate scenarios for asset
liability management for fixed income securities. He
particularly focuses on generating return scenarios for
fixed income securities with contingent claims, and
emphasizes that the future price not only depends
on the future state, but also on the path of getting

there. Because the number of states in the binomial
lattice grows exponentially with the number of peri-
ods, Zenios and Shtilmann (1993) show how to gen-
erate subsets of the lattice that will generate estimates
at a prespecified level of accuracy relative to using the
whole lattice.
A problem closely related to the one discussed

in this paper, is that of deleting scenarios from an
already existing collection, and possibly also using
this to generate some new scenarios. For examples
of this problem, we refer to Wang (1995), Dupacová
(1996), Consigli and Dempster (1996), and Chen et al.
(1997).
The rest of the paper is organized as follows:

Section 2 presents the scenario generation method.
Section 3 illustrates the method with single- and mul-
tiple period examples. In §4 we focus on the criti-
cal factors for the success of the method, and also
apply the method on a real-world portfolio manage-
ment model. Section 5 concludes the paper.

2. Model Description
The presented methodology can be applied to many
types of decision problems under uncertainty. The
focus in this paper is on generating the scenario tree,
which is often important in decision analysis and
stochastic programming. The presented methodology
can be adjusted to other types of decision problems
that require a different structure.

2.1. The Scenario Tree
A scenario tree is illustrated in Figure 1. The nodes
in the tree represent states of the world at a partic-
ular point in time. In stochastic programming, deci-
sions will be made at the nodes. The arcs represent
realizations of the uncertain variables. The scenario
tree branches off for each possible value of a ran-
dom vector x′ = �x1�x2� � � � � x1� in each stage t =
1� � � � �T . Note the difference from a decision tree
which branches on both decisions and events.

2.2. The Scenario Generation Method
A starting point for generating the scenario tree is
a description of the statistical properties of the ran-
dom variables. If the random variables are discrete
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Figure 1 The Scenario Tree

Note. A path through the tree is called a scenario and consists of realizations
of all random variables in all time periods.

with few (joint) outcomes, the generation of the tree
is straightforward, as it can be done manually. How-
ever, in all other cases, constructing the tree man-
ually is practically impossible. Hence, we need a
procedure for generating a scenario tree with the
proper statistical properties. In some cases the spec-
ified statistical properties partially describe a known
underlying distribution, while in other cases the
underlying distribution is unknown. In any case we
denote our specifications as the specified statistical prop-
erties or the specified distribution.
To present the model we introduce the following

notation. Let S be the set of all specified statistical
properties, and SVALi be the specified value of statis-
tical property i in S. Furthermore, let I be the num-
ber of random variables, T be the number of stages,
and Nt be the number of (conditional) outcomes in
stage t. In this presentation we assume, for simplic-
ity, a symmetrical tree, meaning that the number of
branches is the same for all conditional distributions
in the same period. The tree in Figure 1 is symmet-
rical with T = 3, N1 = 5, N2 = 3, and N3 = 2. Define x
to be the outcome vector of dimension I ·N1+ I ·N1·
N2+· · · · ·+I ·N1 ·N2 · · · · ·NT , p to be the probability
vector of dimension N1+N1 ·N2+· · · · ·+N1 ·N2 · · · · ·
NT , and let fi�x�p� be the mathematical expression for
statistical property i in S. Let M be a matrix of zeroes
and ones, whose number of rows equals the length of
p and whose number of columns equals the number
of nodes in the scenario tree, where each column is
the indicator of a conditional distribution at one node.
Each column in M extracts a conditional distribution
in the scenario tree. Finally, let wi be the weight for
statistical property i in S.
We want to construct x and p so that the sta-

tistical properties of the approximating distribution

match (as well as possible) the specified statistical
properties. We do this by minimizing a measure of
distance between the statistical properties of the con-
structed distribution and the specifications, subject to
constraints defining the probabilities to be nonnega-
tive and to sum up to one. For the rest of this paper,
we shall use the square norm to measure distance. Of
course, other choices are possible.

min
x�p

∑

i∈S
wi · �fi�x�p�−SVALi�

2

∑
p ·M = 1 (1)

p≥ 0

In this general description of the model, we let p
be a variable in the optimization problem. We might
also treat p as a parameter. See §4.1 for guidance with
regard to this choice. Because of nonconvexities of the
optimization problem, or inconsistent specifications,
we might not obtain a perfect match. If this is the case,
the weights wi can incorporate the relative importance
of satisfying the different specifications, as well as the
quality of (trust in) the data. Of course, the weights
are only relevant if there exists a trade-off between
some of the specifications, which means that not all
specifications are perfectly satisfied.
Since the optimization problem (1) is generally not

convex, the solution might be (and probably is) a
local solution. But for our purposes it is satisfactory to
have a solution with distribution properties equal to
or close to the specifications—even if there might exist
other and even better solutions. An objective value
equal to or close to zero indicates that the distribu-
tion of the scenarios has a perfect or good match with
the specifications. To solve the problem, we apply a
heuristic where we rerun the model from different
starting points until a satisfactory match is obtained;
see §§3.1 and 3.2 for details. For more sophisticated
nonconvex optimization methods, see Horst and Tuy
(1990), and the references therein.
Observe all the types of specifications that the

general model description embraces. Any central
moments and co-moments can be specified in any
period. In later periods, specifications can be given
over all outcomes or over outcomes with a common
history. For the latter, the distribution properties can
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Table 1 Percentiles of the Marginal Cumulative Distributions

0% 5% 25% 50% 75% 95% 100%

Cash 3�0% 3�2% 3�6% 4�0% 5�0% 6�2% 7�0%
Bonds 4�5% 4�8% 5�2% 5�8% 6�5% 7�4% 8�2%
Domestic stocks −30�0% −25�0% 0�0% 8�5% 15�0% 25�0% 35�0%
International stocks −35�0% −30�0% 0�0% 9�0% 15�0% 30�0% 40�0%

either be conditional on, or independent of, the out-
comes in earlier periods. In addition to specifying the
higher moments of the distribution, worst case out-
comes can be included to ensure that extreme events
are captured.
Consider an asset allocation problem where the sce-

nario tree describes the uncertain returns in differ-
ent asset classes. Empirical studies of stock markets
have documented an effect called volatility clumping,
meaning that a period with high volatility is likely to
be followed by a new period of high volatility; see,
for example, Billio and Pelizzon (1997) for details. To
model this phenomenon, we would like the volatil-
ity (standard deviation) of the nth period outcomes
with a common extreme �n− 1�th period outcome to
be higher than average. By letting the nth period stan-
dard deviation be parametric in the �n− 1�th period
outcome, this relation can be expressed in the model.
The expected value, skewness, or other distribution
properties can be state dependent in the same way.
The freedom to specify any desired property also

leads to some possible pitfalls. A more detailed
description of these pitfalls, and guidance on how to
avoid them, are given in §4.1.

3. Generation of a Single- and a
Multiple-Period Scenario Tree

This section illustrates the scenario generation
method by single- and multiple-period examples. We
leave the discussion of what are the relevant statisti-
cal properties for §4, and for now simply assume that
the relevant properties are specified. The example is
taken from finance and the problem is to find the opti-
mal allocation of funds between main groups of asset
classes. We assume that the decision-maker is to split
the funds between cash, bonds, domestic stocks, and
international stocks.

3.1. Single-Period Scenario Tree
The specifications that follow apply to the single-
period case and to the first period of the multiperiod
case in §3.2. For each individual asset class, we let
the decision-maker specify his or her market views in
terms of (subjective) percentiles for the marginal dis-
tributions as shown in Table 1. Note that for cash and
bonds the market views are in terms of expectations
for the interest rate, while for stocks the expectations
are given for the total return.
We fit an approximated cumulative distribution to

the percentiles by using a NAG C library routine
and derive the marginal distributions, as shown in
Figures 2 and 3. The NAG C routine used for fitting
the cumulative distribution does not guarantee that
the second derivative changes in sign only once. This
might cause a somewhat peculiar form of the density
function.
Given the fitted cumulative distribution, we calcu-

late the (central) moments. The example takes the first
four moments into account. The decision-maker real-
izes that extreme negative events influence the solu-
tions, and specifies a worst-case event to be included
in the scenarios. This can be done in several ways.
Here we include a worst-case event where all asset
classes move in the wrong direction at the same
time, and we let the size of the move be propor-
tional to the standard deviation. Table 2 summarizes
all specifications of marginal distribution properties.
The worst-case event for asset class i is generated by
the following formula: WCi = E�xi�−F ·SD�xi�, where
E�xi� is the expected value of asset class i, SD�xi� is
the standard deviation of asset class i, and F is a con-
stant. We let F = 2�5, and let the probability of the
worst case event be 0.5%. Note that for bonds and
cash, the worst-case event is an increase in interest
rates, which leads to a decrease in total return. For
co-moments, we assume that only the correlations are
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Figure 2 The Fitted Cumulative Distribution Functions and the Derived Density Functions for the Bond Classes

Note. Specified percentiles are marked with triangles.

Figure 3 The Fitted Cumulative Distribution Functions and the Derived Density Functions for the Stock Classes
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Table 2 Statistical Properties Derived from the Marginal Distributions
in Figures 2 and 3

Expected Standard Worst-case
value deviation event
(%) (%) Skewness Kurtosis∗ (%)

Cash 4�33 0�94 0�80 2�62 6�68
Bonds 5�91 0�82 0�49 2�39 7�96
Domestic stocks 7�61 13�38 −0�75 2�93 −25�84
International stocks 8�09 15�70 −0�74 2�97 −31�16

∗The normal distribution has a kurtosis of three. A kurtosis of less than
three means that the distribution is less peaked around the mean than the
normal distribution.

Table 3 Specification of Correlations

Domestic International
Cash Bonds stocks stocks

Cash 1 0�60 −0�20 −0�10
Bonds 1 −0�30 −0�20
Domestic stocks 1 0�60
International stocks 1

Figure 4 Six Scenarios (with Probabilities in %) for Which the Dis-
tribution Properties Exactly Match the Specifications in
Tables 2 and 3

Note. The worst-case event is given in the left-most scenario.

relevant. The correlations are estimated by empirical
data, see Table 3.
A perfect match with the specifications in Tables 2

and 3 is obtained when the number of scenarios is
six or higher. Due to the noncovexity of Problem (1),
there are several possible distributions. One of these
is given in Figure 4. See §4.1 for a more general dis-
cussion of the necessary number of scenarios versus
the number of specifications.

3.2. Multiperiod Scenario Tree
Expanding from one to several periods complicates
the scenario generation in many ways, and in par-
ticular implies that intertemporal dependencies need
to be considered. In §2, we gave an example from
finance and argued that the volatility for stocks
depends on previous returns. Some statistical proper-
ties are clearly state dependent, while others might be
specified independently of the state.
In this example we have chosen the expected value

and the standard deviation to be state dependent,
while the other statistical properties are independent
of the state. The volatility for asset class i in period
t �>1� is modeled in the following way in order to
capture the volatility clumping effect:1

SD�xi� t� = VCi · 	xi� t−1−E�xi� t−1�

+ �1−VCi� ·SDAV �xi� t�� (2)

where VCi ∈ �0�1� is the volatility clumping param-
eter (a high VCi leads to a large degree of volatil-
ity clumping), xi� t is the outcome for asset class i in
period t�E�xi� t� is the expected value for the outcome
in asset class i in period t and SDAV �xi� t� is the aver-
age standard deviation for asset class i in period t.
We model a mean reversion effect for the two bond

classes.2 The expected interest rate for bond class i at
the end of period t �>1� is given by

E�xi� t�=MRFi ·MRLi+ �1−MRFi� ·xi� t−1� (3)

where MRFi ∈ �0�1� is the mean reversion factor
(a high MRFi leads to a large degree of mean rever-
sion), MRLi is the mean reversion level, and xi� t is the
interest rate for bond class i at the end of period t.
For stocks we assume that there is a premium in

terms of higher expected return for taking more risk,

1 Empirical studies have shown that the volatility for stocks only
increases after a large decrease in stock prices, not after a large
increase, see Billio and Pelizzon (1997). Modeling this asymmetry is
straightforward, but to simplify the presentation we assume sym-
metric and equal volatility dependencies for all asset classes.
2 Mean reversion means that interest rates tend to revert to an aver-
age level. When interest rates are high, the economy slows down,
and interest rates tend to fall, and when interest rates are low, the
economy booms and interest rates tend to rise.
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Table 4 Specification of Market Expectations

Distribution (End of) (End of) (End of)
Asset class property Period 1 Period 2 Period 3

Cash–duration three months expected value of spot rate 4�33% State dep State dep
standard deviation 0�94% State dep State dep
skewness 0�80 0�80 0�80
kurtosis 2�62 2�62 2�62
worst-case event 6�68% State dep State dep

Bonds–duration six years expected value spot rate 5�91% State dep State dep
standard deviation 0�82% State dep State dep
skewness 0�49 0�49 0�49
kurtosis 2�39 2�39 2�39
worst-case event 7�96% State dep State dep

Domestic stocks expected value total return 7�61% State dep State dep
standard deviation 13�38% State dep State dep
skewness −0�75 −0�75 −0�75
kurtosis 2�93 2�93 2�93
worst-case event −25�84% State dep State dep

International stocks expected value total return 8�09% State dep State dep
standard deviation return 15�70% State dep State dep
skewness −0�74 −0�74 −0�74
kurtosis 2�97 2�97 2�97
worst-case event −31�16% State dep State dep

and let the expected total return for stock class i in
period t be given by:

E�xi� t�= rt−1+RPi ·SD�xi� t�� (4)

where rt is the risk-free interest rate (in this model
approximated by the cash interest rate) at the end of
period t� SD�xi� t� is the specified standard deviation
on stock class i in period t, and RPt is a risk premium
constant for period t.
For Period 1 we assume the same set of specifi-

cations as for the single-period case. For Periods 2
and 3 the expected values and the standard devi-
ations are state dependent as illustrated, while the
rest of the specifications are state independent and
assumed to be equal to the specifications in the first
period. Table 4 summarizes the marginal distribution
properties. Table 3 is used for the state independent
correlations in all three periods. The risk premium
constant in the stock pricing model, RPt , is set to
0.3 for t = 1�2, and 3. We let the volatility clumping
parameter, VCi = 0�3 for all assets, the mean rever-
sion factor, MRFi = 0�2 for interest rate classes, and
the mean reversion level, MRLi = 4�0% and 5�8% for

cash and bonds, respectively. A three-period tree that
has a perfect match with the specifications in Tables 3
and 4 is generated. See Figure 5 for the outcomes in
the two first periods.
There are alternative ways of constructing the mul-

tiperiod tree. In the given example we have chosen
a sequential procedure: Specify statistical proper-
ties for the first period and generate first-period
outcomes that are consistent with these specifications.
For each generated first-period outcome, specify con-
ditional distribution properties for the second period,
and generate conditional second-period outcomes
that are consistent with these specifications. Con-
tinue to specify conditional distribution properties
and generate consistent outcomes through all periods.
The sequential approach has numerical advantages
due to the decomposition into single-period trees.
Each single-period optimization problem is noncon-
vex, but by adjusting the number of outcomes and
by running the optimization from different starting
points, we can normally ensure that a perfect match is
obtained in each of the generated single-period trees,
provided one exists.
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Figure 5 The Two First Periods of the Generated Three-Period Scenario Tree

Note. The scenario tree has statistical properties that match the specifications in Tables 3 and 4.

Since the sequential approach requires the distribu-
tion properties to be specified under each node in the
tree, the approach lacks a direct control of the statis-
tical properties defined over all outcomes in the later
periods �t > 1�. These properties are specified implic-
itly by the other specifications and after constructing
the tree, the decision-maker should analyze the gen-
erated distribution to check if his or her judgements
can be trusted in this respect.
Also, the sequential approach involves a more rigid

optimization scheme. Several first-period trees might
satisfy the first-period specifications. Some of them
might lead to conditional second-period specifications
which make it impossible to obtain a full match, while
others might lead to a full match in the second period.
As opposed to the sequential approach, a model that
constructs the whole tree in one large optimization
is better in this regard, as the first-period trees that
create difficulties are not feasible.
The main disadvantage with generating the whole

tree in one large optimization is that the degree of
nonconvexity increases, and a good or perfect match
will be hard to construct. When the number of peri-
ods grows, this will trigger the need for more sophis-
ticated solution procedures.
In the example we produced a full match between

the generated scenarios and the specifications. The
tree was generated by solving the problem from a
new set of starting values until a full match was

obtained. The choice of starting values should in
general reflect the specified distributions. In this
implementation we generated starting values for each
random variable by sampling from uniform distribu-
tions over an interval from −3 to +3 standard devi-
ations, not taking the correlations into account. This
crude approach worked well for the given example,
and has proved successful for other cases as well.
We have tested problems of up to five periods and
approximately 8,000 scenarios, and it appears that the
sequential procedure with the simple restart-heuristic
leads to a full match if there are no inconsistencies in
the specifications, and the tree is large enough.
With regard to solution times, the three-period

tree of which two periods are shown in Figure 5,
took 63 seconds to generate on a Sun Ultra Sparc 1.
Each single-period tree takes less than a second to
construct.

4. Critical Success Factors
This section discusses the critical issues for the suc-
cess of the scenario generation method. In §4.1 we
focus on how to specify the distribution properties,
and address possible pitfalls and provide guidelines
for how to avoid them. We also discuss how to find
the minimal tree size that allows for a perfect match
with different sets of specifications. In this context we
also give some guidance with regard to the choice of
defining the probabilities as variables or parameters.
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Section 4.2 raises the crucial question of what distri-
bution properties should be matched.

4.1. Pitfalls in the Specifications
In §3 we saw that some of the statistical properties in
later periods are derived from the outcomes in ear-
lier periods. We denote these derived specifications. The
user should verify that the derived specifications are
not implausible or contradictory. An example of the
latter would be a conditional distribution in which
one financial asset becomes first order stochastically
dominant to another, creating an opportunity for arbi-
trage in a later time period.
Implicit specifications mean that some statistical

properties are specified implicitly by other specifica-
tions. A simple example is the specification of means
in one period being dependent on the outcome in
the previous period, which implicitly specifies the
correlation between periods. An implicit specification
of a distribution property combined with a different
explicit specification of the same property, will most
likely lead to inconsistent specifications. The method
can handle such inconsistencies, but there will of
course be a trade-off between them. However, the
decision-maker might not be comfortable with such
a contradiction. Verification of implicit specifications
and an understanding of how all the specifications
relate are essential to avoid this.
Overspecifications means that the specifications are

too extensive relative to the size of the scenario tree.
Obvious examples are to specify a skewness (different
from zero) or a correlation (different from minus one,
zero, or one) for a discrete two point distribution with
fixed probabilities.
If the number of scenarios is large relative to the

requirements of the specifications, the problem is
underspecified. The resulting scenario tree might satisfy
the specifications but still have undesirable character-
istics. Test examples have shown that in cases where
the probabilities are defined as variables, underspec-
ification leads to a solution where the extra degrees
of freedom are used to produce zero probability out-
comes. If the probabilities are fixed in an underspec-
ified model, we typically observe that the scenarios
that are not needed obtain outcomes of the random
variables very close to their means. This might cause

problems if we wish to generate larger trees, and we
shall see later in this section how to proceed in such
cases. To avoid underspecifications, the number of
specifications must be balanced relative to the size of
the tree.
To understand when over and underspecifications

occur, an analysis is made of the relationship between
the characteristics of the specifications and the num-
ber of outcomes necessary to obtain a perfect match.
Consider a single-period problem where a continu-
ous distribution of a single variable is to be approxi-
mated by a discrete distribution. It is known (see for
example Miller and Rice 1983 for a discussion) that
the first 2 ·N − 1 moments plus the requirement that
the probabilities sum up to one, can be matched with
N points. In that case there are equally many vari-
ables (outcomes and probabilities) as there are con-
straints. The strength of this result lies in the fact that
we get positive probabilities. As soon as we add extra
requirements, this simple way of counting variables
and constraints does not hold. But we may still use
the idea of counting degrees of freedom to make a
guess about the size of the tree.
As an example, take a five-dimensional case and

specify the first four moments for each variable plus
all correlations. The number of specifications is 30
(5 times 4 central moments plus 10 correlations). The
number of variables in our tree in �D + 1� · y − 1,
where D is the dimensionality of the problem (five
in the example), and y is the number of outcomes.
The minimum y that leads to 30 variables or more
is 6. Although this rule of thumb may not always
work, it seems to give a reasonable starting point
for selecting the number of outcomes. In experiments
working with power moments and correlations the
authors have only very rarely needed to go above
this minimal tree size. Of course, if inconsistencies are
present, a perfect match can never be achieved, and
we must simply look for a reasonable tree, at least so
large that we do not face overspecification on top of
inconsistencies.
We see that defining the probabilities as param-

eters increases the number of outcomes needed to
obtain a perfect match. Increasing the number of dis-
crete outcomes means that we capture more of the
support of the random variables. Testing indicates
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that whether the probabilities are defined as vari-
ables or parameters does not significantly influence
the chance of obtaining a full match, despite the fact
that the “degree of nonconvexity” increases when the
probabilities are defined as variables as opposed to
parameters.

4.2. Relevant Properties
In this section we show that the relevant statistical
properties will depend on the characteristics of the
problem at hand. For some problems, the relevant
properties are easy to find, while for others they are
harder. Our postulate is that if the relevant proper-
ties are captured, all scenario trees that possess these
properties will lead to approximately the same objec-
tive function value when used in the decision model.
With the help of this postulate, we provide guidance
with respect to finding the relevant properties.
As an example of a case where it is easy to

determine the relevant properties, consider a single-
period mean-variance model with no legal or pol-
icy constraints. The objective function can be written
as a trade-off between the expected value and the
variance:

max ! ·E�w�− �1−!� ·VAR�w��

where ! ∈ �0�1� is a utility parameter determining
the risk aversion and w is the uncertain wealth at
the end of the planning period. For more details, see
Markowitz (1959). For this model, all relevant proper-
ties are captured in the first two moments, and differ-
ent scenario trees with the same mean and covariance
matrix will lead to identical solutions.
For the mean-variance model we knew in advance

what were the relevant properties. For most decision
problems, this is not the case. If we do not know the
relevant properties, how do we find them? To illus-
trate, we apply a model that was developed for a
Norwegian life insurance company and is currently
in use for actual decision making. A detailed descrip-
tion of the model is given in Høyland and Wallace
(1997). The objective is to maximize the risk adjusted
portfolio value at the end of the planning period. For
this analysis, a two-period (i.e., three-stage) version
of that model is used, and, as in §3, four asset classes
are introduced.

To find the relevant properties for this problem,
we generate many different scenario trees with the
same statistical properties and check the stability in
the objective function values. If the stability is not
good enough, we add new properties, and check the
stability again. If the result is still not good enough,
we can either continue adding statistical properties
or we can use a sampling approach. If we sample,
several different small trees (with the same statistical
properties) are constructed and aggregated into one
large tree. In other words, we sample a number of
small trees and combine these small trees while pre-
serving the specified statistical properties to create the
large tree, which is the input to the optimization. By
doing this we reduce the noise in the statistical prop-
erties that are not specified. The following analyses
show the effect of both adding statistical properties
and the effect of sampling. We test for three sets of
specifications with different characteristics. In Set 1
the correlation and the first and second moments of
the marginal distributions are specified. In addition
to the specifications of the first set, Set 2 includes
specifications of the third and the fourth moments of
the marginal distributions. Set 3 also includes a worst
case outcomes. We generate two-period scenario trees
as described in §3.2. The values of the statistical prop-
erties that are specified are the same in all three sets,
and given by Table 3 and by the specifications for
the two first periods of Table 4. While Set 1 includes
the two first moments of the specifications of Table 4,
Set 3 includes all the specifications. We first gener-
ate scenario trees with 30 outcomes in the first period
and 6 outcomes in the second, obtained by aggre-
gating 5 small trees with 6 outcomes in each period.
Table 5 shows the stability of the objective function
value for the three sets of specifications and we see
that the stability improves as more statistical prop-
erties are added. The stability in Set 3 is improved
by more than 50% relative to Set 1. We see that the
specification of the third and the fourth (marginal)
moments has a large influence.
To further show the effect of sampling, we increase

the size of the scenario tree and check for stabil-
ity again. This time we aggregate 25 small trees
with 6 outcomes on each period to create a large tree
with 150 outcomes in the first period and 6 outcomes
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Table 5 Stability in the Objective Function Value for Three Different
Sets of Specifications

E�x� STD(x) High(x) Low(x)

Set 1: EV, STDEV, CORR 112�31 0�384 113�48 111�51
Set 2: EV, STDEV, 111�99 0�203 112�74 111�47
SKEW, KURT, CORR
Set 3: EV, STDEV, 111�98 0�183 112�48 111�61
SKEW, KURT, CORR and
worst case outcomes

Note. For each specification set, 200 different scenario trees are generated,
and 200 objective function values �x ′s� of the decision model are obtained.
The figures show the expected value and the standard deviation in addition
to the highest and lowest objective function value for each specification set.

in the second period (i.e., 900 scenarios), using speci-
fication Set 2. Solving the model for 60 different such
scenario trees shows that the standard deviation in
the objective value is reduced from 0.203 (refer to
Table 5) to 0.100. For practical applications the sam-
pling procedure has proved to be a good alterna-
tive to adding statistics to match. In particular, higher
that second order co-moments will be difficult for a
decision-maker to quantify and they will also compli-
cate the construction of the scenario tree by making
the problem much harder to solve.
We have measured the quality of the scenario tree

by the stability in the objective function value, not by
the stability in the decision variables. Usually we will
not require stability in the decisions. If the objective
function value is “flat” with respect to changes the
decisions, i.e., many different decision structures are
approximately equally good, we might not achieve
stability in the solutions even though we have sta-
bility in the objective function value. However, we
do not see this as a problem, but rather as a desir-
able characteristic of the decision problem. The model
above, though, is stable also in the decisions with
respect to different scenario trees; see Table 6.
For the portfolio management model above, the

relevant statistical properties seem to be captured
by the first four central moments and the correla-
tion matrix (all explicitly specified), and the sam-
pling procedure which is applied to reduce the noise
in the statistical properties which are not specified.
It is hard to give a general characterization of rel-
evant statistical properties and how to find them.

Table 6 Stability in the Decision Variables

Domestic Foreign
Cash Bonds stocks stocks

Average optimal portfolio 3�6 77�7 9�3 9�4
Standard deviation in optimal 3�5 2�5 1�1 1�4
allocation

Note. The model is solved for 60 different two-period scenario trees of 900
scenarios generated by constructing and combining 25 small scenario trees
with statistical properties as in Set 2.

As illustrated, the relevant properties depend on the
objective function. With a quadratic utility function,
the means and the variance/covariance matrix accu-
rately determine the objective function. However,
the relevant statistical properties will also depend
on legal regulations, business environment, and self-
proclaimed policy restrictions, i.e., on the constraints
in the model. For instance, a portfolio management
problem with a quadratic utility function in the pres-
ence of capital adequacy constraints, solved for two
different scenario trees with the same mean and
variance/covariance, but different third and fourth
moments, might lead to different optimal solutions.

5. Conclusions
In models of decision making under uncertainty it is
essential to represent the uncertainties in a form suit-
able for analysis. We have illustrated a method that
generates a limited number of discrete scenarios that
satisfy prespecified statistical properties. A single-
period and a three-period scenario tree were gener-
ated and the results illustrate the strengths of the
method: The decision-maker was allowed to specify
whatever distribution properties were found relevant,
and a limited number of scenarios, with distribution
properties that were consistent with the specifications,
were generated.
The user should be aware of the possible pitfalls

when specifying the statistical properties. We have
drawn attention to derived, implicit, over and under-
specifications, and discussed how to avoid these
pitfalls. Further, we gave a simple formula as guid-
ance for finding the smallest number of outcomes
needed to obtain a perfect match.
The crucial choice when applying the method

is what distribution properties to match, and we
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showed that this choice is problem dependent. We
argued that these properties could be determined
ex ante for some models, while for others they are
harder or impossible to prescribe. The postulate we
used to find the relevant properties in the difficult
cases is that if different scenario trees, all possess-
ing the same statistical properties, lead to the same
objective function value in the decision model, then
the relevant properties are captured in these trees.
The paper also analyzed a multistage portfolio man-
agement model. When solving the model for differ-
ent scenario trees and matching the first four central
moments and correlations, the stability in the objec-
tive function value was reasonably good. However,
we showed that the stability was further improved by
solving for larger scenario trees generated by aggre-
gating many different small scenario trees. Hence, a
combination of scenario construction and tree aggreg-
ation leads to the best results.
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