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The index that emerges is an elegant generalization of the Gittins index, which measures in a natural way the reward earnable
from a bandit per unit of resource consumed. The paper discusses both how such indices may be computed and how they
may be used to construct heuristics for resource distribution. We also describe how to develop bounds on the closeness to
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1. Introduction. The paper concerns developments of the classical work of Gittins [8, 9], who elucidated
index-based solutions to a family of Markov decision processes (MDPs) called multiarmed bandit problems
(MABs). This work concerned the optimal allocation of a single indivisible resource among a collection of
stochastic projects (or bandits as they are sometimes called). Gittins’ original contribution—namely, to demon-
strate that optimal project choices are those of largest index—has given rise to a substantial literature describing
a range of extensions to, and reformulations of, his result. Gittins [9] gives an extensive bibliography of early
contributions. A more recent survey is due to Mahajan and Teneketzis [18].
An important limitation on the modeling power of Gittins’ MABs is the critical assumption that bandits

are frozen while not in receipt of resource. In response to this, Whittle [30] introduced a class of restless
bandit problems (RBPs) in which projects may change state whether active or passive, although according to
different dynamics. In contrast to Gittins’ MABs, RBPs are almost certainly intractable and have been shown
to be PSPACE-hard by Papadimitriou and Tsitsiklis [24]. Whittle used a Lagrangian relaxation to develop
an index heuristic (which reduces to Gittins’ index policy in the MAB case) for those RBPs that pass an
indexability test. Weber and Weiss [29] demonstrated a form of asymptotic optimality for Whittle’s index policy,
but otherwise the model’s perceived difficulty inhibited further substantial progress for some time. More recently,
Niño-Mora [20, 21] and Glazebrook et al. [16] have explored indexability issues from a polyhedral perspective.
Further, a range of empirical studies have demonstrated the power and practicability of Whittle’s approach in
a range of application contexts. See, for example, Ansell et al. [2], Opp et al. [23], Glazebrook et al. [14, 15],
and Glazebrook and Kirkbride [12, 13].
A significant limitation on the applicability of the above classical models is the very simple view they take

of the resource to be allocated. In Gittins’ MABs, a single indivisible resource is to be allocated en bloc to
a single bandit at each decision epoch. Whittle’s RBP formulation contemplates parallel server versions of
this. Although such views of the resource may sometimes be appropriate, many applications concern a divisible
resource (for example, money or manpower) in situations where its overconcentration would usually be far
from optimal. Indeed, this was an issue for Gittins in his work on the planning of new product pharmaceutical
research that provided the motivation for his pioneering contribution. See, for example, Gittins [9, Chapter 5].
Stimulated by such considerations, we develop in §2 a family of MABs with switching penalties that extend
those of Glazebrook et al. [15]. In these models, a fixed amount of some divisible resource is available for
distribution among a collection of projects at each decision epoch. Activation of a bandit consumes a quantity
of resource which is in general both bandit and state dependent. Any collection of bandits may be activated at
any decision epoch, provided they do not consume more resource than is available. The presence of switching
penalties induces a simple form of restlessness in the models. Plainly, the development of good policies must
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now take serious account not only of the rewards that the bandits are capable of securing, but also of the amount
of resource they will consume in the process. We note that the problem of developing optimal policies for MABs
with switching penalties is a famously intractable one to which several important contributions have been made.
See, for example, Glazebrook [10], Agrawal et al. [1], Van Oyen and Teneketzis [28], Banks and Sundaram [3],
and Reiman and Wein [26]. The version of this problem with general resource requirements discussed in this
paper is, to the authors’ knowledge, new.
In §2, notions of bandit indexability are developed by an approach that suitably extends that of Whittle [30].

Bandit indices are defined and proposals are advanced for how the indices may be used to construct policies for
our class of MABs. Section 3 contains a formal proof of indexability for our model class under mild conditions.
The index that results is an elegant generalization of the Gittins index, which measures in a natural way the
reward earnable from a bandit per unit of resource consumed. Succeeding sections discuss how these indices
are computed (§4) and how to analyse the closeness to optimality of index-based heuristics (§5). A form of
asymptotic optimality is established for a greedy index heuristic in a class of simple models. The paper concludes
with a numerical study (§6).

2. Index heuristics for a family of multiarmed bandits with varying resource requirements. We shall
consider a multiarmed bandit (MAB) model with switching costs and general resource requirements, as outlined
in the introduction. More specifically, we focus on a family of reward-discounted Markov decision processes
that model a situation in which a decision maker chooses which of N bandits to make active at each decision
epoch t ∈�, within resource constraints. The details are as follows:

(i) At each time t ∈ � an action ��t� = ��1�t���2�t�� � � � ��N �t�� is applied to the process with �n�t� ∈
	a� b� the action applied to bandit n. The action a is active and calls for the positive commitment of resource.
The alternative action b is passive.
(ii) The state space of the process is XN

n=1	a� b� × �n� with �n the (finite or countable) state space
of bandit n. The state of the process is observed at each time t ∈ �. At time t, we write X�t� =
�X1�t��X2�t�� � � � �XN �t�� for the process state with Xn�t� ∈ 	a� b�×�n the extended state of bandit n. The
equation Xn�t�= ��� x�� � ∈ 	a� b�� x ∈�n, means that the state of bandit n at time t is x and that action � was
applied to the bandit at time t− 1� t ≥ 1. When needed, we use Xn�t� for the (nonextended) bandit state, i.e.,
Xn�t�= ��� x� =⇒ Xn�t�= x.
(iii) State evolution is Markov, with the N bandits evolving independently under any choice of actions. That is,

we have, for all choices of the quantities concerned:

P
{
X�t+ 1�= y �X�t�= x�X�t− 1�= xt−1� � � � �X�0�= x0�

��t�=����t− 1�=�t−1� � � � ���0� =�0
}

= P
{
X�t+ 1�= y �X�t�= x���t�=�

}

=
N∏
n=1
P
{
Xn�t+ 1�= yn �Xn�t�= xn��n

}
� (1)

The assumption of independence in (1) is commonplace in Gittins index theory (see, for example, Gittins [9]),
but contrasts with many research contributions that deal with dependent bandits. For some examples of the latter,
the reader is referred to Berry and Fristedt [4] and to references contained within.
We shall impose further structure upon (1) by introducing an assumption that changes to (nonextended) bandit

states do not occur under the passive action. We thus have, for all choices of the quantities concerned,

P
{
Xn�t+ 1�= �b� x� �Xn�t�= ��� x�� b}= 1� (2)

We shall also suppose that for bandit n, state transitions under the active action are determined by the stationary
Markov law Pn. We write:

P
{
Xn�t+ 1�= �a� y� �Xn�t�= ��� x��a}= Pn�x� y�� (3)

(iv) The reward functions ran � r
b
n � S

a
nr � S

b
nr all map the state space �n into the nonnegative reals �

+ and are
bounded. The expected reward earned by bandit n for the transition in (3) is ran �x� when � = a and is ran �x�−
Sanr �x� when � = b. Hence, Sanr �x� is a cost incurred whenever bandit n is switched on (goes from passive to
active) in state x. The expected reward earned by the transition in (2) is rbn �x�−Sbnr �x� when � = a and is rbn �x�
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when � = b. Hence, Sbnr �x� is a cost incurred when bandit n is switched off in state x. Although it is natural to
assume that expected rewards earned under the active action a uniformly exceed those earned under the passive
action b, namely

ran �x�≥ rbn �x�� x ∈�n� 1≤ n≤N�
we do not impose this as a general requirement.
Should action � be applied to the system when in state x, the expected reward earned, denoted r���x�, is

the sum of the rewards earned by the individual bandits. We write

r���x� = ∑
n��n=a

[
ran �xn�I�xn ∈ 	a�×�n�+ 	ran �xn�− Sanr �xn��I�xn ∈ 	b�×�n�

]

+ ∑
n��n=b

[
	rbn �xn�− Sbnr �xn��I�xn ∈ 	a�×�n�+ rbn �xn�I�xn ∈ 	b�×�n�

]
�

where I is an indicator. All rewards and costs are discounted according to rate � ∈ �0�1�.
(v) The consumption functions can� c

b
n� S

a
nc� S

b
nc all map the state space �n into the nonnegative reals �

+

and are bounded. The resource consumed by bandit n when action a is taken in enhanced state ��� n� is can�x�
when � = a and is can�x�+ Sanc�x� when � = b. When action b is applied to bandit n in enhanced state ��� x�,
the resource consumed is cbn�x�+ Sbnc�x� when � = a and cbn�x� when � = b. Hence, additional resource may be
consumed when bandit n is switched on or off. We shall assume that the amount of resource consumed under
the active action a uniformly exceeds that under the passive action b, that is,

can�x�≥ cbn�x�+ Sbnc�x�� x ∈�n� 1≤ n≤N� (4)

Should action � be applied to the system in state x, the total resource consumed, denoted c���x�, is the sum
of the amounts of resource consumed by the individual bandits. We write:

c���x� = ∑
n��n=a

[
can�xn�I�xn ∈ 	a�×�n�+ 	can�xn�+ Sanc�xn��I�xn ∈ 	b�×�n�

]

+ ∑
n��n=b

[
	cbn�xn�+ Sbnc�xn��I�xn ∈ 	a�×�n�+ cbn�xn�I�xn ∈ 	b�×�n�

]
�

The set of admissible actions in system state x is given by A�x�= 	�� c���x�≤C�, where C is the total resource
available at each decision epoch. We shall suppose that A�x� �= �� x ∈XN

n=1	a� b�×�n�. We also require that
∃x ∈ XN

n=1	a� b�×�n� for which A�x� �= 	a� b�N , namely, that resource availability strictly constrains project
activation.
(vi) A policy, respectively, an admissible policy, is a rule u for choosing an action, respectively, an admissible

action, at each decision epoch. Such a rule can in principle be a function of the entire history of the process to
date. We shall seek an admissible policy to maximise the total expected reward earned over an infinite horizon.
Standard theory (see, for example, Puterman [25]) asserts the existence of an optimal policy that is stationary
(makes decisions in light of the current process state only) and which satisfies the optimality equations of
dynamic programming (DP). That said, a pure DP approach to the above problem is unlikely to yield insight
and will be computationally intractable for problems of realistic size. Hence the primary quest is for strongly
performing heuristic policies.
Following the classic work of Gittins [8, 9] and Whittle [30], we shall seek heuristics in the form of index

policies. Hence, we shall seek calibrating functions �n� 	a� b�×�n →�� 1≤ n≤ N , one for each bandit, that
will guide the construction of good actions in each system state. To develop such indices, we shall seek a
decomposition of (a relaxation of) our optimization problem into N individual problems, one for each bandit.
It is these individual problems that, when suitably structured, will yield the calibrating functions required.
We proceed as follows: We state the optimization problem of interest, expressed in (i)–(v) above, as

Ropt�x�= sup
u∈�

{ N∑
n=1
Run�x�

}
� (5)

In (5), � is the class of stationary admissible policies for the problem, and Run�x� is the total expected reward
yielded by bandit n under policy u from initial state x, with successive rewards discounted at rate �. We relax (5)
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as follows: We extend to the class �′ of stationary policies that are allowed a free choice of actions from 	a� b�N

in every state, and then for any � ∈�+ we write

Ropt�x� ��= sup
u∈�′

{ N∑
n=1
Run�x�− �Cu

n�x��
}
� (6)

In (6), Cu
n�x� is the total expected resource consumed by bandit n under policy u from initial state x, with

successive consumptions discounted at rate �. Explicitly, we have

Cu
n�x�=Eu

[ �∑
t=0
�tcun�X�t��

∣∣∣X�0�= x
]
� x ∈XN

n=1	a� b�×�n�� (7)

where

cun�x� =
[
can�xn�I�xn ∈ 	a�×��+ 	can�xn�+ Sanc�xn��I�xn ∈ 	b�×�n��Iu�x� ∈An

]
+ [
	cbn�xn�+ Sbnc�xn��I�xn ∈ 	a�×��+ cbn�xn�I�xn ∈ 	b�×�n��Iu�x� ∈ Bn

]
� (8)

and where, in (7), Eu denotes an expectation taken over realizations of the system evolving under stationary
policy u; whereas in (8) An (respectively, Bn), is the subset of 	a� b�

N consisting of actions whose nth component
is a (respectively, b).
In (6) the multiplier � has an economic interpretation as a charge (sometimes called the prevailing charge)

imposed per unit of resource consumed; then, for each bandit n, the difference Run�x� − �Cu
n�x� is the total

expected reward earned by n less charges imposed for resource consumption under policy u from initial state x.
In (6) we seek to maximise the aggregate total over all bandits. To motivate relaxation (6), observe that u ∈�′

is optimal for (6) if and only if it is optimal for

�Ropt�x� �� �= sup
u∈�′

{ N∑
n=1
Run�x�− �Cu

n�x��
}
+ �C�1−��−1� (9)

However, for any prevailing charge � ∈�+ and any admissible policy u ∈� we have

N∑
n=1
Cu
n�x�≤C�1−��−1 (10)

and so

�Ropt�x� ��≥Ropt�x�� (11)

Now, to optimize (6) and (9) it is sufficient to find an optimal policy for each individual bandit. Both of these
problems decompose into N parallel problems. To express this decomposition we write:

Ropt�x� ��=
N∑
n=1
Roptn �xn� ��= �Ropt�x� ��− �C�1−��−1� (12)

That is, for bandit n and prevailing charge �� Roptn �xn� �� is the value of the problem that optimizes Rn�xn�−
�Cn�xn� over all policies for bandit n with initial state xn that choose from the action space 	a� b� in a stationary
way. We call this problem pn���. Plainly, from (12), an optimal policy for (6) and (9) simply runs optimal
policies for the pn���� 1≤ n≤N , in parallel.
We now follow Whittle [30] in requiring structure in optimal policies for each pn��� that will permit devel-

opment of an appropriate calibrating function �n� 	a� b�×�n →�+ for bandit n. In order to do this, we write
bn�un� for the passive set corresponding to policy un, which is stationary for pn���, namely

bn�un� �= 	xn ∈ 	a� b�×�n�un�xn�= b��

Definition 2.1 describes both the structure required and the calibrating function that results from it.
Definition 2.1. Bandit n is indexable if there exists a family of policies 	un���� � ∈�+� such that
(I) un��� is optimal for pn���; and
(II) bn	un���� is nondecreasing in �.
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Under (I) and (II), the corresponding index for bandit n� �n� 	a� b�×�n →�+ is given by

�n�xn�= inf� ∈�+�xn ∈ bn	un������ (13)

From (13), �n�xn� has an interpretation as a fair charge (per unit of resource) for the additional resource
consumed in going from passive (b) to active (a) when bandit n is in state xn. For any prevailing charge �, any
indexable bandit n, and any state xn, if the prevailing charge � exceeds or equals the fair charge �n�xn�, then in
the problem pn��� the passive action is optimal; conversely, if � ≤ �n�xn�, the active action is optimal. In both
cases we have strict optimality whenever the inequalities are strict. The index of Definition 2.1 generalises that
of Gittins [8] to our more complex resource consumption setup. If we take all the can to be identically one and
all the cbn� r

b
n � S

a
nc� S

b
nc� S

a
nr � S

b
nr to be identically zero, then all bandits are known to be indexable and (13) is

the Gittins index of bandit n. We shall show in the following sections that for our family of MABs with varying
resource requirements described in (i)–(vi) above, bandits are indeed indexable under mild conditions and that
indices are easily computed.
Remark. We refer to our index as a generalized Gittins index in the sense of the preceding paragraph—

namely, that it reduces to the Gittins index in the special cases of our model that correspond to Gittins’ MABs.
Other indices that are generalized Gittins in this sense include those of Nash [19] for generalized bandits and
of Whittle [30] for restless bandits. A more recent example is due to Denardo et al. [7].
In light of this indexability, we propose a greedy index heuristic (GI) for the optimization problem (5) that

in each system state x constructs an action by adding bandits to the active set in decreasing order of the indices
�n�xn� until the point is reached where any further such addition is either of a zero index bandit and/or violates
the resource constraint. This heuristic corresponds to the index policies of Gittins [8] and Whittle [30] in the
simpler settings considered by them. In our context, GI runs the risk of poor utilization of the available resource,
for example, in cases where the increments in resource needed to activate individual bandits are large and
irregular. In analyses of some simple models in §5, we shall see that this emerges as the central concern regarding
the performance of GI . One suggested approach in such cases is to use the weighted index heuristic (WI).
In each system state x, WI chooses an action to maximise the sum

∑
n

[
	can�xn�− cbn�xn�− Sbnc�xn��I�xn ∈ 	a�×�n�

+ 	can�xn�+ Sanc�xn�− cbn�xn��I�xn ∈ 	b�×�n�
]
�n�xn� (14)

within the resource constraint. The sum in (14) is taken over all active bandits. It weights the index for bandit n
in state xn by the difference between the resource required for active and for passive treatment. As shown in the
next section, the index is a certain ratio of reward to consumption. Because our goal is reward maximization, it
seems heuristically plausible to weight each index by consumption.
For further discussion of the notion of indexability in the wider context of restless bandit problems, the reader

is referred to Whittle [30]. He gives an example of a restless bandit that fails to be indexable.

3. Indexability and indices for bandits with varying resource requirements. From Definition 2.1, the
investigation of indexability in relation to the class of multiarmed bandit problems of the previous section centres
on the decision problems pn���� 1≤ n≤ N . Because indexability is a characteristic of individual bandits, it is
these that become the focus of our discussion in this section and the next. We are thus able to drop the bandit
identifier n from the notation and will use B to denote an individual bandit within our MAB model. With B is
associated the reward-discounted Markov decision problem p���, which is structured as follows:

(i)′ At each time t ∈�, either action a (active) or action b (passive) is applied to B.
(ii)′ The state space of B is 	a� b�×�. We write X�t� for the extended state of B at time t. If X�t�= ��� x��

� ∈ 	a� b�� x ∈� for some t ∈�+, then the state of the bandit is x and action � was applied to B at time t− 1.
When needed, we use X�t� for the (nonextended) bandit state, i.e., X�t�= ��� x� =⇒ X�t�= x. We make no
assumption about the initial state of B; we consider both X�0� ∈ 	a�×� and X�0� ∈ 	b�×�.
(iii)′ Should action a be applied to B at time t, where X�t�= ��� x�, then the new state will be X�t + 1�=

�a� y�, with y determined according to the Markov law P . We write

P	X�t+ 1�= �a� y� �X�t�= ��� x��a�= Pxy� x� y ∈�� (15)

Should action b be applied to the bandit at time t, where X�t�= ��� x�, then
P	X�t+ 1�= �b� x� �X�t�= ��� x�� b�= 1� x ∈�� (16)
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(iv)′ Should action a be applied to B when in state ��� x�, then an expected reward is earned that is equal to
ra�x�−�ca�x� when � = a and equal to ra�x�−Sar �x�−�	ca�x�+Sac �x�� when � = b. Should action b be applied
to B when in state ��� x�, then an expected reward is earned that is equal to rb�x�− Sbr �x�− �	cb�x�+ Sbc �x��
when � = a and equal to rb�x�− �cb�x� when � = b. Note that we continue to interpret the functions ra and rb

as returns earned by B� Sar and S
b
r as penalties paid, respectively, when switching processing toward and away

from B� ca and cb as quantities of resource consumed by B; and Sac and S
b
c as additional resource consumed,

respectively, when switching processing toward and away from B.
(v)′ A policy is a rule for choosing an action from the set 	a� b� at each decision epoch. An optimal policy

for p��� maximises the total expected discounted reward earned over an infinite horizon. Puterman [25] asserts
the existence of an optimal policy that is stationary and that satisfies the DP optimality equations. To express
these, we write V � 	a� b�×�×�+ → � for the value function for p���, with V ���� x�� �� the maximal return
from the bandit B when X�0� = ��� x� and the resource charge is � ≥ 0. From (i)′–(iv)′ above, the optimality
equations for the problem p��� are

V ��a�x�� ��=max
{
ra�x�− �ca�x�+�∑

y∈�
PxyV ��a� y�� ���

rb�x�− Sbr �x�− �	cb�x�+ Sbc �x��+�V ��b� x�� ��
}

(17)

and

V ��b� x�� ��=max
{
ra�x�− Sar �x�− �	ca�x�+ Sac �x��+�

∑
y∈�

PxyV ��a� y�� ���

rb�x�− �cb�x�+�V ��b� x�� ��
}
� (18)

where both equations hold ∀� ∈�+ and x ∈�. In Equation (17) the two terms within the maximization on the
right-hand side are the expected returns when action a (respectively, b), is applied at time 0 to the bandit when
in extended state �a� x� and when actions are taken optimally thereafter. Equation (18) is constructed similarly
for the extended state �b� x�.
We require the following technical assumption.
Condition 1 (Resource Consumption). The functions ca� cb� Sbc and the Markov law P are such that for

all x ∈�,

ca�x�+�∑
y∈�

Pxy
{
Sbc �y�+ cb�y��1−��−1

}
>Sbc �x�+ cb�x��1−��−1� (19)

Condition 1 implies that if we start from extended state �a� x� and apply the passive action to B throughout,
the expected total discounted amount of resource consumed will be increased if we change the action taken at
time 0 from passive to active—i.e., if we choose action a at time 0 and action b thereafter. The condition is
trivially satisfied when ca is positive valued and cb ≡ 0� Sbc ≡ 0, namely, that B consumes no resource when
passive. Inequality (19) can be rendered nonstrict at the cost of some additional complexity.
The next result describes an important property of optimal policies for p���. It arises because a switch of

processing away from an active bandit followed immediately by a transfer of processing back to it can only
introduce unnecessarily incurred switching costs and unnecessarily consumed additional resource. Such action
sequences can therefore be eliminated from consideration.

Lemma 3.1. If action b is optimal for �a� x�, then it is also optimal for �b� x�, strictly so if any of the
switching penalties Sar �x�� S

b
r �x�� S

a
c �x�, or S

b
c �x� are strictly positive.

Proof. If action b is optimal for �a� x�, then by standard results, the maximization on the right-hand side
(r.h.s.) of (17) is achieved by the second term, namely,

rb�x�− Sbr �x�− �
{
cb�x�+ Sbc �x�

}+�V ��b� x�� ��≥ ra�x�− �ca�x�+�∑
y∈�

PxyV ��a� y�� ���
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It must then follow that

rb�x�− �cb�x�+�V ��b� x�� ��≥ ra�x�− �ca�x�+ Sbr �x�+ �Sbc �x�+�
∑
y∈�

PxyV ��a� y�� ��

≥ ra�x�− �ca�x�− Sar �x�− �Sac �x�+�
∑
y∈�

PxyV ��a� y�� ���

where the second inequality holds because all switching penalties are nonnegative. The inequality is strict if
any penalty is strictly positive. It follows that the maximization on the r.h.s. of (18) is achieved by the second
term, uniquely so if the condition on switching penalties in the statement of the lemma holds. The result now
follows. �

As before, we write b�u� for the passive set of stationary policy u. It follows from Lemma 3.1 that in the
search for solutions to p���, we may restrict attention to stationary policies in the class &, where

& �= {
u� �x�x ∈� and �a� x� ∈ b�u��⊆ �x� x ∈� and �b� x� ∈ b�u��}�

Suppose now that X�0�= ��� x�� x ∈�, and consider evolution of the bandit B under some u ∈&. There are
two possibilities. Either X�0� ∈ b�u�, in which case u’s stationarity, its membership of &, and the nature of its
evolution under b guarantees that X�t� ∈ b�u�� t ≥ 0. Alternatively, X�0� � b�u�, in which case u will choose
action a from time 0 until time ' , where

' = inf{t� t ≥ 1 and X�t� ∈ �y ∈� and �a� y� ∈ b�u��}� (20)

in which case u’s stationarity, its membership of &, and the nature of its evolution under b guarantees that
X�t� ∈ b�u�� t ≥ ' . Hence, the determination of optimal actions for p��� may be reduced to a collection of
stopping problems, one for each (initial) extended state, where stopping connotes first application of the passive
action b.
In order to develop the necessary ideas, consider the bandit B evolving from some initial enhanced state under

continuous application of the active action a. We now introduce the class of stationary positive-valued stopping
times T . For )⊆�, define class member '�)� by

'�)� �= inf	t� t ≥ 1 and X�t� ∈)�� (21)

Formally, T = 	'�)��) ⊆��. Plainly, the time ' in (20) is in T . To summarise, it follows from Lemma 3.1
and the above discussion that for any given initial extended state for B, an optimal policy for p��� must either
always choose the passive action b or choose action a at time 0 and thereafter until some ' ∈ T , at and after
which action b is taken. As a useful shorthand, we shall refer to the latter as policy ' .
In order to progress with an economy of notation, when ' ∈ T we shall use the notations ra�x� '�� ca�x� '�

for, respectively, the total discounted reward earned and resource consumed during 0� '� under policy ' from
initial enhanced state X�0�= �a� x�. We write

ra�x� '� �=E
['−1∑
t=0
�tra�X�t��

∣∣∣∣x
]
� (22)

and similarly for ca�x� '�, where in (22) and throughout we shall use �x as a notational shorthand for the
conditioning on the initial state more fully expressed by �X�0�= x. We can now introduce an appropriate index
for bandit B in the form of a real-valued function on the state space 	a� b�×�. Optimal policies for p��� will
be describable in terms of this index.
Definition 3.1. The return/consumption index for B is a function �� 	a� b�×�→� given by

��a�x� �= sup
'

	*r�a�x� '�/*c�a�x� '��� x ∈��

where

*r�a�x� '� �= ra�x� '�− {
rb�x�−E��'rb�X�'�� � x�}�1−��−1+ Sbr �x�−E��'Sbr �X�'�� � x�

and

*c�a�x� '� �= ca�x� '�− {
cb�x�−E��'cb�X�'�� � x�}�1−��−1− 	Sbc �x�−E��'Sbc �X�'�� � x���
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and

��b� x� �= sup
'

	*r�b� x� '�/*c�b�x� '��� x ∈��

where

*r�b�x� '� �=*r�a�x� '�− Sar �x�− Sbr �x�
and

*c�b�x� '� �=*c�a�x� '�+ Sac �x�+ Sbc �x��
Both of the above suprema are over ' ∈ T . We shall write �+� 	a� b� × �→ �+ for the positive part of
function �, namely,

�+��� x�=max	���� x��0�� � ∈ 	a� b�� x ∈��
Remark. The return/consumption indices of Definition 3.1 are guaranteed finite and have a natural inter-

pretation. The quantity *r�a�x� '� (respectively, *r�b�x� '�) is the increase in expected return achieved when
the active action a is taken during 0� '� instead of the passive action b from enhanced state �a� x� (respec-
tively, �b� x�). Similarly, *c�a�x� '� (respectively, *c�b�x� '�) is the increase in resource consumed. Hence, the
ratio may be understood as a measure of additional return achieved from such processing per unit of additional
resource consumed. The return/consumption index may be understood as a generalized form of Gittins index
that is able to take varying patterns of resource consumption into account.

Theorem 3.1 (Indexability and Indices). The bandit B is indexable with index given by the positive part
of the return/consumption index above. Further, �+�a� x�≥ �+�b� x�� ∀x ∈�.

Proof. Consider extended state �a� x�� x ∈ � and stopping time ' ∈ T . The expected reward earned by
bandit B from initial state �a� x� under policy ' is written:

ra�x� '�− �ca�x� '�−E
(
�'Sbr �X�'�� � x

)− �E(�'Sbc �X�'�� � x)
+E

(
�'

{
rb�X�'��− �cb�X�'��} � x)�1−��−1� (23)

Reading the expression (23) from left to right, we first account for the rewards earned net of charges for resource
consumption under action a during 0� '�, then the switching costs incurred at ' when the choice of action
changes from a to b, and finally, the net rewards earned under action b during '���. From the above discussion
following Lemma 3.1, the active action will be strictly optimal for �a� x� when ∃' ∈ T for which the quantity
in (23) exceeds the expected reward obtained when action b is taken throughout, namely,

	rb�x�− �cb�x���1−��−1− Sbr �x�− �Sbc �x��
Straightforward algebra yields the conclusion that this is equivalent to the requirement that ∃' ∈ T for which

*r�a�x� '� > �*c�a�x� '��

Condition 1 above guarantees that *c��� x� '� > 0 for all extended states ��� x� ∈ 	a� b� × � and stationary
positive-valued stopping times ' ∈ T . It now follows that action a is optimal in �a� x� whenever there exists
' ∈ T for which

*r�a�x� '�/*c�a�x� '� > ��

This will be the case if �+�a� x�= ��a�x� > �. By continuity of (optimized) returns as � varies, action a must
also be optimal in state �a� x� when �+�a� x�= �. However, if ��a�x� < �, then

*r�a�x� '�/*c�a�x� '� < � ∀ ' ∈ T �
from which it follows that action b is strictly optimal in state �a� x�. We conclude that action a is optimal in
state �a� x� if and only if �+�a� x�≥ �. Further, action b is optimal in state �a� x� if and only if �+�a� x�≤ �.
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A similar argument yields the conclusion that action a is optimal in �b� x� if and only if �+�b� x� ≥ �, with
action b optimal if and only if �+�b� x�≤ �.
We infer the existence of a family of optimal policies 	u���� � ∈�+� for p��� whose associated passive sets

b	u����= {
��� x�� � ∈ �a� b�� x ∈���+��� x�≤ �}

are nondecreasing in �. This establishes the indexability of B from Definition 2.1. That the index is indeed
the positive part of the return/consumption index of Definition 3.1 is now trivial, as is the fact that �+�a� x�≥
�+�b� x� ∀x ∈�. The latter is an immediate consequence of the definitions of the quantities concerned. �

We shall now proceed to show that in the above definition of the return/consumption index, the supremum
is always achieved by stopping time(s) that have a simple characterization. To facilitate the discussion, we
introduce subsets of state space � as follows:

-��� �= 	y� y ∈����a� y� < ��� � ∈�+�

and

.��� �= 	y� y ∈����a� y�= ��� � ∈�+�

Further, we use T ��� for the collection of stationary positive-valued stopping times given by

T ���= {
'�)��)=-���∪. for some .⊆.���

}
� � ∈�+�

Proposition 3.1. If ���� x�≥ 0, then any stopping time in T 	���� x�� achieves the supremum in the definition
of ���� x�� � ∈ 	a� b�� x ∈�.

Proof. Consider the problem p	��a�x�� in which �, the prevailing charge per unit of resource consumed, is
fixed at the value ��a�x�, assumed to be nonnegative. By the argument in the proof of the preceding theorem, in
problem p	��a�x�� action a, respectively b, is optimal in enhanced state ��� y� if and only if ���� y�≥ ��a�x�,
respectively, ���� y� ≤ ��a�x�. In particular, both actions a and b are optimal at time 0 when X�0� = �a� x�.
Should action a be taken at 0, then it is optimal to continue taking it through 0� t�, provided that ��a�x� ≤
�	a�X�s��� 0≤ s ≤ t− 1. Should that be so, action b will then be optimal at t if ��a�x�≥ �	a�X�t��. Hence,
assuming that we make decisions in a stationary fashion, we deduce that only the following sequences of actions
are optimal for p	��a�x�� when X�0�= �a� x�: Firstly, take action b at all decision epochs; and secondly, take
action a throughout 0� '� and action b from ' onwards, where ' ∈ T 	��a�x��. Equating the expected returns
from the policies outlined in the two alternatives yields the conclusion that

��a�x�=*r�a�x� '�/*c�a�x� '�� ' ∈ T 	��a�x��� x ∈��
which establishes the result when � = a. The case � = b is dealt with similarly. �

Remark. The proof of Proposition 3.1 also reveals that the stopping times in T 	���� x�� are essentially
the only stationary ones achieving the suprema concerned. Should stopping time '�)� in (21) be such that
stopping set ) contains some y for which ��a� y� > ���� x� and, moreover, that when the bandit is subject to
the continuous application of action a from initial state ��� x�, then

P	X�'�)��= �a� y�� > 0�

it will follow from the argument in the above proof that

���� x� > *r	�� x� '�)��/*c	�� x� '�)���
4. Computation of the return/consumption indices. We have noted above the Gittins indexlike nature of

the return/consumption indices developed in the preceding section for our multiarmed bandit model with general
resource requirements. We shall now proceed to give an algorithm for their computation in finite state-space
cases, which is a suitably modified version of the adaptive greedy algorithm for Gittins indices first given
by Robinson [27] and subsequently further developed by Bertsimas and Niño-Mora [5]. All of these algorithms
compute the indices required for each bandit in order from largest to smallest.
Consider now the bandit B. We produce from it a derived Gittins-type bandit DB (i.e., one that does not

change state and earns no rewards under the passive action) as follows:
(i)′′ DB’s state space is the enhanced state space of B, namely, �D �= 	a� b�×�. This is now assumed to

be finite. We use X�t� for the state of DB at time t ∈�. At each time t ∈� either action a (active) or action b
(passive) is applied to DB.
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(ii)′′ The stochastic dynamics of DB under action a are exactly as for B and are given in (15) above. However,
DB does not change state under action b.
(iii)′′ The reward function rD� �D → � yields expected rewards earned by DB under action a. Specifically,

when action a is taken in state �a� x�, the expected reward is

rD�a�x� �= ra�x�−
{
rb�x�−�∑

y∈�
Pxyr

b�y�

}
�1−��−1+

{
Sbr �x�−�

∑
y∈�

PxyS
b
r �y�

}
� x ∈��

and when action a is taken in state �b� x�, the expected reward is

rD�b� x� �= rD�a�x�− Sar �x�− Sbr �x�� x ∈��
The function rD may be understood as follows. It represents the difference in expected reward between giving
bandit B active treatment for exactly one step, followed by passive thereafter, and giving passive throughout
from the outset. Derived bandit DB earns no rewards under action b.
Suppose now that DB is in some state ��� x� at time 0 and is subject to action a up to stopping time ' ∈ T .

It follows from the characterization of rD in the preceding paragraph that the expected reward earned by DB
during 0� '� can be equated to the difference in expected reward earned by bandit B under policy ' and the
policy which takes the passive action throughout. However, this difference is exactly the quantity *r��� x� '� of
Definition 3.1. Formally, we write, in an obvious notation,

E
['−1∑
t=0
�trD�X�t��

∣∣∣∣ ��� x�
]
=*r��� x� '�� � ∈ 	a� b�� x ∈�� ' ∈ T � (24)

(iv)′′ From the consumption functions ca� cb� Sac � S
b
c associated with B we derive a function CD� �D → �+

for DB. We first write Ca�x� for the total expected discounted resource consumed by B when action a is taken
at all decision epochs from time 0, at which point it is in enhanced state �a� x�. That is,

Ca�x� �=E
[ �∑
t=0
�tca�X�t��

∣∣∣∣ �a� x�
]
� x ∈��

the expectation being taken over realizations of B under permanent application of the active action. We now
define

CD�a�x� �=Ca�x�− cb�x��1−��−1− Sbc �x�� x ∈��
and

CD�b�x� �=CD�a�x�+ Sac �x�+ Sbc �x�� x ∈��
The function CD may be understood as follows. It represents the difference in total expected resource consumed
between giving bandit B active treatment throughout and giving B passive treatment throughout. Condition 1
guarantees that CD is positive valued.
Suppose now that DB is in some state ��� x� at time 0 and is subject to action a up to stopping time ' ∈ T .

It follows from the characterization of CD in the preceding paragraph that the difference

CD��� x�−E�'CD�X�'�� � ��� x��
can be equated to the difference in total expected discounted resource consumed by bandit B under policy ' and
the policy that takes the passive action throughout. However, this difference is exactly the quantity *c��� x� '�
of Definition 3.1. Hence, we have

CD��� x�−E�'CD�X�'�� � ��� x��=*c��� x� '�� � ∈ 	a� b�� x ∈�� ' ∈ T � (25)

It now follows from (24), (25), and Definition 3.1 that the return/consumption indices for B may expressed
in terms of quantities associated with the derived bandit DB as follows:

���� x�= sup
'

{
E
['−1∑
t=0
�'rD�X�t�� � ��� x�

]/
�CD��� x�−E�'CD�X�'�� � ��� x���

}
� � ∈ 	a� b�� x ∈�� (26)
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the supremum being taken over all ' ∈ T . The expression in (26) is an index that is of the modified Gittins
type. The form of modification is precisely that required by a class of generalized bandit problems first studied
by Nash [19]. An account of this class of processes has been given by Crosbie and Glazebrook [6] using
polyhedral methods. From that analysis we are able to infer that the following adaptive greedy algorithm yields
the return/consumption indices for bandit B when the latter has finite state space.
For ease of notation, we now use x� y for generic states of DB. We require the matrix of constants A�B� �=

	Ax�)��x∈�D�)⊆�D
defined as follows: Suppose that X�0�= x and that DB evolves from zero under the active

action. We use 'x�)� for the first time at or after time 1 for which the state of DB lies in subset ). We write

'x�)�= inf	t� t ≥ 1 and X�t� ∈)��

We then define

Ax�)� �= I�x ∈)�(CD�x�−E�'x�)�CD�X�'x�)��� � x�
)
� x ∈�D� )⊆�D� (27)

where CD� �D →�+ is as in (iv)′′ above. The following adaptive greedy algorithm yields the return/consumption
indices 	��x��x ∈�D�. Inputs to the algorithm are the matrix A�B� and the rewards 	rD�x��x ∈�D� defined
in (iii)′′ above. The algorithm operates as follows:
Step 1.

Set )��D � =�D and 1�)��D ��=max
{
rD�x�
Ax��D�

�x ∈�D

}
� (28)

Take any maximising state from (28) and call it state ��D�. State ��D� has bandit B’s largest return/consumption
index. Set ����D��= 1�)��D �� and )��D �−1 =)��D �\	��D��.
Step k. For k= 2�3� � � � � ��D�, set )��D �−k+1 =)��D �−k+2\	��D� − k+ 2� and

1�)��D �−k+1�=max
{
rD�x�−

∑k−1
j=1 Ax���D� − j + 1�1�)��D �−j+1�

Ax�)��D �−k+1�
�x ∈)��D �−k+1

}
� (29)

Take any maximising state from (29) and call it state ��D�−k+1. State ��D�−k+1 has bandit B’s kth largest
return/consumption index. Set ����D� − k+ 1�= ����D� − k+ 2�+1�)��D �−k+1�.
Remark. The collection 	��k��1≤ k ≤ ��D�� consists of the return/consumption indices of all (extended)

states of the bandit B, with these states now numbered in decreasing order of their index values, state ��D� having
the highest return/consumption index. The idea behind the algorithm is as follows: Consider first the highest
index state ��D�. From Definition 3.1 and again in (26), the index ����D�� is characterized as a supremum
over ' ∈ T of a quantity that measures additional reward earned per unit of additional resource consumed up
to ' . It is easy to show that, in the case of ����D��, this supremum is achieved by the stopping time '��D�
such that ' ≡ 1 almost surely. This is reflected in Step 1 of the above algorithm. The second-highest index may
then be computed by constructing a new bandit, adapted from B by removing state ��D� from its state space
and modifying its reward/stochastic structure, such that the highest index state of this new bandit is the second-
highest state for B, which is then easy to compute. Step 2 of the above algorithm implements this. The algorithm
continues in this fashion. There are certainly other algorithms that will compute the return/consumption indices.
Most existing algorithms for the computation of Gittins’ indices may be modified to yield the quantities described
in Definition 3.1. These include the approach of Katehakis and Veinott [17] based on restart problems and the
fast pivoting algorithm of Niño-Mora [22]. We emphasise the adaptive greedy algorithm because its structure
will be exploited in the theory of §5.
States of B are now identified as integers in the range 1 ≤ k ≤ ��D�, whereas subsets of ) are mem-

bers of 2	1�2� � � � ���D ��. In the above algorithm, each subset )j = 	j� j − 1� � � � �1� contains j states of smallest
return/consumption index. It is an immediate consequence of the structure of the above algorithm that the
rewards 	rD�i��1≤ i≤ ��D�� may be reexpressed as

rD�i�= ����D��Ai���D��−
��D �−1∑
j=i

	��j + 1�− ��j��Ai�)j�� 1≤ i≤ ��D�� (30)

and this representation will be used in the development of the suboptimality bounds discussed in the next section.



Glazebrook and Minty: A Generalized Gittins Index
Mathematics of Operations Research 34(1), pp. 26–44, © 2009 INFORMS 37

5. On the closeness to optimality of index policies. In the preceding two sections, the focus has been
on individual bandits as we have demonstrated indexability and developed the return/consumption indices. We
now return to the full multiarmed bandit (MAB) model of §2 and will need to reinstate the bandit identifying
suffix n within the notation. This model features N bandits, with �nD �= 	a� b�×�n the state space of bandit n,
1≤ n≤N . We use �D �=

⋃N
n=1�nD for their union. In what follows we shall also use �

a
n �= 	a�×�n for the

subset of �nD consisting of bandit n’s currently active states. Please note that all results in this section up to and
including Theorem 5.1 relate to the MAB model of §2 in full generality. Thereafter, a collection of simplifying
assumptions are made in the interest of securing the form of asymptotic optimality of the GI heuristic described
in Theorem 5.3.
All members of �D have a return/consumption index, computed by applying the adaptive greedy algorithm

of the preceding section to each bandit in turn. We create a numerical representation of the members of �D by
numbering them in decreasing order of their index values such that

����D��≥ ����D� − 1�≥ · · · ≥ ��2�≥ ��1�� (31)

We use i for a generic state within this numbering. With this state representation, subsets � of �D are members
of 2	1�2� � � � ���D ��. We shall use �j = 	j� j − 1� � � � �1� for a subset of �D containing j states with smallest
return/consumption indices. We define the matrix A �= 	Ai����i∈�D��⊆�D

as follows: If state i is a member
of �nD (i.e., is a bandit n state), then Ai��� �= Ai�� ∩ �nD�, with the latter quantity being given by an
appropriate form of (27). It is now a straightforward matter to check that the expression for the rewards rD�i�
given (30) in terms of quantities associated with individual bandits yield the equations

rD�i�= ����D��Ai��D�−
��D �−1∑
j=i

	��j + 1�− ��j��Ai��j �� 1≤ i≤ ��D�� (32)

We write Ru�j� for the total expected discounted reward (net of switching penalties) earned by the MAB
when stationary admissible policy u ∈� is applied from initial state j≡ 	j1� j2� � � � � jN � ∈ XN

n=1�nD. We shall
develop an expression for Ru�j� using the representation of rewards given in (32) and the performance measures
	5u�i � j�� i ∈�D� defined by

5u�i � j� �=Eu

{ �∑
t=0
�tI�i� t�

∣∣∣ j
}
� (33)

In (33) the expectation is taken over all realizations of the MAB under policy u from initial state j, and I�i� t�
is an indicator that takes the value 1 if a bandit with state i is active at epoch t ∈ � and is zero otherwise.
Proposition 5.1 describes how to deploy these performance measures to compute Ru�j�.

Proposition 5.1 (Computation of Total Expected Rewards). For any u ∈� and j ∈XN
n=1�nD,

Ru�j�= ∑
i∈�D

rD�i�5
u�i � j�+

N∑
n=1

{−Sbnr �jn�I�jn ∈�a
n�+ rbn �jn��1−��−1

}
� (34)

where I��� is an indicator.

Proof. Adopting the usage in (5) above, we write

Ru�j�=
N∑
n=1
Run�j�� (35)

where in (35), Run�j� is the total expected discounted reward (net of switching penalties) yielded by bandit n
under policy u from initial state j. To demonstrate (34), it is enough to show that

Run�j�=
∑
i∈�nD

rD�i�5
u�i � j�− Sbnr �jn�I�jn ∈�a

n�+ rbn �jn��1−��−1� 1≤ n≤N� (36)

With policy u and initial state j fixed, we define the sequence of random times 	6nm�m ≥ 1� as the collection
of (successive) epochs at which processing is switched into bandit n, with 	8nm� m ≥ 1� as the collection of
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(successive) epochs at which processing is switched away from bandit n. In what follows we shall use the
notational shorthand un�t� for the action applied by policy u to bandit n at epoch t. Hence, we have

6n1 = inf	t ≥ 0� un�t�= a��

If 6n1 =�, then 8nm =�� m≥ 1, and 6nm =�� m≥ 2. Otherwise,
8n1 = inf	t > 6n1 � un�t�= b��

We continue inductively. If m≥ 2 and 8nm−1 <�, we have
6nm = inf	t > 8nm−1� un�t�= a��

whereas if 6nm <�, we have
8nm = inf	t > 6nm�un�t�= b��

We now utilise the form of reward function rnD given in (iii)′′ above and the nature of the performance
measures in (33) to infer that when jn ∈�nD\�a

n (bandit n is deemed in a passive state at time 0),∑
i∈�nD

rD�i�5
u�i � j�− Sbnr �jn�I�jn ∈�a

n�+ rbn �jn��1−��−1

= ∑
i∈�nD

rD�i�5
u�i � j�+ rbn �jn��1−��−1

=E
[ �∑
m=1

{
−�6nmSanr �Xn�6nm��+

[8nm−1∑
t=6nm

�tran �Xn�t��

]
−�8nmSbnr �Xn�8nm��

}∣∣∣∣ j
]

+E
[ �∑
m=1
	−�6nmrbn �Xn�6nm��+�8nmrbn �Xn�8nm���

∣∣∣∣ j
]
�1−��−1+ rbn �jn��1−��−1� (37)

Recall that Xn�t� denotes the (nonextended) state of bandit n at time t. If we now use the fact that the (nonex-
tended) state of bandit n is frozen under application of the passive action, we have that, with probability one,

Xn�t�=Xn�8
n
m�� 8nm ≤ t ≤ 6nm+1− 1� m≥ 0� (38)

where we take 8n0 = 0. Utilising (38) within (37), we see that the r.h.s. of the latter expression may be rewritten

E
[ �∑
m=1

{
−�6nmSanr �Xn�6nm��+

[8nm−1∑
t=6nm

�tran �Xn�t��

]
−�8nmSbnr �Xn�8nm��

}∣∣∣∣ j
]

+E
[{6n1−1∑

t=0
�trbn �Xn�t��+

�∑
m=1

6nm+1−1∑
t=8nm

�trbn �Xn�t��

}∣∣∣∣ j
]
� (39)

However, the expression (39) accounts for all rewards earned by, and switching penalties exacted from, bandit n
when policy u is applied to it from initial state j. Hence, the quantity in (39) is Run�j�, as required. The case
jn ∈�a

n is dealt with similarly. We therefore have (36), and the result is proved. �

We observe that the second term on the r.h.s. of (34) is policy independent and are able to conclude that, for
any u� v ∈�, and any initial state j,

Ru�j�−Rv�j)= ∑
i∈�D

rD�i�	5
u�i � j�−5v�i � j��� (40)

To deploy (32) within (40), we now write, for any policy u ∈�, subset �⊆�D, and system state j ∈XN
n=1�nD,

Au�� � j� �=∑
i∈�

Ai���5
u�i � j�� (41)

In what follows we use u∗ for an optimal stationary admissible policy for our MAB and Ropt�j� for the maximal
expected return from initial state j, as in (5). Theorem 5.1 is a straightforward consequence of (32), (34),
and (41).
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Theorem 5.1 (Policy Evaluation). For any u ∈� and j ∈XN
n=1�nD,

Ropt�j�−Ru�j�= ����D��	Au∗��D � j�−Au��D � j��

+
��D �−1∑
i=1

	��i+ 1�− ��i��	Au��i � j�−Au∗��i � j��� (42)

As an illustration of the application of Theorem 5.1, we shall now use it to analyse the closeness to optimality
of the greedy index heuristic GI introduced in §2 in simple finite state cases in which the following hold:
(A1) There are no switching penalties. Hence, the functions Sanr � S

b
nr � S

a
nc, and S

b
nc are all identically zero for

all bandits n;
(A2) No rewards are earned or resource consumed under the passive action. Hence, the functions rbn and c

b
n

are identically zero for all bandits n;
(A3) The consumption functions can are constant for each bandit n. We use c

a
n� 1≤ n≤ N , for the constant

values.
(A4) Each Markov law Pn determining transitions in bandit n under the active action is irreducible, and hence,

positive recurrent.
(A5) The total resource available, C, and the resource requirements of the individual bandits, can , are all

multiples of resource quantum :> 0.
In light of (A1) and (A2), there is no need to incorporate into the state of each bandit information regarding

the previous action taken. Hence, we can work with the (nonextended) state spaces �n� 1≤ n≤ N , and their
union � �=⋃N

n=1�n. Under (A1)–(A3) above, Definition 3.1 is simplified as follows: The return/consumption
index for B is now a function �� �→� given by

��x�= sup
'

	ra�x� '�/ca�x� '��� x ∈�� (43)

the supremum being taken over ' ∈ T . Note that ra�x� '� is given in (22), with ca�x� '� defined similarly. All
indices are nonnegative and hence equal to their positive parts. Note also that under (A1) and (A2), Condition 1
is trivially satisfied. As above, we create a numerical representation of the members of � by numbering them
in decreasing order of their index values such that

������≥ ����� − 1�≥ · · · ≥ ��2�≥ ��1�� (44)

and use i� j for generic states within this numbering. With these adjustments, Equation (42) continues to hold, but
with � replacing �D. Also note that under Assumptions (A1)–(A3) above the matrix A�B� �= 	Ax�)��x∈��)⊆�
defined in §4 has components whose form is greatly simplified. Equation (27) now becomes

Ax�)�= ca�1−��−1I�x ∈)�[1−E
{
�'x�)� � x}]� x ∈�� )⊆�� (45)

Finally, in light of A5 above, we write

C =M:� can =mn:� 1≤ n≤N�
It will facilitate the analysis if we now introduce M additional single-state bandits labeled m:� 1≤m≤M.

We shall use m: to denote both one such bandit and its single state. It will assist in what follows if we use the
notational shorthand M# ≡ 	:�2:� � � � �M:�. In the MAB problem, activation of m: ∈M# at some time t ∈ �
indicates that the amount of resource NOT consumed by the N conventional bandits at time t is exactly m:.
Hence, at most one member of M# is activated at any epoch. None of the members of M# earns rewards under
activation, and hence all have return/consumption index equal to zero. We write �M �=�∪M#. By definition,
the resource consumed by the activated members of �M at each decision epoch is always exactly C under any
policy.
The matrix A �= 	Ai����i∈�M ��⊆�M appropriate when � is extended to �M in this way has components

given by

Ai���=Ai��∩�n�= can�1−��−1I�i ∈�∩�n�
[
1−E

{
�'i��∩�n� � i}]� i ∈�n� 1≤ n≤N� (46)

and

Am:���=m:I�m: ∈��� m: ∈M#� (47)

Note that (46) uses the appropriate form from (45) above.
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We now write �M
j = 	j� j − 1� � � � �1� ∪ M# for the union of the states from � with j lowest

return/consumption indices together with M#. Because all members of M# have index equal to zero, �M
j may

alternatively be thought of as consisting of j+M members of �M of lowest index. We now extend the definition
of the performance measures 5u�i � j� of (33) to include i ∈M# and thereby extend (41) to

Au�� � j�=∑
i∈�

Ai���5
u�i � j� (48)

for subsets �⊆�M . Applying Theorem 5.1 to this setup, we have, for any u ∈� and j ∈XN
n=1�n,

Ropt�j�−Ru�j� = ������{Au∗��M � j�−Au��M � j�}

+
���−1∑
i=0

	��i+ 1�− ��i��{Au��M
i � j�−Au∗�)M

i � j�}� (49)

where ��0�= 0� �M
0 =M# in (49). However, it follows easily from (46)–(48) above that, for any u ∈� and

j ∈XN
n=1�n,

Au��M � j�=C�1−��−1�
and hence (49) simplifies to

Ropt�j�−Ru�j�=
���−1∑
i=0

	��i+ 1�− ��i��{Au��M
i � j�−Au∗��M

i � j�}� (50)

Before we apply (50) to the evaluation of the greedy index heuristic GI determined by the state ordering
in (44) we require the following additional notation: We shall write ;�t� for the amount of resource unused at
time t (i.e., by the N standard bandits). From the construction above, this coincides with the member of M#

chosen at t, if any, and is zero otherwise. We write

;�u � j� �=Eu

{ �∑
t=0
�t;�t�

∣∣∣ j
}

for the expected total discounted amount of resource unused when policy u ∈ � is implemented from initial
state j. We further use Ni for the subset of the N standard bandits that have no intersection with �i, namely,

Ni �= 	n�1≤ n≤N and �n ∩�i =���
Further, we write

C�Ni� �=
∑
n∈Ni

can

for the total resource required by the bandits in Ni� Note that N��� = �, N0 = 	1�2� � � � �N �, and hence
C�N����= 0, C�N0� > C with C�Ni� decreasing in i. For Theorem 5.2, we define

I∗ �=min	i�C�Ni� < C�
and use O�1� to denote a quantity that remains bounded in the limit �→ 1.

Theorem 5.2 (Closeness to Optimality of GI). Under the conditions (A1)–(A5) above, for any initial
state j ∈XN

n=1�n,

Ropt�j�−RGI�j�≤ ��I∗�	;�GI � j�− ;�u∗ � j��+O�1��
Proof. First note that it is plain from the definitions of the quantities concerned that

Au��M
i � j�=Au��i � j�+Au�M# � j�=Au��j � j�+ ;�u � j� (51)

for all choices of i� u, and j. Further, it is clear that if C�Ni�≥ C, then the greedy index policy GI will never
activate any members of �i. We then conclude from (51) that ∀ j and i < I∗,

AGI��i � j�= 0
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and hence that
AGI��M

i � j�−Au∗��M
i � j�≤ ;�GI � j�− ;�u∗ � j�� (52)

Now suppose that C�Ni� < C or, equivalently, that i≥ I∗. Write Ti�GI� j� for the first time at which a member
of �i is scheduled for processing when the greedy index policy is implemented from state j at time 0. The
random time Ti�GI� j� may be infinite with positive probability. It must be true, invoking the structure of GI ,
that at epoch Ti�GI� j� all bandits in Ni are processed and that all bandits not being processed must have their
current states in �i� It is clear that under GI all bandits in Ni will continue to be processed at each t ≥ Ti�GI� j�
because they can never be displaced by any of the bandits unprocessed at Ti�GI� j�. By definition of the quantities
concerned, the processing of bandits in Ni contributes nothing to the measure A

GI��M
i � j� when i≥ I∗. It now

follows that at any decision epoch t ∈ Ti�GI� j����, the residual resource C−C�Ni� remaining once the bandits
in Ni have been processed will either not be used (equivalently, will be allocated to members of M

#) and/or will
be used to process bandits in 	1�2� � � � �N �\Ni that have previously entered states in �i. This, together with the
fact that, from assumption (A4) above, prior to time Ti�GI� j�, the bandits in 	1�2� � � � �N �\Ni can only have
been processed a finite number of times almost surely, yields the conclusion that when C�Ni� < C,

AGI��M
i � j�= 	C −C�Ni���1−��−1+O�1�� (53)

An argument very close to that used by Glazebrook and Garbe [11] in their analysis of the performance of
parallel processor versions of Gittins index policies for conventional multiarmed bandits and which utilized a
single machine relaxation of the optimization problem

min
u∈�

Au��M
i � j)

yields the conclusion that when C�Ni� < C,

Au��M
i � j�≥ 	C −C�Ni���1−��−1+O�1�� u ∈�� (54)

In fact, the inequality (54) is secured easily from the analysis of Glazebrook and Garbe [11] by regarding the
resource available at each decision epoch (C =M:) as being made available by M parallel processors, each of
which can supply : units of resource. From (53) and (54), we conclude that when C�Ni� < C,

AGI��M
i � j�−Au∗��M

i � j�≤O�1�� (55)

Using (52) and (55) within (50), we infer that

Ropt�j�−RGI�j� = ∑
i<I∗
	��i+ 1�− ��i��{AGI��M

i � j�−Au∗��M
i � j�}

∑
i≥I∗
	��i+ 1�− ��i��{AGI��M

i � j�−Au∗��M
I � j�}

≤
[∑
i<I∗
	��i+ 1�− ��i��

]{
;�GI � j�− ;�u∗ � j�}+O�1�

= ��I∗�
{
;�GI � j�− ;�u∗ � j�}+O�1��

as required. �

The fact that the suboptimality bound for GI given in Theorem 5.1 must be nonnegative yields the following
result.

Corollary 5.1 (Resource Consumption of GI). Under the conditions (A1)–(A5) above, for any initial
state j ∈XN

n=1�n,
;�u∗ � j�− ;�GI � j�≤O�1��

Remark. We conclude that for this simple family of multiarmed bandits, the degree of reward suboptimality
of the greedy index heuristic GI is, to within an O�1� quantity, bounded above by a multiple of the difference
between the amount of available resource left unused by GI and the equivalent quantity for any optimal policy.
Should this difference be zero (or, indeed, negative), then the greedy index policy must be within O�1� of
optimality.
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It in turn must then follow that the total amount of resource left unused by an optimal policy (as measured
by ;�u∗ � j�) must, for all initial states and to within an O�1� quantity, be bounded above by the total amount
of resource left unused by GI . This is Corollary 5.1. One way of seeing why this is so is to note that, by its
construction, GI makes the best use (as measured by the reward/consumption indices and to within O�1�) of
the resource it consumes. Hence, the only way that a policy can outperform GI is to use more resource. For
this class of models, then, it is precisely any inability of GI to use the available resource as effectively as other
good policies that might cause it to perform poorly. In examples where this is not a serious concern, GI will
perform well.
We formalize some of the above ideas by developing a form of asymptotic optimality for GI not unlike that

proposed for restless bandits by Whittle [30]. We develop a sequence of MABs, each structured as in (A1)–(A5)
above and sharing a common discount rate �. The sequence is indexed by N , the number of competing bandits
in the N th problem, where N ≥ 2. Objects related to problem N are so identified by adding N as an additional
subscript. Hence, we have reward functions 	ranN � 1 ≤ n ≤ N� N ≥ 2�, consumption values 	canN � 1 ≤ n ≤ N�
N ≥ 2�, and total resources 	CN �N ≥ 2�. We require the following additional conditions:
(A6) The reward functions 	ranN �1≤ n≤N�N ≥ 2� are uniformly bounded above and away from zero;
(A7) The collection of consumptions 	canN �1≤ n≤N�N ≥ 2� are bounded above and away from zero;
(A8) The total resources 	CN �N ≥ 2� form a nondecreasing divergent sequence with

CN <
N∑
n=1
canN � N ≥ 2�

We expand the notation Ru�j� to RuN �j��� include the index N and to express its dependence on the discount
rate �.

Theorem 5.3 (Asymptotic Optimality of GI). Under the conditions (A1)–(A8) above, for any initial
state j ∈XN

n=1�n,
lim
N→�

lim
�→1

{
R
opt
N �j���−RGIN �j���

}{
R
opt
N �j���

}−1 = 0�
Proof. In what follows we use r̄ a� ra to denote uniform upper and lower bounds on the reward functions,

with c̄a� ca the equivalent for consumptions. From (A6) and (A7) we may assume that ra and ca are both
(strictly) positive. It is clear from (43) that r̄ a/ca is a uniform upper bound on all reward/consumption indices.
It is also clear that c̄a bounds above the amount of resource unused by GI at any epoch and in any problem.
Hence, we deduce that, uniformly in j,

;N �GI � j�− ;N �u∗ � j�≤ c̄a�1−��−1� (56)

It is straightforward that, uniformly in j,

R
opt
N �j���≥

[
CN
c̄a

]
ra�1−��−1� (57)

where in (57), y� denotes the integer part of y.
Now, from Theorem 5.2, (56) and (57), and the above discussion, we infer that, uniformly in j,

lim
�→1

{
R
opt
N �j���−RGIN �j���

}{
R
opt
N �j���

}−1 ≤ r̄ ac̄a/ra ca
[
CN
c̄a

]
→ 0� N →��

as required. �

6. Numerical study. We explore the power of the above ideas by means of a numerical investigation of
the performance of two index-based heuristics in the context of a collection of four-armed bandits. As was
the case with the simple class of models discussed at the conclusion of §5, we shall suppose that all the
rbn � c

b
n� S

a
nr � S

b
nr � S

a
nc, and S

b
nc are identically zero. Hence, no rewards are earned or resource consumed by passive

bandits, nor are any switching penalties incurred. All bandits have eight states, and hence each problem consid-
ered has a state space with 84 = 4�096 elements. The study is based on 100 randomly generated problems with
all individual elements chosen independently as follows: In each case, bandits 1 and 2 are to be thought of as low
consumption, low reward, with bandits 3 and 4 thought of as high consumption, high reward. We shall assume
that for all bandits resource consumption levels (under the active action) do not differ across states. For bandits
1 and 2 the (constant) resource consumption levels ca1 � c

a
2 are sampled from a uniform U�0�8�1� distribution,
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Table 1. The comparative performance of four heuristics for a collection of multiarmed bandit problems.

Median percentage Max percentage Median percentage Max percentage
suboptimalities, �= 0�9 suboptimalities, �= 0�9 suboptimalities, �= 0�95 suboptimalities, �= 0�95

GM M GI WI GM M GI WI GM M GI WI GM M GI WI

min 0�168 0�612 0�000 0�000 1�302 2�409 1�049 0�000 0�068 0�403 0�000 0�000 0�489 1�294 0�323 0�000
lq 1�519 1�794 0�316 0�001 5�329 5�661 2�116 0�224 1�329 1�566 0�185 0�000 2�884 4�085 1�121 0�081
med 3�020 2�818 0�945 0�018 7�942 7�974 3�488 0�385 2�908 2�981 0�699 0�008 5�498 6�233 2�163 0�189
uq 5�916 4�371 2�436 0�052 11�610 11�370 6�103 0�585 6�782 5�354 2�434 0�048 9�730 10�090 4�472 0�359
max 14�140 11�530 11�100 0�196 23�690 21�880 15�710 1�465 16�900 14�020 13�100 0�223 22�320 21�370 15�840 0�830

whereas those for bandits 3 and 4 are sampled from a U�1�8�2� distribution. For bandits 1 and 2 the expected
rewards earned when active in state 1, namely ra1 �1�� r

a
2 �1� are sampled from a U�8�12� distribution, with

the equivalent quantities for bandits 3 and 4, ra3 �1�� r
a
4 �1� sampled from a U�16�24� distribution. The expected

rewards earned by bandits 1 and 2 when active in any state other than 1, namely ra1 �x�� r
a
2 �x�� 2 ≤ x ≤ 8�

are sampled from a U�2�3� distribution, whereas a U�4�6� distribution is used for this purpose for bandits 3
and 4. In all cases, entries for the Markov transition matrix under the active action are obtained by sampling
from a U�0�1� distribution and normalising across rows.
For each of the 100 problems so generated, the expected total reward under the optimal policy and four

heuristics was estimated via the use of DP value iteration for each of the 4�096 initial states and for two choices
of the discount rate �, namely 0�9 and 0�95. Hence, the number of total rewards computed in the study was
100× 4�096× 5× 2= 4�096× 106� The heuristics concerned were:

• greedy myopic (GM). In each state x= �x1� x2� x3� x4� choose the bandits for activation in decreasing order
of the one-step returns ran �xn� until no further resource may be consumed;
• myopic (M). In each state choose the bandits for activation to maximise the corresponding sum of one-step

returns within the resource constraint;
• greedy index (GI). In each state x choose the bandits for activation in decreasing order of the

return/consumption indices �n�xn� until no further resource may be consumed;
• weighted index (WI). In each state x choose the bandits for activation to maximise the sum given in (14)

within the resource constraint. Because here the only consumption of resource is by active bandits, the sum to
be maximized simplifies to

∑
n c

a
n�xn��n�xn�.

The greedy index heuristic GI was subject to analysis for the simple class of models in §5 and shown to enjoy
a form of asymptotic optimality. The heuristic WI was described in §2 and is justified informally by noting
that, because indices are maximal return/consumption ratios, weighting them by one-step consumptions and
aggregating yields decisions in favour of a collection of bandits capable of securing returns at maximal rate.
For each heuristic H and each choice of problem, initial state x, and discount rate �, the percentage

suboptimality

100	Ropt�x���−RH�x����	Ropt�x����−1

was computed. For each choice of problem, heuristic H and discount rate �, the median and maximum percentage
suboptimalities among the 4�096 computed (one for each initial state) were recorded. For each heuristic H and
discount rate �, the 100 medians and 100 maxima so obtained were summarized by the order statistics minimum
(min), lower quartile (lq), median (med), upper quartile (uq), and maximum (max). The results are presented
in Table 1 below.
Although both of the index heuristics clearly outperform their myopic counterparts, much the most striking

feature of the above results is the consistent excellence of the weighted index (WI) heuristic. In over 4× 106
problems, on no occasion was it more than 1�465% suboptimal, whereas in well over half the cases its expected
total reward was within 0�02% of optimal. Although the performance of GI is impressive overall, there plainly
are problems for which its failure to use the available resource effectively yield significant suboptimalities, as
flagged up in the discussion of Theorem 5.2 and Corollary 5.1.
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