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Abstract

We consider a network of parallel service stations each modelled as a single server
queue. Each station serves its own dedicated customers as well as generic customers
who are routed from a central controller. We suppose that the cost incurred by a
customer is an increasing function of her time spent in system. In a significant advance
on most previous work, we do not require waiting costs to be convex, still less linear.
With the objective of minimizing the long-run average cost, we develop heuristic routing
policies and demonstrate their superior performance in an extensive numerical study.

Keywords: State-dependent routing; index policy; heuristic policy; stochastic dy-
namic programming; Markov decision processes.
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1 Introduction

This paper is concerned with the dynamic routing of incoming customers to one of several

parallel service stations, each of which has its own queue with an infinite buffer space. Our

model develops those found most frequently in the literature in two key respects, both of

which are critical for applications. First, in our setups there are two customer types which

inhabit the system: dedicated and generic. Dedicated customers must be served at a desig-

nated station and routing decisions only concern the remaining generic traffic, which we shall

assume can be served at any station. Plainly such a dichotomizing of the traffic is impor-

tant in settings where specialist skills are required on occasion and are expensive to provide.

Note that stations are not necessarily separated geographically since customers requiring

different skills will naturally form separate queues. Examples include call centers [7] and

emergency response systems [32]. Such models are also relevant to dynamic routing within

a grid environment [1] and to load balancing in broadcast communication networks [37].

Both customer types incur costs which depend upon the time spent waiting in the system.

Our objective is to develop routing policies which will minimize the long-run average total

cost or which will come close to doing so. This brings us to the second key feature of our

model, namely that we shall impose only very minor conditions upon the structure for waiting

costs. Most previous work which has considered the dynamic service and routing control of

queueing systems has imposed requirements that waiting costs be linear in the time spent

in system. In some exceptions, this has been generalized to an assumption that costs be

convex non-decreasing (see, for example, [14], [35], [40], and [45]). Van Mieghem [45]

discusses the limited appeal of linear waiting costs, but we would argue that an assumption of
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convexity may also be unrealistic in many settings. Convex waiting costs are unable to take

adequate account of such commonplace features as delivery time/service level guarantees

(see, for example, [10], [20], and [24]) nor in an emergency response setting of the absolute

imperative of treating patients with critical trauma injuries quickly (the “golden hour” rule,

see, for example, [36]).

State-dependent routing problems have received much attention in the literature. The

only general settings in which it has proved possible to elucidate simple structure for optimal

policies are those involving homogeneous stations. Here “Shortest Delay Routing” (SDR)

has been shown to be optimal under a range of conditions. See, for example, Weber [47],

Winston [52], Johri [23], Hordijk and Koole [21], Menich and Serfozo [34], Sparaggis, Towsley,

and Cassandras [39], Towsley, Sparaggis, and Cassandras [44], and Koole, Sparaggis, and

Towsley [27]. However, Whitt [49] shows that SDR may not be optimal even for very simple

cases. Also see Foschini and Salz [12], Houck [22], Wein [48], Laws [31], Kelly and Laws [25],

Foley and McDonald [11], Teh and Ward [41], and Tezcan [42] for more on the performance

of SDR and analytical results for SDR under various asymptotic regimes. Recently, there

also appeared a significant amount of work on routing problems where customers wait in a

single line and are routed to one of the servers as servers become available. The majority

of this work is motivated by the routing problem in call centers. See, for example, Van

Mieghem [45], Gans and Zhou [13], Harrison and Zeevi [19], Mandelbaum and Stolyar [33],

Armony and Maglaras [4, 5], Wallace and Whitt [46], Armony [3], and Bassamboo, Harrison,

and Zeevi [6].

In a recent study, Stolyar [40] considers a similar routing problem where customers are

routed to one of the multiple parallel stations as they arrive to the system. Stolyar’s model is
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more general than ours in that customers belong to different classes and service rates depend

on both the customer’s class identity and the station serving the customer. However, the

author imposes some restrictive conditions on the waiting cost structures. More specifically,

he assumes that the waiting cost function for each queue is continuous, strictly increasing

and convex. Stolyar proves that a routing policy, which he calls the MinDrift rule, is asymp-

totically optimal in the heavy traffic regime under a complete resource pooling condition. In

Section 6, we test the performance of the Mindrift rule along with the performance of our

heuristics under various traffic regimes and two different waiting cost functions.

For complex routing problems which do not assume station homogeneity, full characteri-

zation of optimal policies based, for example, on direct application of dynamic programming

(DP) methodology is unrealistic. The focus for such systems has mostly been on the de-

velopment of effective routing heuristics, many of which are based on calibrations of the

constituent service stations which utilize queue length information. A simple and standard

proposal is to route each generic customer in an individually optimal way to whichever sta-

tion has the smallest expected cost for that individual. In Section 6, this is referred to as

the greedy heuristic (GH). Two approaches to heuristic development which have proved ef-

fective are those based on DP policy improvement (see, for example, Krishnan and Ott [30],

Krishnan [28, 29], Whittle [51], Sassen, Tijms, and Nobel [38], Ansell, Glazebrook, and

Kirkbride [1], Bhulai and Koole [9], and Bhulai [8]) and on Lagrangian relaxations (see, for

example, Niño-Mora [35] and Whittle [50, 51]). The second of these has appeared highly

promising, but its effective deployment has been severely inhibited by a prior requirement

to establish a structural property which Whittle [50] called indexability. While this property

appears natural, it is little understood and is often extremely difficult to prove. There is a
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developing literature centered around this very issue in a range of application areas of which

routing is but one (see, for example, Glazebrook, Niño-Mora, and Ansell [15], Ansell, Glaze-

brook, Niño-Mora, and O’Keeffe [2], Glazebrook, Mitchell, and Ansell [16], and Glazebrook,

Kirkbride, and Ouenniche [17]).

A major research achievement of this paper is the demonstration that we do indeed have

indexability in our very general setting for both costs and traffic. In particular, we are

able to show that the cost convexity assumptions of previous work are not needed for the

parallel service system considered in this paper. Indexability is proved in Section 4 and the

structure of the resulting routing heuristics is established. To provide a strong comparator for

these Lagrangian heuristics, routing policies based on DP policy improvement are developed

in Section 3. In Section 5, the precise nature of the station calibrations which our routing

heuristics utilize is developed for some non-standard but practically important cost structures

while Section 6 contains the results of an extensive investigation into heuristic performance.

2 Model description

We consider N ≥ 2 parallel service stations each modelled as a single server queue. For

each queue n, service times of customers are independent and exponentially distributed

with a finite mean 1/µn. Each queue n has its own “dedicated” customers that arrive

according to a Poisson process with rate ηn. These dedicated customers cannot be routed

to any other station. There are also “generic” customers who arrive as a Poisson stream

with rate λ and who can be served at any station. The routing decisions concern these

customers only. Our analysis will still go through if the system controller can also choose

to reject generic customers by paying a fixed charge per rejected customer. However, to
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keep the presentation simpler, we assume that each arriving customer should be admitted

to the system. The routing decision for a generic customer is made upon her arrival and

this decision is irreversible. We assume that each queue operates under a First-Come-First-

Served (FCFS) discipline, and hence no distinction is made between the dedicated customers

and generic customers once admitted to the system. We introduce parameters

θn = λ + ηn, βn = θn/µn, αn = ηn/µn,

and we assume that αn < 1 for all n and λ +
∑N

n=1 ηn <
∑N

n=1 µn so that there exist routing

policies under which the system is stable.

Each customer incurs a cost that is a function of the time the customer spends in the

system. Write ξnk for n ∈ {1, 2, . . . , N} and k ∈ {1, 2, . . . } for the total system time for the

kth customer admitted to queue n. Also let Cn(·) denote the cost function for queue n, i.e.,

Cn(t) is the cost incurred by a customer who is given service in station n and whose total

system time is t. Our objective is to minimize the expected long-run average total cost for

this system, which can be written as

lim sup
t→∞

E
[∑N

n=1

∑Mn(t)
k=1 Cn(ξnk)

]

t
,

where Mn(t) is the total number of customers who have been served in station n by time t.

Let cn(i) denote the expected cost that will be incurred by a customer who joins queue

n when there are i customers already waiting (including the customer in service) at sta-

tion n. If we deem that (expected) costs are incurred as the customers join, this problem

can be formulated as a semi-Markov decision process. Decision epochs are the times when

generic customers arrive and the system state can be described by an N -dimensional vec-

tor x = (x1, x2, . . . , xN), where xn denotes the number of customers waiting in station n
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(including the customer in service). Action space is A = {a1, a2, . . . , aN}, where an is the

action of sending a customer to queue n. Once the problem is formulated, then it can in

principle be solved to arbitrary accuracy by applying a (finite) truncation of the state space

followed by deployment of standard DP methodologies. However, such an approach is com-

putationally intractable for systems of realistic size. It is natural that interest should focus

on the development of effective heuristics for routing. This is the subject of the following

two sections.

3 Heuristic 1: Single-step policy improvement method

We develop the single-step policy improvement heuristic by applying a single step of the pol-

icy improvement algorithm to an optimal static Bernoulli routing policy. A static Bernoulli

routing policy simply routes each incoming customer to queue n with some probability pn

independently of other customers and the system state. We shall develop the heuristic in

two stages. First we shall determine an optimal static policy. This will then be followed by

a single DP policy improvement step.

An optimal static policy:

A static routing policy routes each incoming generic customer to one of the service stations

according to some probability distribution p = (p1, p2, . . . , pN) independently of other cus-

tomers and the system state, where pn ≥ 0 for n = 1, 2, . . . , N , and
∑N

n=1 pn = 1. Let the

set P be defined as

P = {p : pn ≥ 0, ηn + λpn < µn, 1 ≤ n ≤ N, and
N∑

n=1

pn = 1}.

We have P 6= ∅ since we assume that λ +
∑

n ηn <
∑

n µn.
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Under any static policy p ∈ P, each service station n is an independent M/M/1 queue

with arrival rate Λn = ηn + λpn and service rate µn. Then, using standard results, the

expected long-run average cost TC(p), can be written as:

TC(p) =
N∑

n=1

(ηn + λpn)
∞∑
i=0

cn(i)(1− ρn)ρi
n, (1)

where ρn = (ηn + λpn)/µn.

In order to proceed, we need the following assumption:

Assumption 3.1 There exists a p ∈ P such that
∑N

n=1

∑∞
i=0 cn(i)ρi

n < ∞ where ρn =
(ηn + λpn)/µn.

Assumption 3.1 is certainly satisfied if the cn(·)’s are all polynomially bounded.

Clearly, we can restrict ourselves to the set P to find the optimal static policy. Hence, an

optimal static routing policy is any vector p? ∈ P that minimizes (1), i.e.

p? ∈ {
p̄ ∈ P : TC(p̄) ≤ TC(p) ∀p ∈ P}

. (2)

Policy improvement step:

We now apply a policy improvement step to an optimal static policy. Using the approach of

Section 3.6 of Tijms [43], it can be easily shown that the policy improvement step yields an

index policy. To see that, we first define ∆(x, an) to be the difference in total expected costs

that would be caused by sending the first incoming customer to queue n and then following

an optimal static policy rather than using an optimal static policy throughout when the

system is in state x. Since each queue operates independently under a static policy, this
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difference can be expressed as

∆(x, an) =
N∑

k=1

p?
k[Dn(xn)−Dk(xk)]

= Dn(xn)−
N∑

k=1

p?
kDk(xk) (3)

where Dn(i) denotes the additional long-run cost of admitting an extra customer to queue n

operating under the optimal static routing policy when i customers are already present. In

(3), the summation term does not depend on the action an taken. Therefore, the action an

that minimizes ∆(x, an) can simply be found by choosing n to minimize Dn(xn). In other

words, the policy improvement step gives us an index policy that routes an arriving generic

customer to queue n? such that

Dn?(xn?) = min
n∈{1,2,...,N}

{Dn(xn)},

when the system state is x = (x1, x2, . . . , xN).

In order to describe the policy, we require an expression for Dn(·). It will simplify matters

if we now focus on a single station and drop the identifier n. Let Λ = η+λp? denote the total

arrival rate to this station (the total arrival rate of dedicated and generic customers assigned

to this queue under the optimal static policy). Define µ to be the service rate, ρ = Λ/µ to

be the traffic intensity, where ρ < 1, and c(i) to be the expected cost for a customer who

sees i customers upon arrival.

Utilizing standard arguments which exploit the fact that the system regenerates upon

every return to the empty state, it can be shown that

D(i) = c(i) + (Ki+1 − gTi+1)− (Ki − gTi), for i ≥ 0, (4)
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where Ki is the expected total cost incurred until the first time there is no customer in the

system starting with i customers, Ti is the expected time until the first time the station is

empty starting with i customers, and g is the long-run average cost for the queue under the

static policy. Note that K0 = 0 and T0 = 0.

To make sense of (4), note that Ki − gTi is the relative cost (or bias) of starting the

queue with i customers rather than none. Hence the difference between the last two terms

in (4) is simply the difference in total expected long run costs between starting the queue

with i + 1 rather than i customers. However, this difference ignores the cost to be incurred

by the customer to be admitted. Adding the expected cost for that customer, c(i), to this

difference gives us the additional cost of admitting one more customer, which is D(i). Now,

we can rewrite (4) as follows:

D(i) = c(i) + Ki+1 −Ki + g(Ti − Ti+1), for i ≥ 0. (5)

To find an expression for Ki, we first note that

Ki =
Λ

Λ + µ
(c(i) + Ki+1) +

µ

Λ + µ
Ki−1 for i ≥ 1.

Rearranging terms, we obtain

ki+1 = ρ−1ki − c(i),

where ki = Ki −Ki−1. Using this relationship recursively, we get

ki =
k1 −

∑i−1
j=1 c(j)ρj

ρi−1
, for i ≥ 2. (6)

Note that k1 = K1 − K0 = K1. Hence, to give an explicit expression for ki, it remains to

determine K1.
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In order to derive K1, consider the M/M/1 queue under study. This queue evolves in

cycles, i.e., independent and identically distributed (i.i.d.) renewal intervals, which start

when a customer arrives to an empty system. Each cycle consists of a busy period (there are

customers in the system and the server is working) followed by an idle period (no customers

in the system, and therefore the server is idle). Let γm denote the total cost incurred over

cycle m. Clearly, γm is i.i.d. for all m. Let Γ = E[γ1].

Recall that g is the long-run average cost for this system. Then, using the renewal reward

theorem and the fact that expected length of a busy period is 1/(µ − Λ) (see, e.g., Section

2.11 in [18]), we can show the following:

Γ =
g

Λ(1− ρ)
.

Then,

K1 = Γ− c(0),

since K1 does not include expected costs for the customer initially in the system. Then,

using (6) and the fact that g = Λ
∑∞

j=0 c(j)(1 − ρ)ρj, after a few algebraic manipulations,

we can establish that

ki =

∑∞
j=i c(j)ρ

j

ρi−1
, for i ≥ 1. (7)

Finally, since Ti+1 − Ti is equal to the expected length of a “busy period,” we have

Ti+1 − Ti = 1/(µ− Λ). Then, using (7), we deduce that

D(i) = c(i) + ki+1 − g
1

µ− Λ
=

∞∑
j=0

(c(j + i)− ρc(j))ρj, (8)

for i ≥ 0. (An alternative way of obtaining (8) from (4) is by solving for the relative values

Ki−gTi directly, utilizing the form of solution to classes of second-order difference equations

given as Corollary 3.3 in Bhulai [8].)
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Thus, we have proved the following theorem.

Theorem 3.1 (Policy Improvement Heuristic) The heuristic dynamic routing policy
that is developed by applying a policy improvement step to an optimal static policy p? =
(p?

1, p
?
2, . . . , p

?
N) operates as follows: Upon arrival of a generic customer, if the system state

is x = (x1, x2, . . . , xn), then route the customer to any station n? for which

Dn?(xn?) = min
k∈{1,2,...,N}

{Dk(xk)},

where

Dk(xk) =
∞∑

j=0

(ck(j + xk)− ρkck(j))ρ
j
k (9)

and ρk = (ηk + λp?
k)/µk.

The index function (9) is insightful. To see that, we can use (7) and (8) to rewrite (9) as

Dk(xk) = ck(xk) +
1

µk − Λk

(
Λk

ρxk+1
k

∞∑
i=xk+1

ck(i)ρ
i
k(1− ρk)− Λk

∞∑
i=0

ck(i)ρ
i
k(1− ρk)

)
. (10)

The first term on the right-hand side of (10), ck(xk), is the expected cost for a customer who

will be sent to station k, and might be interpreted as the internal cost for the customer.

However, the customer also incurs costs for the other incoming customers who will be routed

to the same station and the second term of (10) takes this cost into account. The term

1/(µk − Λk) is the expected length of a “busy period” caused by the customer under the

optimal static policy. In other words, it is the expected time until the first occasion for

which the number of customers in the station is xk again. The first term in the parentheses

in (10) is the long-run average cost for the station when the average is taken over the times

when there are more than xk customers in the station under the optimal static policy, while

the second term in the parentheses is simply the long-run average cost for station k. Their

difference can be interpreted as the per unit time cost of keeping the queue above level xk.

Multiplying this difference by the expected length of a busy period we find the total cost the

admitted customer imposes on the system. Hence, in a sense, the expression that follows

ck(xk) in (10) is the external cost of admitting the customer to station k.
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4 Heuristic 2: Lagrangian relaxation method

In development of an alternative collection of routing heuristics, we firstly propose a relax-

ation of the optimal routing problem of Section 2 in which the class of policies is expanded to

those which route each incoming generic customer to any number of service stations, subject

to an overall admission rate of λ. Expressed differently, arriving generic customers are routed

to one service station on average. Let U be the class of stationary policies which upon each

generic arrival, increase the queue length at any number of chosen stations by one and let

u ∈ U be a class member. Let C̃n(u) be the time average cost rate incurred at station n and

Ãn(u) = λ − R̃n(u) be the generic admission rate (with R̃n(u) denoting the corresponding

rejection rate) at station n under control u ∈ U .

A Lagrangian approach to the above relaxed problem yields

Ĉ(W ) = min
u∈U

N∑
n=1

{C̃n(u) + WR̃n(u)} −W (N − 1)λ, (11)

where in (11) W is a Lagrange multiplier which has an economic interpretation as a charge

for rejecting a single generic customer. Plainly, Ĉ(W ) ≤ Copt for all W ∈ R where Copt is the

value of the original minimization problem. Further (11) admits a stationwise decomposition,

expressed by

Ĉ(W ) =
N∑

n=1

Ĉn(W )−W (N − 1)λ,

where

Ĉn(W ) = min
u∈Un

{C̃n(u) + WR̃n(u)}, for n = 1, 2, . . . , N. (12)

The optimization problem in (12) relates to station n alone with Un the class of stationary

controls for determining whether to admit (action a) or reject (action r) each generic arrival,
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the goal of optimization being the minimization of an aggregate of customer waiting cost

(C̃n(u)) and rejection charges (WR̃n(u)). Call this station n problem Pn(W ).

We now focus exclusively on station n and the corresponding optimization problems

Pn(W ), W ∈ R+. It will ease notation if, until further notice, we drop the station identifier

n from the notation and refer to P (W ), W ∈ R+. In order to describe solutions to the P (W ),

we develop the sequence {W (i), i ∈ N} of reals (where N is the set of non-negative integers)

and the corresponding sequence {u(i), i ∈ N} of monotone admission control policies as

follows:

W (i) =
i∑

j=0

βj
{
α(1− α)

∞∑

k=i+1

c(k)αk−i−1 + c(i)(1− α)− c(j)β
}

+ c(i)βi+1, i ∈ N, (13)

and

u(i) chooses r ⇐⇒ queue length at arrival epoch ≥ i, i ∈ N. (14)

It will facilitate the analysis if we make the following technical assumptions:

Assumption 4.1 The sequence of expected costs {c(i), i ∈ N} is non-decreasing such that

(i) c(i) →∞, i →∞;

(ii)
∑∞

i=0 c(i)αi < ∞.

Lemma 4.1 is a straightforward consequence of Assumption 4.1.

Lemma 4.1 {W (i), i ∈ N} is an increasing sequence of positive reals such that W (i) →∞,
i →∞.

The following key result describes optimal policies for P (W ) for all W ≥ 0. We extend (13)

by adopting the notational convention W (−1) = 0. The proof of Theorem 4.1 will utilize

two following lemmas.

Theorem 4.1 Policy u(i) is optimal for P (W ) for W ∈ [W (i− 1),W (i)), i ∈ N.
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Fix W ∈ [W (i− 1),W (i)) for some i ∈ N and choose M ∈ N with M ≥ i + 1. We develop a

finite state approximation to P (W ) by requiring that generic customers be rejected at queue

lengths M and above. Let P (W,M) be the optimization problem which seeks an optimal

control under this constraint. We shall establish Theorem 4.1 by demonstrating that u(i)

is optimal for P (W,M), W ∈ [W (i − 1),W (i)), M ≥ i + 1, and then considering the limit

M →∞.

Since the control u(i) operates identically whether applied to P (W ) or to P (W,M), for

i ≤ M − 1, we may write g(i) unambiguously for the long-run average cost rate and w(i, j)

for the bias in state j under the operation of policy u(i), M − 1 ≥ j ≥ 0.

Lemma 4.2 Control u(i) will be optimal for P (W,M), i ≤ M − 1 if

c(j) + w(i, j + 1)− w(i, j) ≤ W, 0 ≤ j ≤ i− 1, and
c(j) + w(i, j + 1)− w(i, j) ≥ W, M − 1 ≥ j ≥ i.

(15)

Proof: Under action a (accept generic customers) in state j ≥ 1, possible state transitions

are to j +1 and j− 1 with rates θ and µ, respectively. The corresponding rates under action

r are η and µ. There are no service completions in state 0. Adopting a uniformization with

common transition rate θ+µ, we develop the average cost optimality equations for P (W,M)

as

g∗ + (θ + µ)w∗(j) = min{θc(j) + θw∗(j + 1) + µI(j ≥ 1)w∗(j − 1) + µI(j = 0)w∗(0);

ηc(j) + W (θ − η) + ηw∗(j + 1) + (θ − η)w∗(j)+

µI(j ≥ 1)w∗(j − 1) + µI(j = 0)w∗(0)}, for 0 ≤ j ≤ M − 1,

(16)

where g∗ is the optimal long-run average cost, w∗(j) is the bias under an optimal policy for

initial state j, and the indicator function I(A) = 1 if A is true, and 0 otherwise.

Moreover, any stationary policy which takes actions to minimize the right side of (16)
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for all 0 ≤ j ≤ M − 1 will be average cost optimal. Hence, policy u(i) will be optimal for

P (W,M) if, for j ≤ i− 1,

θc(j) + θw(i, j + 1) + µI(j ≥ 1)w(i, j − 1) + µI(j = 0)w(i, 0)

≤ ηc(j) + W (θ − η) + ηw(i, j + 1) + (θ − η)w(i, j) + µI(j ≥ 1)w(i, j − 1)

+µI(j = 0)w(i, 0)

(17)

with the reverse inequality for M − 1 ≥ j ≥ i. The requirements in (15) follow simply. This

concludes the proof. 2

In order to utilize Lemma 4.2, we need the biases w(i, j), 0 ≤ j ≤ M − 1. As in the

calculations around (4) and (5) above, we deploy an argument based on the fact that the

queue length process under u(i) regenerates whenever the queue empties to assert that

w(i, j) = K(i, j)− g(i)T (i, j), 0 ≤ j ≤ M − 1. (18)

In (18), K(i, j) is the total expected cost incurred (waiting costs and rejection charges) as

the queue empties (for the first time) under policy u(i) from an initial position in which j

customers are present, and T (i, j) is the corresponding expected time. From (18), it is easy

to see that w(i, 0) = 0. Evaluations of these quantities are given in Lemma 4.3.

Lemma 4.3

(i) For i ∈ Z+, we have that

(a) T (i, j) =
∑j−1

k=0{(1− βi−1−k)(µ− θ)−1 + βi−1−k(µ− η)−1}, 0 ≤ j ≤ i− 1;

(b) T (i, j) = T (i, i− 1) + (j − i + 1)(µ− η)−1, i ≤ j ≤ M − 1;

(c) K(i, j) =
∑j−1

k=0{W (θ−η)βi−k(θ(1−α))−1+
∑i−1

l=k+1 c(l)βl−j+
∑∞

l=i c(l)β
i−kαl−iηθ−1},

0 ≤ j ≤ i− 1;

(d) K(i, j) = K(i, i− 1) +
∑j−i

k=0{W (θ − η)(µ− η)−1 +
∑∞

l=k c(l + i)αl+1−k}, i ≤ j ≤
M − 1;

(e) g(i) = K(i, 1){θ−1 + T (i, 1)}−1.
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(ii) For the case i = 0, we have that

(a) T (0, j) = j(µ− η)−1, 0 ≤ j ≤ M − 1;

(b) K(0, j) = jW (θ − η)(µ− η)−1 +
∑j

k=1

∑∞
l=k c(l)αl−k+1, 0 ≤ j ≤ M − 1;

(c) g(0) = K(0, 1){η−1 + T (0, 1)}−1.

Proof: Choose i and j such that M − 1 ≥ j ≥ i. Under policy u(i), the time taken for the

queue length to drop from j to j − 1 (for the first time) is stochastically identical to a busy

period of an M/M/1 queue with arrival and service rates η and µ, respectively. It follows

that

T (i, j)− T (i, j − 1) = (µ− η)−1, i ≤ j ≤ M − 1 (19)

and Lemma 4.3 (i)(b) follows simply. Further if i− 1 ≥ j ≥ 1, then by conditioning on the

time of the first transition after time zero we infer that

(θ + µ)T (i, j) = 1 + θT (i, j + 1) + µT (i, j − 1), 1 ≤ j ≤ i− 1. (20)

Combining (20) with (19) and the fact that T (i, 0) = 0 yields Lemma 4.3 (i)(a) simply.

Now choose i and j such that M −1 ≥ j ≥ i and consider the system evolving from state

j at time zero under u(i), but where service is abandoned whenever the queue length drops

to j − 1. Hence, whenever the system enters j − 1, it remains there for an exponentially

distributed time with mean 1/η before returning to state j. An argument based on the fact

that the system regenerates upon every entry into j yields the formula

{K(i, j)−K(i, j − 1) + W (θ − η)η−1 + c(j − 1)}/{(µ− η)−1 + η−1} (21)

for the overall cost rate for the system. But computation of the steady state distribution of

the system state yields

W (θ − η) +
∞∑

k=j−1

ηc(k)αk+1−j(1− α) (22)
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as an alternative expression. Equating (21) and (22) yields

K(i, j)−K(i, j − 1) = W (θ − η)(µ− η)−1 +
∞∑

k=j

c(k)αk−j+1, i ≤ j ≤ M − 1, (23)

from which Lemma 4.3 (i)(d) is easily deduced. Lemma 4.3 (i)(c) then follows via a recursion

which modifies (20) suitably.

Lemma 4.3 (i)(e) is a trivial consequence of the fact that the system evolving under u(i)

regenerates upon every entry into state 1 and that the mean time between successive entries

is θ−1 + T (i, 1). This completes the proof of Lemma 4.3 (i). Part (ii) is dealt with similarly.

2

With Lemmas 4.2 and 4.3 in place, we now proceed to the proof of Theorem 4.1.

Proof of Theorem 4.1: Fix i ∈ Z+. We shall show that

c(j) + w(i, j + 1)− w(i, j) ≥ W, M − 1 ≥ j ≥ i, (24)

where W ∈ [W (i − 1),W (i)). Other cases (i ∈ Z+, j ≤ i − 1, and i = 0) are dealt with

similarly.

Firstly, note that from (18), condition (24) becomes

c(j) + K(i, j + 1)−K(i, j)− g(i){T (i, j + 1)− T (i, j)} ≥ W, M − 1 ≥ j ≥ i. (25)

However, direct calculation based on (13) and Lemma 4.3 yields that, for any W ∈ [W (i−

1),W (i)) we have that

g(i) ≤ g(j), M − 1 ≥ j ≥ i. (26)

Hence, since T (i, j + 1) − T (i, j) ≥ 0, in order to establish (25) it will be enough to show

that

c(j) + K(i, j + 1)−K(i, j)− g(j){T (i, j + 1)− T (i, j)} ≥ W, M − 1 ≥ j ≥ i. (27)
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Utilizing Lemma 4.3 (i) (b), (d), (e), the requirement in (27) becomes

c(j) + W (θ − η)(µ− η)−1 +
∑∞

k=j+1 c(k)αk−j − (1− β){W (θ − η)βj(1− α)−1

+
∑j−1

k=0 c(k)βkθ +
∑∞

k=j c(k)αk−jβjη}{µ− η + βj(η − θ)}−1 ≥ W.

(28)

Now multiply inequality (28) through by the positive quantity

Υ(θ, µ, j) =





{µ− η + βj(η − θ)}(µ− θ)−1, µ 6= θ,

1 + j(1− α), µ = θ,

.

to obtain the inequality

W (j) ≥ W (29)

from (13). However, inequality (29) is guaranteed by Lemma 4.1 and the fact that W ∈

[W (i− 1),W (i)). Inequality (24) must then follow.

We conclude from Lemma 4.2 that u(i) is optimal for P (W,M) for every M ≥ i− 1. By

consideration of the limit M →∞, it is straightforward to deduce that u(i) must be optimal

for P (W ). This concludes the proof. 2

We now restore the station suffix n and require that Assumption 4.1 hold for each station.

Hence for each n there is a corresponding sequence {Wn(i), i ∈ N} given by

Wn(i) =
i∑

j=0

βj
n

{
αn(1− αn)

∞∑

k=i+1

cn(k)αk−i−1
n + cn(i)(1− αn)− cn(j)βn

}
+ cn(i)βi+1

n , i ∈ N.

(30)

We now return to the Lagrangian relaxation in (11) and invoke the stationwise decomposition

in (12) together with Theorem 4.1 to conclude the following:

Theorem 4.2 For all W ∈ R the optimization problem in (11) is solved by a policy which op-
erates as follows: When a generic customer arrives, if the system state is x = (x1, x2, . . . , xN)
then the customer should be admitted at all stations in A(x, W ) where

A(x,W ) = {n : Wn(xn) ≤ W}. (31)
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To use the terminology of Whittle [50], the above analysis tells us that the system is indexable

with Wn : N → R+ the index for station n, 1 ≤ n ≤ N . Since it follows from the above

analysis that when W = Wn(i) for some i, n, both actions (accept, reject) are optimal

for station n when its queue length is i then Wn(i) may be thought of as a fair charge

for rejecting a customer. A solution to the relaxation described at the beginning of this

section (admit generic customers to one station on average) may then be obtained from the

policies in Theorem 4.2 with an appropriate choice of the Lagrange multiplier. It is natural

to follow Whittle [50] in proposing as a heuristic for the original problem the policy which

routes all incoming generic customers to any station for which this fair charge is the smallest.

Formally, when a generic customer arrives, if the system state is x = (x1, x2, . . . , xN), then

the customer should be routed to any station n∗ for which

Wn∗(xn) = min
n∈{1,2,...,N}

Wn(xn).

5 Examples

In this section, we assume certain structures for the waiting cost function Cn(·) and give

expressions for the routing indices developed in Sections 3 and 4. The first example con-

siders an increasing non-continuous and non-convex cost function while the second example

assumes an increasing, continuous, and strictly convex cost function. In Section 6, we test

the performance of our heuristics along with two other heuristics from the literature under

the cost structures assumed by these two examples.

20



5.1 Example 1: A non-continuous and non-convex cost function

In this example, we assume that a customer with a system time of t in station n will incur

a cost

Cn(t) = hnt + dnI(t ≥ τn) + ĥn(t− τn)+, (32)

where (y)+ = max(0, y). Hence, for each time unit spent in the queue, the customer will incur

hn. Furthermore, should the customer spend more time in the system than τn then she will

incur a one-time cost of dn and subsequently an additional cost of ĥn for each additional time

unit above τn. Such cost functions as in (32) are relevant in many settings including service

systems where customers are given delivery time guarantees and in emergency response

settings, where there is typically a time window (e.g., “golden hour rule,” see, e.g., [36]) for

an acceptable level of response time for critically injured patients.

For the cost function given in (32), it can be shown that

cn(i) =
hn(i + 1)

µn

+ dn

i∑
j=0

(µnτn)j

j!
e−µnτn + ĥn

i∑
j=0

(i + 1− j)(1/µn)
(µnτn)j

j!
e−µnτn .

Then, it is easy to see that this cost function trivially satisfies Assumptions 3.1 and 4.1.

Moreover, after some tedious but straightforward algebraic manipulations, the policy im-

provement index (8) can be shown to be

Dn(i) =
hn(i + 1)

µn − Λn

+
dne

−µnτn

1− ρn

(
eΛnτn

(
1− ρi+1

n

ρi
n

)
+

i∑
j=0

(µnτn)j

j!
− 1

ρi
n

i∑
j=0

(Λnτn)j

j!

)

+
ĥne−µnτn

(1− ρn)2µn

(
eΛnτn(1− ρi+1

n )

ρi
n

+
(1− ρn)(µnτn)i+1

i!

+ ((1− ρn)(i− µnτn) + 1)
i∑

j=0

(µnτn)j

j!
− 1

ρj
n

i∑
j=0

(Λnτn)j

j!

)
.
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Similarly, the Lagrangian relaxation index (30) can be shown to have the form:

Wn(i) =
(1− βi+1

n )(1− αn)Rn(i)

(1− βn)αi
n

− Sn(i− 1),

where

Rn(i) =
hn

µn

(
(i + 1)αi

n − iαi+1

(1− αn)2

)
+

dne
−µnτn

1− αn

(
eηnτn + αi

n

i−1∑
j=0

(µnτn)j

j!
−

i−1∑
j=0

(ηnτn)j

j!

)

+
ĥne

−µnτn

µn(1− αn)

(
αi

n(i + (1/(1− αn))− µnτn)
i−1∑
j=0

(µnτn)j

j!

− 1

1− αn

i−1∑
j=0

(ηnτn)j

j!
+

(ηnτn)i

(i− 1)!
+

eηnτn

1− αn

)

and

Sn(i) =
hnβn

µn(1− βn)2

(
1− (i + 2)βi+1

n + (i + 1)βi+2
n

)

+
dne

−µnτn

1− βn

(
βn

i∑
j=0

(θnτn)j

j!
− βi+2

n

i∑
j=0

(µnτn)j

j!

)

+
ĥnβne

−µnτn

µn(1− βn)2

( i∑
j=0

(θnτn)j

j!
+ βi

n

(
(i + 1)β2

n − (i + 2)βn

) i−1∑
j=0

(µnτn)j

j!

+
(θnτn)i

i!

(
(i + 1)β2

n − (i + 2)βn

) )
.

5.2 Example 2: A continuous and convex cost function

For this example, we consider a cost function with structural properties that are quite dif-

ferent from those of the cost function of Example 1. To be more precise, we assume that a

customer with a system time of t in station n will incur a cost

Cn(t) = t2. (33)

Note that this cost function is continuous, strictly increasing, and convex. Hence, it satisfies

the conditions that are needed for asymptotic optimality of Stolyar’s MinDrift rule [40].
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For this cost function, it can be easily shown that

cn(i) =
(i + 1)(i + 2)

µ2
n

,

and hence Assumptions 3.1 and 4.1 are trivially satisfied. After some algebraic manipula-

tions, the policy improvement index (8) can be shown to be

Dn(i) =
(i + 1)(i(1− ρn) + 2)

µ2
n(1− ρn)2

.

On the other hand, the Lagrangian relaxation index (30) can be shown to have the form:

Wn(i) =
(1− βi+1

n )(1− αn)

(1− βn)

(
Tn(i)

αi
n

+ cn(i)

)
−

i−1∑
j=0

βj+1
n cn(j),

where

Tn(i) =

(i + 3)(i + 2)αi+1
n (1− αn)2 + 2αi+2

n

(
(i + 3)− (i + 2)αn

)

(1− αn)3µ2
n

.

6 Numerical results

This section reports our findings from a numerical study that we conducted to assess the

performance of the heuristics developed in Sections 3, 4, and 5, and to observe the effects

of some system parameters on the performance of these heuristics. In our numerical study,

we consider a system with two service stations (N = 2) and assume cost functions in the

form of either (32) or (33). For such systems, it is possible (though expensive) to determine

optimal routing policies numerically by dynamic programming, thus permitting a complete

evaluation of the proposed heuristics.

Our preliminary numerical results suggested that the performance of the heuristics clearly

depended on the system load, (λ+η1+η2)/(µ1+µ2). Therefore, we compared the performance

of the heuristics under three different traffic levels.
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(i) Light traffic: System load ranges from 0 to 0.6.

(ii) Medium traffic: System load ranges from 0.6 to 0.8.

(iii) Heavy traffic: System load ranges from 0.8 to 1.0.

Under each setting, we generated scenarios by choosing η1, η2, and λ uniformly over the

interval [0, 1], and µ1 and µ2 over the interval [0, 1.5], and discarding the cases with system

loads that did not fall into the desired range. For each scenario, we computed the performance

of the optimal policy, the policy improvement heuristic (PIH), the Lagrangian relaxation

heuristic (LRH), the MinDrift heuristic (MDH), the greedy heuristic (GH), and the optimal

static routing heuristic (SH). Sections 3, 4, and 5 provide detailed descriptions of how PIH

and LRH work. We next explain the MDH, GH, and SH policies.

The MinDrift heuristic, which is due to Stolyar [40], is an index heuristic similar to PIH

and LRH. It simply routes each incoming customer to station n for which the corresponding

index Mn(i) is the smallest when there are i customers at station n. The index Mn(i) is

obtained by using the derivative of the cost function and the service rates, ignoring any

jumps in the cost function. For Example 1, the MinDrift index (for station n when there are

i customers) is given by

Mn(i) =





hn/µn, i/µn < τn,

(hn + ĥn)/µn, i/µn ≥ τn,

while the MinDrift index for Example 2 is

Mn(i) = i/µ2
n.

Stolyar [40] proves that the MinDrift heuristic is asymptotically optimal under heavy traffic

for strictly convex and continuous waiting cost functions. Therefore, there is no reason
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to expect that this rule will perform well for Example 1, for which the cost function is

neither continuous nor convex. However, both conditions are satisfied in Example 2, and

consequently stronger performance of MDH is expected there, especially so in heavy traffic

instances.

The greedy heuristic is the standard proposal for routing problems. It routes each incom-

ing generic customer to the queue for which the expected cost for that particular customer is

the smallest. (Note that GH is equivalent to SDR when cost parameters are the same for all

stations.) Finally, the optimal static routing heuristic is the optimal policy among all static

routing policies (see Equation (2)) and is the input policy for the second stage of PIH. Note

that this heuristic is guaranteed to be inferior to the policy improvement heuristic. How-

ever, we still report the performance of SH in order to quantify the improvements gained by

state-dependent policies over this static policy.

The remainder of this section is organized as follows. In Section 6.1, we compare the

performance of our heuristic policies LRH and PIH with the performances of MDH, SH, and

GH. In Section 6.2, we discuss the effects of two system parameters on the performance of

the heuristics under consideration.

6.1 Comparison of the heuristic policies

In this section, we compare the performance of the heuristics for Examples 1 and 2, which

are described in Sections 5.1 and 5.2, respectively.

6.1.1 Performance of the heuristics: Example 1

In this part of the study, we assumed a cost function in the form of (32) with the choices

h1 = h2 = ĥ1 = ĥ2 = 1, d1 = d2 = 8, and τ1 = τ2 = 5. For each traffic setting, we randomly
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generated 5,000 scenarios, and under each scenario, for each heuristic, we computed the

percentage deviation of the performance from that of the optimal policy and constructed a

99% confidence interval on the percentage deviation. For each heuristic, we also determined

the median, the lower and upper quartiles for the percentage deviation of each policy from the

optimal cost, and the number of occasions upon which that heuristic provided the smallest

cost among all heuristics considered. We report our findings in Tables 1, 2, and 3 under

light, medium, and heavy traffic settings, respectively. Note that the last columns in the

tables add up to a value larger than 5,000 due to ties among heuristics.

Heuristic Lower quartile Median Upper quartile 99% C. I. Best heuristic in
for the mean

LRH 0.000 0.000 0.011 0.034 ± 0.005 4030 scenarios
PIH 0.000 0.014 0.557 0.668 ± 0.053 1927 scenarios
MDH 0.420 8.747 42.754 31.108 ± 1.705 223 scenarios
GH 0.018 0.327 1.597 1.224 ± 0.070 932 scenarios
SH 0.369 5.338 23.877 13.761 ± 0.628 0 scenarios

Table 1: Performance of the heuristics for Example 1 under light traffic (numbers except
those in the last column are for percentage deviation from the optimal)

Heuristic Lower quartile Median Upper quartile 99% C. I. Best heuristic in
for the mean

LRH 0.015 0.086 0.315 0.603 ± 0.421 3543 scenarios
PIH 0.054 0.712 2.782 2.148 ± 0.693 1213 scenarios
MDH 3.513 22.638 64.147 43.790 ± 2.028 73 scenarios
GH 0.416 1.653 4.018 2.685 ± 0.108 555 scenarios
SH 3.669 25.618 50.253 28.816 ± 0.900 0 scenarios

Table 2: Performance of the heuristics for Example 1 under medium traffic (numbers except
those in the last column are for percentage deviation from the optimal)

While LRH, PIH, and GH all perform reasonably well, the numerical results presented in

Tables 1, 2, and 3 demonstrate the superior performance of LRH under each traffic setting.

Much the most important aspect of these tables is the clear evidence it provides that LRH
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Heuristic Lower quartile Median Upper quartile 99% C. I. Best heuristic in
for the mean

LRH 0.735 1.728 4.799 4.230 ± 0.418 3851 scenarios
PIH 2.433 6.130 9.912 7.880 ± 0.361 720 scenarios
MDH 5.695 14.040 32.616 25.603 ± 1.235 414 scenarios
GH 2.450 4.898 8.361 5.782 ± 0.150 528 scenarios
SH 13.885 29.998 43.946 29.514 ± 0.689 0 scenarios

Table 3: Performance of the heuristics for Example 1 under heavy traffic (numbers except
those in the last column are for percentage deviation from the optimal)

outperforms the standard proposal GH for the problems studied. One can also observe

from these tables that the performance of all heuristics except for MDH deteriorates as the

system load increases. Note however that the mean performance of LRH is around 4.23%

with median 1.728% even under heavy traffic. Also, comparison of the median and quartiles

with the mean performance indicates that the distribution of the performances are skewed

to the right for all the heuristics. The performance of MDH is clearly poor; however, this

is not surprising since MDH was developed under assumptions that are not satisfied for the

cost function considered for this example. One observation is that MDH seems to provide

its best performance under heavy traffic and its worst performance under medium traffic.

Although LRH clearly seems to be the best heuristic, comparison of PIH and GH is

more complicated. PIH seems to be the heuristic that is affected most by the increase in

the traffic. Its performance gets significantly worse as we move from medium traffic to

heavy traffic. Under heavy traffic, the mean performance of GH is better than that of PIH.

However, PIH is the best heuristic in more scenarios than is GH. At other traffic levels, PIH

outperforms GH in all aspects.

Finally, Tables 1, 2, and 3 clearly show that state-dependent policies provide substantial

improvements over the “best” static policy, SH.
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6.1.2 Performance of the heuristics: Example 2

In this section, we assume that the waiting cost function is in the form of (33). Note that this

cost function satisfies all the assumptions needed for the asymptotic optimality of MDH (see

Stolyar [40]), and therefore MDH is expected to perform well at least under heavy traffic.

For each traffic setting, we randomly generated 5,000 scenarios, and computed the per-

formance of each heuristic under each scenario. Tables 4, 5, and 6 present our findings under

light, medium, and heavy traffic, respectively. Similar to our results for Example 1, LRH

has the best performance among all the heuristics considered under this convex and contin-

uous function. Except for MDH, the performance of all the heuristics worsen as the traffic

intensity increases. The effect of the traffic load on MDH is not clear, since one would reach

different conclusions depending on whether the mean and the confidence interval or median

and the quartiles are chosen to be the deciding performance measure. However, if compared

with the performance of all the other heuristics at all traffic levels, one can observe that as

expected, the relative performance of MDH is the best when under heavy traffic. However,

LRH still seems to perform slightly better than MDH even under heavy traffic (as defined in

this paper). PIH performs relatively well under light and medium traffic, but under heavy

traffic, its overall performance is poor. On the other hand, GH is not as good as PIH under

light and medium traffic, but its performance under heavy traffic is much better than that

of PIH on the average. However, even under heavy traffic, PIH is the best heuristic in more

scenarios than GH is. Finally, as in Example 1, the performance of SH is clearly poor,

demonstrating the superiority of state-dependent policies.
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Heuristic Lower quartile Median Upper quartile 99% C. I. Best heuristic in
for the mean

LRH 0.000 0.000 0.011 0.046 ± 0.007 4038 scenarios
PIH 0.000 0.017 0.706 0.915 ± 0.074 1821 scenarios
MDH 0.698 3.048 7.809 8.116 ± 0.874 192 scenarios
GH 0.028 0.505 2.260 1.700 ± 0.095 836 scenarios
SH 0.394 6.543 35.792 20.142 ± 0.943 0 scenarios

Table 4: Performance of the heuristics for Example 2 under light traffic (numbers except
those in the last column are for percentage deviation from the optimal)

Heuristic Lower quartile Median Upper quartile 99% C. I. Best heuristic in
for the mean

LRH 0.017 0.130 0.442 0.339 ± 0.018 3660 scenarios
PIH 0.051 1.000 4.094 2.827 ± 0.284 1134 scenarios
MDH 1.770 4.503 8.599 6.408 ± 0.360 149 scenarios
GH 0.679 2.525 5.778 3.832 ± 0.145 472 scenarios
SH 3.735 39.943 83.889 47.099 ± 1.567 0 scenarios

Table 5: Performance of the heuristics for Example 2 under medium traffic (numbers except
those in the last column are for percentage deviation from the optimal)

Heuristic Lower quartile Median Upper quartile 99% C. I. Best heuristic in
for the mean

LRH 1.302 2.588 6.597 6.004 ± 0.328 2849 scenarios
PIH 3.315 9.248 15.469 18.871 ± 1.845 982 scenarios
MDH 2.634 5.388 10.173 7.276 ± 0.225 1193 scenarios
GH 4.016 7.131 11.053 7.951 ± 0.188 224 scenarios
SH 22.539 58.985 92.626 61.173 ± 1.759 0 scenarios

Table 6: Performance of the heuristics for Example 2 under heavy traffic (numbers except
those in the last column are for percentage deviation from the optimal)

6.2 Effects of system parameters on the performance of the heuris-
tics

In this section, we focus our attention on Example 1, assuming a cost function in the form of

(32) with parameter values set as in Section 6.1.1, and investigate the effects of two system

parameters on the performances of LRH, PIH, and GH, the three best heuristics for this

example.

• Effects of dedicated load heterogeneity: In the system under consideration, each
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service station has its own dedicated customers, and therefore has its own capacity

that can be allocated to the service of generic customers. If these residual capacities

for the two stations are close to each other, we say that the dedicated loads are ho-

mogeneous, otherwise we say that they are heterogeneous. To observe the effects of

the heterogeneity of the stations on the performance of the heuristics, we first define a

heterogeneity index, Φ as

Φ =

∣∣∣∣1−
η1/µ1

η2/µ2

∣∣∣∣ .

After computing the heterogeneity index for each of the 5,000 scenarios, we ordered all

scenarios according to this index from the smallest to the largest. Then, we computed

the moving average (of order 2,000) of the mean performance across the 5,000 scenarios

(see Figure 1 for plots of the moving averages). In all cases, under each traffic setting,

we observed a worsening performance of the heuristics with an increase in Φ. Hence,

the more balanced the system load is across the two stations, the better is the average

performance of all the heuristics. However, the deterioration in performance is more

significant for GH, less so for LRH, and even less so for PIH. Furthermore, for LRH and

PIH, under heavy traffic, the average performance does not seem to change drastically

as we go from very low levels of heterogeneity to mid levels whereas the performance

starts to deteriorate significantly as we go from mid levels to high levels. On the other

hand, the performance of GH worsens at a seemingly constant level as we go from very

low levels of heterogeneity to very high levels.

• Effects of dedicated arrival rates: We have also studied the numerical results to

identify cases where the heuristic algorithms performed poorly. We observed that the
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dedicated arrival rates have an interesting effect on the performance of the heuristics.

To observe this effect, we ordered the scenarios with respect to their total dedicated

arrival rates, η1 + η2, and carried out an analysis similar to that for the load hetero-

geneity (see Figure 2). We observed that the smaller the total dedicated arrival rate,

the worse is the performance of the LRH on the average. (Note, however, that LRH

still has the best performance among all the heuristics even over the region where its

performance is poor). Its performance is significantly worse for very low levels of the

dedicated arrival rate. This is surprising since lower dedicated arrival rates indicate

low traffic intensity, which overall seems to have a positive impact on the performance

of all heuristics.

We observed a similar effect on the performance of PIH although the effect does not

seem to be as strong as for LRH. On the other hand, the effect on GH seems to depend

on the total traffic load on the system. Under medium traffic, very low and very

high levels of dedicated traffic rate have a positive effect on the performance while

moderate levels yield worse performance on the average. Under light and heavy traffic,

the performance worsens as the total dedicated arrival rate increases.
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