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Summary

Pharmacokinetic studies are commonly performed using the two-stage approach.

The first stage involves estimation of pharmacokinetic parameters like the area under

the concentration versus time curve (AUC) for each analysis subject separately and

the second stage uses the individual parameter estimates for statistical inference.

This two-stage approach is not applicable in sparse sampling situations where only

one sample is available per analysis subject like in non-clinical in-vivo studies. In

a serial sampling design only one sample is taken from each analysis subject. A

simulation study was carried out to assess coverage, power and type I error of seven

methods to construct two-sided 90% confidence intervals for ratios of two AUC’s

assessed in a serial sampling design, which can be used to assess bioequivalence in

this parameter.

Keywords: AUC; bioequivalence; bootstrap; serial sampling design; serial sac-

rifice design; sparse sampling

1 Introduction

A formula to calculate a 1−α confidence interval for the area under the concentration

versus time curve (AUC) from 0 to the last observed time point assessed in a serial

sampling design for normally distributed errors based on the linear trapezoidal rule

is presented in [1]. Procedures based on the t-distribution are presented in [2] and in

[3]. A simulation study for these approaches can be found in [4]. Wolfsegger & Jaki

in [5] derive an estimator and a confidence interval for the AUC from 0 to infinity

(AUC0−∞) for a serial sampling design.

Heinzl [6] presented a test for the null hypothesis of no difference between two

AUC’s from 0 to the last time point using the critical value from a t-distribution

while Bailer & Ruberg [7] propose a permutation test for this null hypothesis using

a z-statistic as the test statistic to be resampled.
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In this note we will consider the ratio of two AUC’s and the corresponding confi-

dence intervals which are often assessed in bioequivalence studies using the confidence

interval inclusion approach. One of the main advantages of considering ratios instead

of the differences is interpretability. While the same conclusions can be obtained from

both approaches it is often easier to discuss ratios. The problem of bioequivalency is

discussed in great detail in the FDA guideline ‘Statistical Approaches to Establishing

Bioequivalence’ [8]. The guideline also addresses in-vitro and in-vivo studies for in-

vestigational new drug applications in which sparse sampling may arise. Hu et al. [9]

present a modelling approach, by ways of a nonlinear model, to assess bioequivalence

or PK similarity for parameters estimated in a serial sampling design. Wolfsegger

[10] presented three methods for calculation of a 1−α confidence interval for the ratio

of two AUC’s from zero to the last time point without assuming a specific nonlinear

model.

We will proceed by giving an overview of the ratio of AUC’s in serial sampling

designs and its estimation followed by a brief summary of seven methods to construct

confidence intervals considered in this simulation study. In Section 4 we will describe

the simulation study conducted in detail while Section 5 provides the simulation

results. We will conclude with an example and a brief discussion of the findings and

future directions.

2 Serial Sampling Design

Consider a study with two treatment groups, k, in which measurements are taken

at J time points, tj (1 ≤ j ≤ J), and at each time point blood is sampled from

nj analysis subjects. It is assumed that the time points are the same for the two

treatment groups and that each subject is only sampled once across all timepoints.

This design leads to independent random variables, both per time point as well

as between time points. Let Xijk be the measured drug concentration from the
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ith analysis subject at time tj receiving the treatment k. Let E[Xijk] = µjk and

V [Xijk] = σ2
jk be the population mean and population variance at time point tj. The

general heteroscedastic model then is defined as

Xijk = µjk + εijk (1)

where the errors, εijk, are identical and independently distributed with continuous

distribution Gjk and the range of Xijk is effectively positive. The theoretical AUC

from 0 to the last time point for a specific treatment to be estimated can be defined

as

AUCk =
J∑
j=1

wjµjk. (2)

Using the linear trapezoidal rule, the weights wj equal

w1 = 1
2

(t2 − t1)

wj = 1
2
(tj+1 − tj−1) (2 ≤ j ≤ J − 1) (3)

wJ = 1
2
(tJ − tJ−1).

This AUC can be estimated by

ÂUCk =
J∑
j=1

wjX̄jk (4)

with V [ÂUCk] =
∑J

j=1w
2
jσ

2
jkn
−1
jk where X̄jk = 1

njk

∑njk
i=1 Xijk represents the arith-

metic mean at time point tj in the kth treatment group.

In this note the parameter of interest therefore is defined as

∆ =

J∑
j=1

wjµj1

J∑
j=1

wjµj2

(5)
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and will be estimated by

∆̂ =

J∑
j=1

wjX̄j1

J∑
j=1

wjX̄j2

. (6)

Wolfsegger [10] shows that
√
n(∆̂ −∆) is asymptotically normal distributed. A

similar approach can be used to estimate the ratio of AUCs from 0 to infinity by

replacing the presented formulas for the AUC with the respective formulas for the

AUC from 0 to infinity in [5]. An approximate 1−α confidence interval for the ratio

can be obtained by application of Fieller’s theorem [11] based on the asymptotic

normal distribution and corresponding standard errors.

3 Methods Compared

In this section we will give a brief overview of the seven different methods to con-

struct (approximate) 1−α confidence intervals that are considered in the simulation

study of Section 4. We will denote the parameter of interest by θ and a standard

estimator for it (e. g. maximum likelihood estimator) by θ̂. Further, in accordance

to Davison & Hinkley [12] and others, we will use the ‘star’ notation to indicate

bootstrap based estimators. Therefore, θ̂∗(b) is the bth bootstrap replication of the

estimator θ̂. The α-percentile of the set of bootstrap replicates {θ̂∗(b), b = 1, . . . , B}

will be denoted by θ̂∗α.

The simplest and probably most often used resampling method to construct con-

fidence intervals among practitioners is the percentile method [13, pp. 170-177]. This

method assumes that for an unknown monotone increasing transformation h(θ), a

statement of the type

h(θ̂)− h(θ) ∼ N(0, σ2
h(θ̂)

)
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holds. A simple approximate 1− α confidence interval can be found as

[θ̂∗α
2
; θ̂∗1−α

2
]. (7)

An improvement upon the percentile method was introduced by Efron [14] in the

bias-corrected and accelerated percentile method, BCa. As before this method has

the assumption of the existence of an unknown monotone increasing transformation,

h(θ), for which the statement

h(θ̂)− h(θ) ∼ N(−z0σh(θ), σ
2
h(θ))

holds. z0 denotes a constant bias correction factor and the relationship σh(θ) =

1 − ah(θ) holds for some a, the skewness correction factor (also referred to as the

acceleration constant). An approximate 1 − α confidence interval therefore can be

estimated as [
θ̂∗Φ(zcorrα

2
); θ̂
∗
Φ(zcorr

1−α2
)

]
(8)

with zcorrα = z0 + z0+zα
1−a(z0+zα)

, Φ(x) the CDF of the standard normal distribution

and zα the corresponding α-percentile. While it is not necessary for both methods

described above to know the transformation h(.), they will fail if the transformation

to a normal distribution is not possible.

A different type of bootstrap intervals can be constructed based on pivotal quan-

tities. The hybrid method [15] is the most intuitive of these approaches. The idea

is to estimate the distribution of the pivot θ̂ − θ by the bootstrap distribution con-

structed upon θ̂∗(b)− θ̂, the bootstrap equivalent of the pivot. The confidence limits

then can be found to be

[2θ̂ − θ̂∗1−α
2
; 2θ̂ − θ̂∗α

2
]. (9)

Although this method has a totally different justification than the percentile

method, it is easy to see the connection between both methods. The hybrid method,

however, in this note is particularly interesting since the next method, called the
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ratio method is based upon its idea.

For the ratio method introduced in [16], we consider a different pivot, θ̂
θ
, whose

distribution is to be approximated by the bootstrap equivalent quantity, θ̂∗(b)

θ̂
which

yields [ θ̂2

θ̂∗1−α
2

;
θ̂2

θ̂∗α
2

]
(10)

as the confidence bounds. A very particular feature of this method is that it

should only be used if the values of the statistic are strictly positive, a feature clearly

prominent in the estimation of the AUC and ratio of two AUC’s. It does, however,

also imply that the propagated error, which arises by every further iteration, emerges

in an approximately multiplicative way. In other words, the method will work poorly

if the distribution to be estimated deviates strongly from the estimate. This, fur-

thermore, means that the sample sizes required tend to be large.

The assumptions of the bootstrap-t-interval [17] are less restrictive than those

of the hybrid method, allowing the pivot to be of a more general form θ̂−θ
σ̂

whose

distribution is to be estimated by the distribution of t∗ = θ̂∗(b)−θ̂
σ̂∗

. The resulting

confidence interval then becomes

[θ̂ − t∗1−α
2
σ̂; θ̂ − t∗α

2
σ̂]. (11)

Notice that, in order to obtain good results for this type of interval, in addition

to the bootstrap statistic t∗ a separate estimator of the standard deviation, σ̂∗ (usu-

ally the jackknife estimator for σ) is needed. To obtain this estimator generally one

additional ‘layer’ of resampling is necessary, making this method often more compu-

tational intensive than the intervals presented before. Furthermore, this additional

bootstrap layer may lead to poor estimates in the case of small sample sizes per

time point which is frequently the case in non-clinical in-vivo studies. In this study,

instead of a resampled estimator for σ, we used the asymptotic standard deviation
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derived in [10] to avoid these problems.

The last two methods considered in the manuscript differ from the previous meth-

ods significantly as they are not resampling based methods. The asymptotic confi-

dence interval simply uses normal theory to obtain a z-type interval as

[θ̂ + zα
2
σ̂θ̂; θ̂ + z1−α

2
σ̂θ̂].

This technique has the implicit assumption that some form of a limiting theory

holds for the statistic such that θ̂−θ
σ̂θ̂
∼. N(0, 1). This approach will result in a sym-

metric confidence interval around the observed effect which is often inappropriate

in the case of ratios since the parameter space for ratios ranges from 0 to infinity.

The Fieller-type procedure, which is described in great detail in [10] for the ratio

of AUC’s, on the other hand uses a t-distribution to model the distribution of the

corresponding pivot. The degrees of freedom are approximated using Satterthwaite’s

method [18], yielding a complicated looking, but computationally straightforward,

confidence interval.

4 Simulations

The following one-compartmental model with first order absorption and elimination

after extravascular administration (e. g. oral, intramuscular, rectal, etc.) was used

for data generation

Xij = f (tj) + εij =
kaFD

V (ka − λ)

(
e−λtj − e−katj

)
+ εij (12)

with the parameterization λ = 0.0693, ka = 0.231, V = 10, F = 1 and the dose

D = 500. To eliminate the bias created by the linear trapezoidal rule to approx-

imate the integral, the true AUC for treatment k was defined as in Equation (2)

using µjk = f(tj) = kaFD
V (ka−λ)

(
e−λtj − e−katj

)
specified at baseline and ten time points

(1h, 2h, 3h, 4h, 6h, 8h, 12h, 18h, 24h and 36h) post study drug administration.
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Both, model and time points, are taken from Gibaldi & Perrier, page 440 [19]. For

each subject only one observation is generated across all time points to reflect the

sparse sampling situation of the serial sampling design. As a result all generated

observations are independent of each other. Consequently missing data effectively

reduces the sample size at specific time points, but need no special consideration in

the estimation of the AUC’s in serial sampling designs as the presented procedures

allow for unequal sample sizes per time point.

Normal, log-normal and double exponential distributed errors were used for vari-

ous combinations of sample size (N=3, 5 and 10) and time point variabilities. Table

1 shows the three variability scenarios that were studied which are inspired by real

data. The coefficient of variations at later time points tend to increase which might

be due to the inaccuracy of an assay to determine the drug concentration in the

blood when dealing with values close to the limit of detection. 10000 simulation runs

(yielding an estimation error of 0.003 for nominal coverage of 90%) were carried out

for each parameter setting with preselected sample sizes. Within each simulation

run, N random samples were generated for each of the specified time points. 1000

bootstrap replications were used for bootstrap based confidence intervals.

Table 1: Coefficient of Variations (%) Used for Simulations
Time point

Scenario Baseline 1 to 18 hours 24 hours 36 hours
1 0% 20% 20% 20%
2 0% 40% 40% 40%
3 0% 40% 80% 80%

Empirical coverage estimates are reported for a nominal coverage probability of

1 − α = 0.90. Empirical lower and upper tail probabilities presented additionally

were defined as the probability that the true ratio is below/above the calculated

two-sided 90% confidence interval for the ratio. Empirical type I errors, γ, in the

sense of bioequivalency are reported under non-equivalence for a nominal coverage
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probability of 1− α = 0.90.

Empirical power and type I error estimates are presented using the conventional

limits of bioequivalence for ratio of averages ranging from 0.8 to 1.25. Expected val-

ues at different time points used to study ∆ = 0.799 and ∆ = 0.90 were determined

by varying parameters λ, ka, V , D and F accordingly.

All simulations were performed with R version 2.4.1 [20]. Empirical coverage,

power and type I error for the methods compared for a given scenario and sample

size per time point were calculated on basis of the same simulation runs.

4.1 Generation of Error Terms

Our starting point to model the uncertainty in the AUC will be normally distributed

errors, since some of the theoretical results are based upon this assumption [10].

Additionally, log-normal distributed errors will be evaluated as drug levels cannot be

negative, while the upper end is open which may lead to a non-symmetrical distri-

bution. The last distribution considered, a double exponential distribution, is used

to represent frequent extreme observations. For all distributions we use the param-

eterization in Casella & Berger, pages 623-625 [21].

The variation in the drug levels at a given time point has been fixed in terms of

the dimensionless coefficient of variation, cv = σ/µ, where µ is the mean drug level

at a given time point and σ the corresponding standard deviation. While the mean

level, µ, is given by the true AUC the challenge is to find the parameters of the un-

derlying distribution that yield a pre-specified coefficient of variation. For the normal

distribution, where the parameters of the distribution correspond to the moments

of interest, the solution is simple and given by data generated from a N (µ, µ2c2
v)

-distribution.

To find the parameters for the other two distributions, however, is more difficult.
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Lets first consider the log-normal case for which we let α and β be the mean and

standard deviation of the underlying normal distribution, respectively. The mean of

the distribution then is exp (α + β2/2) and the coefficient of variation can be found

to be
√

exp (β2)− 1. To determine the proper values for α and β for given values of

µ and cv we need to solve the system of equations

µ = exp
(
α + β2/2

)
(13)

cv =
√

exp (β2)− 1,

which yields α = ln (µ) − 1
2

ln (1 + c2
v) and β2 = ln (1 + c2

v). The data for this

model therefore can be obtained by generating data from a log-normal distribution

with the parameters from above.

Using the equivalent approach for the double exponential distribution parame-

terized by α and β gives the set of equations

µ = α (14)

cv =
1

α

√
2β2,

which are solved by α = µ and β2 = 1
2
µ2c2

v. Thus, we can generate the heavy

tailed distribution by using a double exponential distribution with the respective

parameters.

In the rare case that we generated a negative value using the normal and double

exponential distribution, we chose to simply replace the value by a newly generated

nonnegative observation. While we are aware that this will change the true underly-

ing structure of the model we found that the difference in µ and cv was negligible as

only a few observations had to be replaced. Further, this approach was applied for

both samples for which the ratio of AUC’s was calculated and additional simulation

studies indicated that this replacement method has asymptotically no effect on the
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true ratios studied.

4.2 Contaminated Data

Aside from the ‘clean’ data situations described before, we also study contaminated

data. The first set of contaminations is thought to describe either erroneous data due

to measurement errors or extreme drug-levels for a few subjects at some time points.

In our model we use the same normal and log-normal distributions as described in

Section 4.1 with cv = 0.2 but have 10% of the data generated come from the same

distribution with the mean shifted by 3 standard deviations. For the normal distri-

bution this yields a true cv of 0.254 while the coefficient of variation becomes 0.305

for log-normal data.

The second type of contamination studied is a change in the error distribution over

time. This is motivated by potentially different decomposition of the drug among

subjects. We will model this by having the initial error distribution be normal and

change it to double exponential for the last three time points. The coefficient of

variation will be 0.2 at all time points. Note that this approach is different to just

changing cv for the last 3 time points since this still has the coefficient of variation

fixed while increasing the number of extreme values.

5 Results

Tables 2 - 5 show some of the results of the simulation study for the ‘clean’ data for

the scenarios in Table 1. The omitted results are available from the authors upon

request. For all combinations of sample size, distribution and ∆, the empirical over-

all coverage and the empirical power/type-I-error is presented. Additionally left and

right tail coverages are included as they are important for one sided hypothesis such

as tests for non-inferiority. The power in this context is defined as the probability

that the confidence interval estimated is within 0.8 and 1.25, the conventional range

for bioequivalency.
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The bootstrap confidence intervals with the exception of the bootstrap-t-interval

show a clear pattern in terms of coverage for all parameter settings considered. For

a sample size of 3 per time point these intervals undercover severely, yielding only

an empirical coverage of approximately 0.8 while they approach nominal coverage as

sample size increase. The bootstrap-t-interval as well as the asymptotic and Fieller

type interval are superior in coverage than the other procedures investigated for all

sample sizes and scenarios studied. Empirical coverage of the asymptotic proce-

dure is slightly below the nominal coverage level for a sample size of 3 whereas the

bootstrap-t and Fieller approach yield nominal coverage. In addition, the asymptotic

interval indicates imbalance in tail probabilities. On average, the Fieller approach

is marginally more conservative in terms of coverage than the bootstrap-t approach

with double exponential errors and a sample size of 3 per time point. However, differ-

ences in power and type-I-error between the Fieller interval and bootstrap-t-interval

are small across all sample size and error distributions considered.

Another interesting point is that there appears to be no influence of the error

distribution on the coverage of the different types of confidence intervals while the

power clearly depends on the distributional shape and the values of the coefficient

of variation across time points.

A surprising result can be found for the hybrid intervals for which the empirical

coverage of the tails differ strongly such that the lower bound covers much better

and, in fact almost always, yields the desired coverage on the lower tail, while badly

undercovering on the upper tail. Interestingly the same behavior can not be found

for the related ratio method. While the poor coverage suggests a poor approximation

of the distribution of the pivot by the bootstrap distribution, the resulting intervals

appear to be more symmetric in probability.

In the simulation for equivalent true AUC’s (∆ = 1), presented in Tables 2 and
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5, the power quickly reaches one for a coefficient of variation of 0.2 and 0.4 as sample

size increases. An interesting side note here is that the double exponential errors

yield a higher power than the other two error distributions considered. This may be

due to the effectively smaller value of cv obtained by replacing negative values by a

new, positive, random error.

For the situation of different AUC’s that are still considered to be bioequivalent

(∆ = 0.9) hardly any difference in the performance of the intervals dependent on the

error distribution can be found once again. Only for the high variation scenario a

slight difference in power between the symmetric and the non-symmetric error dis-

tribution can be seen (Table 5). The magnitude of this difference is at most 7%. It

is notable, however, that the power of all intervals is markedly lower than for ∆ = 1

across all sample sizes with up to 40% reduced power for scenario 3.

The most encouraging results for all the methods considered can be found for

AUC’s that are not considered bioequivalent. Even when the true parameter is only

0.001 outside of the range of bioequivalency, all the confidence intervals reflect this

yielding only a type-I-error, γ, that is the probability to decide on equivalency when

you should not, of approximately 5%. Even more astonishing is that the value of γ

is stable across all choices of distribution, sample size and variations.

5.1 Contamination

We will now look at the performance of the intervals for contaminated data. In

terms of coverage the results mimic the pattern discussed for the ‘clean’ data. The

bootstrap-t-interval, asymptotic and Fieller interval are superior in coverage to the

other procedures investigated across all sample size and error distributions consid-

ered.

The power of the contaminated errors show the expected pattern as the power
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Table 2: Empirical Coverage and Power for ∆ = 1 Using a Nominal Coverage of 90% for
Scenario 1

Error distribution

Normal Log-normal Double exponential

N Method Coverage Power Coverage Power Coverage Power

3 Percentile 0.8063 (0.9048;0.9015) 0.9459 0.8013 (0.9012;0.9001) 0.9505 0.7986 (0.9004;0.8982) 0.9373

Hybrid 0.8072 (0.9240;0.8832) 0.9450 0.7948 (0.9165;0.8783) 0.9459 0.8109 (0.9259;0.8850) 0.9378

Ratio 0.8067 (0.9049;0.9018) 0.9490 0.7977 (0.8987;0.8990) 0.9492 0.8091 (0.9055;0.9036) 0.9436

BCa 0.8046 (0.9032;0.9014) 0.9464 0.8001 (0.9003;0.8998) 0.9493 0.7985 (0.9000;0.8985) 0.9338

Boot-t 0.9110 (0.9579;0.9531) 0.8438 0.9110 (0.9579;0.9531) 0.8388 0.9118 (0.9602;0.9516) 0.7951

Asymptotic 0.8835 (0.9514;0.9321) 0.8985 0.8796 (0.9474;0.9322) 0.9002 0.8857 (0.9543;0.9314) 0.8847

Fieller 0.9072 (0.9527;0.9545) 0.8699 0.9078 (0.9541;0.9537) 0.8718 0.9314 (0.9684;0.9630) 0.8245

5 Percentile 0.8513 (0.9259;0.9254) 0.9934 0.8483 (0.9247;0.9236) 0.9952 0.8415 (0.9219;0.9196) 0.9913

Hybrid 0.8526 (0.9397;0.9129) 0.9937 0.8443 (0.9374;0.9069) 0.9945 0.8524 (0.9428;0.9096) 0.9921

Ratio 0.8525 (0.9261;0.9264) 0.9935 0.8469 (0.9251;0.9218) 0.9944 0.8526 (0.9273;0.9253) 0.9926

BCa 0.8522 (0.9252;0.9270) 0.9930 0.8469 (0.9229;0.9240) 0.9948 0.8388 (0.9193;0.9195) 0.9898

Boot-t 0.9040 (0.9534;0.9506) 0.9871 0.8999 (0.9524;0.9475) 0.9878 0.8897 (0.9471;0.9426) 0.9746

Asymptotic 0.8925 (0.9526;0.9399) 0.9892 0.8899 (0.9531;0.9368) 0.9910 0.8907 (0.9533;0.9374) 0.9860

Fieller 0.9038 (0.9510;0.9528) 0.9873 0.9039 (0.9535;0.9504) 0.9896 0.9025 (0.9523;0.9502) 0.9840

10 Percentile 0.8790 (0.9426;0.9364) 1.0000 0.8698 (0.9364;0.9334) 1.0000 0.8765 (0.9415;0.9350) 0.9999

Hybrid 0.8763 (0.9520;0.9243) 1.0000 0.8687 (0.9448;0.9239) 1.0000 0.8803 (0.9536;0.9267) 0.9999

Ratio 0.8802 (0.9430;0.9372) 1.0000 0.8689 (0.9351;0.9338) 1.0000 0.8807 (0.9442;0.9365) 0.9999

BCa 0.8768 (0.9404;0.9364) 1.0000 0.8683 (0.9325;0.9358) 1.0000 0.8723 (0.9379;0.9344) 0.9999

Boot-t 0.9019 (0.9538;0.9481) 1.0000 0.8936 (0.9480;0.9456) 1.0000 0.8945 (0.9504;0.9441) 0.9999

Asymptotic 0.8985 (0.9560;0.9425) 1.0000 0.8882 (0.9496;0.9386) 1.0000 0.8988 (0.9567;0.9421) 0.9999

Fieller 0.9023 (0.9529;0.9494) 1.0000 0.8949 (0.9475;0.9474) 1.0000 0.9053 (0.9547;0.9506) 0.9999

Values in parentheses refer to left and right tail probabilities

Power is based on conventional limits for bioequivalency

N is sample size per time point

increases with sample size for ∆ = 1 and ∆ = 0.9 while the type-I-error is rather

stable at 5% for non-equivalent AUC’s. The biggest and most surprising difference

can be seen between the error distributions. The contaminated log-normal distribu-

tion (Table 6) has markedly better power for the values of the parameter that are

considered bioequivalent than the contaminated normal distribution (Table available

upon request). In fact the power of the contaminated log-normal distribution is up

to 25% higher than for normally distributed errors and is almost identical to the

power for the ‘clean’ normal errors. This result suggests that the power of the inter-

vals is not so much influenced by the skewness of the error distribution than by the

frequency of outliers. Keeping this in mind it is striking that the same feature was

not seen in the initial simulations using ‘clean’ errors. This further indicates that the

extreme tail needs to be very heavy in order to yield a reduction in power as seen here.

The results for changing error distribution once again show the familiar patterns

and the details therefore have been omitted, but are available upon request. The

coverage of the bootstrap based methods converges in sample size toward nominal

level for all these methods besides the bootstrap-t-interval whos coverage is on target
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Table 3: Empirical Coverage and Type I Error for ∆ = 0.799 Using a Nominal Coverage
of 90% for Scenario 1

Error distribution

Normal Log-normal Double exponential

N Method Coverage γ Coverage γ Coverage γ

3 Percentile 0.8046 (0.9028;0.9018) 0.0949 0.8047 (0.9020;0.9027) 0.0946 0.7984 (0.8985;0.8999) 0.0961

Hybrid 0.8082 (0.9235;0.8847) 0.1107 0.8036 (0.9194;0.8842) 0.1123 0.8090 (0.9222;0.8868) 0.1090

Ratio 0.8084 (0.9036;0.9048) 0.0921 0.8013 (0.9007;0.9006) 0.0965 0.8071 (0.9033;0.9038) 0.0931

BCa 0.8046 (0.9015;0.9031) 0.0930 0.8055 (0.9012;0.9043) 0.0923 0.7922 (0.8948;0.8974) 0.0985

Boot-t 0.9142 (0.9572;0.9570) 0.0414 0.9149 (0.9588;0.9561) 0.0422 0.9100 (0.9580;0.9520) 0.0453

Asymptotic 0.8853 (0.9505;0.9348) 0.0636 0.8821 (0.9496;0.9325) 0.0645 0.8826 (0.9512;0.9314) 0.0655

Fieller 0.9258 (0.9627;0.9631) 0.0357 0.9187 (0.9591;0.9596) 0.0384 0.9047 (0.9533;0.9514) 0.0466

5 Percentile 0.8462 (0.9246;0.9216) 0.0751 0.8451 (0.9246;0.9205) 0.0754 0.8429 (0.9197;0.9232) 0.0727

Hybrid 0.8481 (0.9407;0.9074) 0.0897 0.8439 (0.9378;0.9061) 0.0905 0.8512 (0.9392;0.9120) 0.0841

Ratio 0.8465 (0.9251;0.9214) 0.0761 0.8453 (0.9244;0.9209) 0.0761 0.8506 (0.9238;0.9268) 0.0703

BCa 0.8449 (0.9232;0.9217) 0.0753 0.8436 (0.9221;0.9215) 0.0757 0.8384 (0.9161;0.9223) 0.0751

Boot-t 0.8984 (0.9511;0.9473) 0.0503 0.8976 (0.9511;0.9465) 0.0506 0.8894 (0.9442;0.9452) 0.0524

Asymptotic 0.8861 (0.9529;0.9332) 0.0635 0.8853 (0.9517;0.9336) 0.0654 0.8892 (0.9509;0.9383) 0.0584

Fieller 0.9005 (0.9518;0.9487) 0.0492 0.8992 (0.9520;0.9472) 0.0500 0.9055 (0.9518;0.9537) 0.0436

10 Percentile 0.8760 (0.9396;0.9364) 0.0595 0.8763 (0.9401;0.9362) 0.0606 0.8762 (0.9371;0.9391) 0.0572

Hybrid 0.8751 (0.9488;0.9263) 0.0679 0.8749 (0.9489;0.9260) 0.0698 0.8815 (0.9501;0.9314) 0.0632

Ratio 0.8776 (0.9398;0.9378) 0.0581 0.8760 (0.9395;0.9365) 0.0587 0.8817 (0.9401;0.9416) 0.0552

BCa 0.8757 (0.9379;0.9378) 0.0584 0.8740 (0.9375;0.9365) 0.0594 0.8731 (0.9347;0.9384) 0.0578

Boot-t 0.8976 (0.9501;0.9475) 0.0483 0.8973 (0.9501;0.9472) 0.0484 0.8941 (0.9478;0.9463) 0.0511

Asymptotic 0.8953 (0.9531;0.9422) 0.0534 0.8937 (0.9531;0.9406) 0.0556 0.8977 (0.9537;0.9440) 0.0526

Fieller 0.8994 (0.9506;0.9488) 0.0486 0.9007 (0.9516;0.9491) 0.0471 0.9014 (0.9509;0.9505) 0.0464

Values in parentheses refer to left and right tail probabilities

N is sample size per time point

for all sample sizes. Additionally we see again the increasing power in sample size for

equivalent AUC’s while the type-I-error remains stable at about 5% if the areas are

in fact different. This suggests that the constructed intervals are rather insensitive

to distributional assumptions.

6 Example

To illustrate the seven methods the rats data [3] were used. We consider testing for

dose proportionality using the plasma concentrations based on doses of 30 mg/kg

and 100 mg/kg. The observed concentrations are scaled by the administered dose

and the corresponding AUC’s tested for equivalence. Figure 1 shows the two sets of

data while Table 7 displays the seven confidence intervals discussed based on 10000

bootstrap resamples.

The graph of the data shows that plasma concentrations at a dose of 30 mg/kg

are slightly lower at one and two hours and shows much higher variability at 4 hours

while otherwise matching the scaled results for a dose of 100 mg/kg well. All seven
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Table 4: Empirical Coverage for ∆ = 0.9 Using a Nominal Coverage of 90% for Scenario 3
Error distribution

Normal Log-normal Double exponential

N Method Coverage Coverage Coverage

3 Percentile 0.8100 (0.9052;0.9048) 0.7931 (0.8965;0.8966) 0.7998 (0.9002;0.8996)

Hybrid 0.8180 (0.9463;0.8717) 0.7894 (0.9356;0.8538) 0.8049 (0.9398;0.8651)

Ratio 0.8201 (0.9100;0.9101) 0.7835 (0.8911;0.8924) 0.8039 (0.9024;0.9015)

BCa 0.8103 (0.9035;0.9068) 0.7922 (0.8939;0.8983) 0.7970 (0.8968;0.9002)

Boot-t 0.9165 (0.9634;0.9531) 0.9091 (0.9617;0.9474) 0.9077 (0.9582;0.9495)

Asymptotic 0.8921 (0.9646;0.9275) 0.8743 (0.9579;0.9164) 0.8834 (0.9591;0.9243)

Fieller 0.9220 (0.9634;0.9586) 0.9098 (0.9572;0.9526) 0.9240 (0.9644;0.9596)

5 Percentile 0.8522 (0.9265;0.9257) 0.8454 (0.9238;0.9216) 0.8446 (0.9207;0.9239)

Hybrid 0.8587 (0.9615;0.8972) 0.8378 (0.9520;0.8858) 0.8497 (0.9522;0.8975)

Ratio 0.8588 (0.9301;0.9287) 0.8412 (0.9221;0.9191) 0.8498 (0.9225;0.9273)

BCa 0.8519 (0.9241;0.9278) 0.8428 (0.9189;0.9239) 0.8403 (0.9151;0.9252)

Boot-t 0.9059 (0.9556;0.9503) 0.8947 (0.9508;0.9439) 0.8951 (0.9480;0.9471)

Asymptotic 0.8975 (0.9652;0.9323) 0.8825 (0.9569;0.9256) 0.8895 (0.9572;0.9323)

Fieller 0.9135 (0.9565;0.9570) 0.9129 (0.9582;0.9547) 0.9062 (0.9511;0.9551)

10 Percentile 0.8846 (0.9435;0.9411) 0.8647 (0.9328;0.9319) 0.8740 (0.9359;0.9381)

Hybrid 0.8848 (0.9649;0.9199) 0.8646 (0.9555;0.9091) 0.8778 (0.9577;0.9201)

Ratio 0.8868 (0.9447;0.9421) 0.8635 (0.9324;0.9311) 0.8743 (0.9361;0.9382)

BCa 0.8830 (0.9397;0.9433) 0.8611 (0.9274;0.9337) 0.8709 (0.9306;0.9403)

Boot-t 0.9072 (0.9559;0.9513) 0.8878 (0.9454;0.9424) 0.8923 (0.9461;0.9462)

Asymptotic 0.9055 (0.9641;0.9414) 0.8839 (0.9544;0.9295) 0.8950 (0.9561;0.9389)

Fieller 0.9068 (0.9552;0.9516) 0.8968 (0.9489;0.9479) 0.8993 (0.9486;0.9507)

Values in parentheses refer to left and right tail probabilities

N is sample size per time point

lower bounds of the two-sided 90% confidence intervals fall below the conventional

margins of bioequivalence for ratios of averages ranging from 0.8 to 1.25, indicating

that dose proportionality can not be established. As expected the bootstrap-t and

the Fieller interval are widest, which is reflected in the higher coverage in the simu-

lation studies above.

7 Discussion

In this note the performance of seven different types of confidence intervals for the

ratio of two area under the concentration versus time curves in a serial sampling de-

sign, where the otherwise comonly used two-stage approach is not applicable due to

sparsity, are evaluated. For all combinations of variation, sample size and distribu-

tion the asymptotic, Fieller and bootstrap-t-interval are clearly superior to the other

approaches considered. Among these three intervals only small difference in coverage

or power/type-I-error can be seen which is particularly surprising for the asymptotic

interval for contaminated data as it implies that the asymptotic normality shown in

[10] is reached quickly. This result strengthened the argument to use the asymptotic

16



Table 5: Power and Type I error for different ∆ Using a Nominal Coverage of 90% for
Scenario 3

Error distribution

Normal Log-normal Double exponential

∆ = 1 ∆ = 0.9 ∆ = 0.799 ∆ = 1 ∆ = 0.9 ∆ = 0.799 ∆ = 1 ∆ = 0.9 ∆ = 0.799

N Method Power Power γ Power Power γ Power Power γ

3 Percentile 0.2447 0.1823 0.0644 0.2249 0.1685 0.0680 0.3418 0.2554 0.0819

Hybrid 0.2164 0.1845 0.0753 0.1875 0.1700 0.0776 0.3153 0.2667 0.1010

Ratio 0.2489 0.1852 0.0632 0.2232 0.1662 0.0702 0.3441 0.2520 0.0803

BCa 0.2465 0.1789 0.0643 0.2227 0.1656 0.0669 0.3376 0.2514 0.0818

Boot-t 0.0506 0.0366 0.0118 0.0469 0.0308 0.0143 0.1051 0.0769 0.0212

Asymptotic 0.0879 0.0665 0.0240 0.0771 0.0634 0.0268 0.1651 0.1333 0.0393

Fieller 0.0387 0.0298 0.0089 0.0492 0.0363 0.0159 0.0890 0.0645 0.0166

5 Percentile 0.4805 0.3170 0.0696 0.4306 0.2832 0.0702 0.5714 0.3715 0.0730

Hybrid 0.4525 0.3589 0.0923 0.3903 0.3133 0.0952 0.5526 0.4157 0.0974

Ratio 0.4898 0.3184 0.0665 0.4284 0.2835 0.0729 0.5747 0.3693 0.0703

BCa 0.4756 0.3106 0.0668 0.4261 0.2788 0.0679 0.5672 0.3618 0.0714

Boot-t 0.3367 0.2138 0.0413 0.2590 0.1638 0.0407 0.4162 0.2644 0.0472

Asymptotic 0.3603 0.2569 0.0559 0.3021 0.2135 0.0575 0.4634 0.3153 0.0626

Fieller 0.3119 0.1883 0.0341 0.2366 0.1453 0.0335 0.4231 0.2569 0.0414

10 Percentile 0.8550 0.5196 0.0574 0.7809 0.4685 0.0657 0.8973 0.5656 0.0605

Hybrid 0.8428 0.5825 0.0767 0.7656 0.5307 0.0878 0.8917 0.6234 0.0764

Ratio 0.8562 0.5225 0.0561 0.7798 0.4667 0.0663 0.8994 0.5661 0.0596

BCa 0.8497 0.5088 0.0551 0.7727 0.4578 0.0638 0.8945 0.5533 0.0580

Boot-t 0.8239 0.4854 0.0470 0.7233 0.4182 0.0551 0.8687 0.5255 0.0512

Asymptotic 0.8262 0.5226 0.0565 0.7431 0.4675 0.0686 0.8780 0.5647 0.0590

Fieller 0.8215 0.4823 0.0464 0.7349 0.4167 0.0501 0.8742 0.5219 0.0475

Power is based on conventional limits for bioequivalency

N is sample size per time point

standard deviation as an estimator for σ for the bootstrap-t and asymptotic intervals.

We recommend the use of the Fieller interval if the number of time points is moder-

ate to large since it does not rely on heavy computation like the bootstrap-t-interval

and it does not give symmetric confidence intervals as the asymptotic approach.

For a small number of time points where computation time is not an issue, the

bootstrap-t-interval should be used since it has fewer underlying assumptions and

yields almost identical results. The Fieller, asymptotic and bootstrap-t-interval pre-

sented in this paper will be implemented in the R-package PK [22] in the near future.

In vast contrast to prior expectation, the ratio method specifically designed for

problems of this type, showed poor coverage for small sample sizes and was ultimately

indistinguishable from the related hybrid interval in terms of overall coverage. A big

difference between these two, however, was to be found when looking at the tail-

behavior. The ratio method lead to more balanced tail coverages while the hybrid

method severely undercovered on the upper bound. This insight suggests that it

might be possible to refine the ratio method further by including a small sample bias

correction.
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Table 6: Empirical Coverage and Power for a contaminated log-normal distribution using
a Nominal Coverage of 90% for varying delta

Delta

1 0.9 0.799

N Method Coverage Power Coverage Power Coverage γ

3 Percentile 0.7911 (0.8933;0.8978) 0.9516 0.7916 (0.8941;0.8975) 0.6753 0.7915 (0.8949;0.8966) 0.1028

Hybrid 0.7925 (0.9117;0.8808) 0.9487 0.7930 (0.9125;0.8805) 0.7152 0.7927 (0.9135;0.8792) 0.1202

Ratio 0.7888 (0.8935;0.8953) 0.9510 0.7888 (0.8940;0.8948) 0.6729 0.7890 (0.8954;0.8936) 0.1059

BCa 0.7922 (0.8931;0.8991) 0.9518 0.7916 (0.8933;0.8983) 0.6715 0.7921 (0.8944;0.8977) 0.1021

Boot-t 0.9066 (0.9524;0.9542) 0.8406 0.9063 (0.9525;0.9538) 0.5040 0.9060 (0.9528;0.9532) 0.0465

Asymptotic 0.8725 (0.9442;0.9283) 0.8992 0.8724 (0.9446;0.9278) 0.5970 0.8720 (0.9448;0.9272) 0.0728

Fieller 0.8951 (0.9454;0.9497) 0.8842 0.8947 (0.9458;0.9489) 0.5290 0.8948 (0.9464;0.9484) 0.0513

5 Percentile 0.8430 (0.9192;0.9238) 0.9945 0.8429 (0.9200;0.9229) 0.7935 0.8428 (0.9210;0.9218) 0.0779

Hybrid 0.8415 (0.9347;0.9068) 0.9938 0.8412 (0.9353;0.9059) 0.8217 0.8412 (0.9364;0.9048) 0.0950

Ratio 0.8415 (0.9192;0.9223) 0.9945 0.8415 (0.9201;0.9214) 0.7922 0.8412 (0.9208;0.9204) 0.0791

BCa 0.8415 (0.9163;0.9252) 0.9940 0.8410 (0.9172;0.9238) 0.7892 0.8398 (0.9179;0.9219) 0.0777

Boot-t 0.8955 (0.9485;0.9470) 0.9862 0.8954 (0.9489;0.9465) 0.7217 0.8957 (0.9497;0.9460) 0.0539

Asymptotic 0.8851 (0.9481;0.9370) 0.9909 0.8852 (0.9486;0.9366) 0.7637 0.8854 (0.9495;0.9359) 0.0639

Fieller 0.8957 (0.9470;0.9487) 0.9890 0.8953 (0.9475;0.9478) 0.7280 0.8952 (0.9478;0.9474) 0.0525

10 Percentile 0.8830 (0.9414;0.9416) 1.0000 0.8830 (0.9424;0.9406) 0.9558 0.8832 (0.9436;0.9396) 0.0599

Hybrid 0.8825 (0.9503;0.9322) 1.0000 0.8826 (0.9510;0.9316) 0.9653 0.8819 (0.9518;0.9301) 0.0693

Ratio 0.8814 (0.9409;0.9405) 1.0000 0.8817 (0.9419;0.9398) 0.9569 0.8817 (0.9430;0.9387) 0.0609

BCa 0.8831 (0.9394;0.9437) 1.0000 0.8830 (0.9403;0.9427) 0.9527 0.8824 (0.9412;0.9412) 0.0584

Boot-t 0.9046 (0.9530;0.9516) 1.0000 0.9043 (0.9535;0.9508) 0.9419 0.9041 (0.9542;0.9499) 0.0499

Asymptotic 0.9011 (0.9558;0.9453) 1.0000 0.9009 (0.9568;0.9441) 0.9525 0.9011 (0.9576;0.9435) 0.0563

Fieller 0.9058 (0.9544;0.9514) 1.0000 0.9061 (0.9554;0.9507) 0.9440 0.9058 (0.9561;0.9497) 0.0500

Values in parentheses refer to left and right tail probabilities

Power is based on conventional limits for bioequivalency

N is sample size per time point

Table 7: Two-sided 90% confidence intervals for the ratio of AUCs of dose scaled plasma
concentrations of CPI 975 in rats

Method Lower limit Upper limit
Percentile 0.7258 1.2081

Hybrid 0.6681 1.1504
Ratio 0.7285 1.2125
BCa 0.7322 1.2215

Boot-t 0.6741 1.2778
Asymptotic 0.6652 1.2110

Fieller 0.6760 1.2839

The most encouraging finding in this note is the great distinction between bioe-

quivalent and non-equivalent results for all intervals. While the intervals show good

power to assess bioequivalence when it is present (∆ = 1 and ∆ = 0.9), the type-I-

error drops to about 5% as soon as the true ratio is less than 0.8.

A natural extension of the work presented here is the use of batch designs. In

batch designs each analysis subject is sampled at more than one time point but not

at all time points. While a variety of authors such as Holder et al. [23] and Yeh
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Figure 1: Dose scaled plasma concentrations of CPI 975 at different time points in
rats.
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[24] have proposed estimators for the AUC for this sampling design, its theoretical

properties are not yet well established. Furthermore, tests for bioequivalence have

to be developed and evaluated in this context.

Another point of interest regards observations that fall below the detection limit.

Common practice in this situation is to either set those values to half the detection

limit or zero. Setting all values below the detection limit to zero may be sufficient

for calculation of AUC’s but is not an option for other PK parameters as for example

when estimating terminal elimination rate where values of zero cannot be used. A

different approach to the ad-hoc methods mentioned before is to model non-detected

data as censored data. Lambert et al. [25] suggest a method in the context of envi-

ronmental data that should be explored further for medical data in general and the

estimation of pharmacokinetic parameters in particular.
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