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We consider a scenario in which a large equipment manufacturer wishes to outsource the work involved in
repairing purchased goods while under warranty. Several external service vendors are available for this

work. We develop models and analyses to support decisions concerning how responsibility for the warranty
population should be divided between them. These also allow the manufacturer to resolve related questions
concerning, for example, whether the service capacities of the contracted vendors are sufficient to deliver an
effective post-sales service. Static allocation models yield information concerning the proportions of the warranty
population for which the vendors should be responsible overall. Dynamic allocation models enable consideration
of how such overall workloads might be delivered to the vendors over time in a way which avoids excessive
variability in the repair burden. We apply dynamic programming policy improvement to develop an effective
dynamic allocation heuristic. This is evaluated numerically and is also used as a yardstick to assess two simple
allocation heuristics suggested by static models. A dynamic greedy allocation heuristic is found to perform well.
Dividing the workload equally among vendors with different service capacities can lead to serious losses.
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1. Introduction
The recent past has seen considerable growth in the
outsourcing by equipment manufacturers (particu-
larly those in the computing industry) of the work
involved in undertaking repairs to products during
their warranty period. Opp et al. (2003) quote a Merill
Lynch report (Serant 2001) to the effect that this trend
represents a one hundred billion dollar opportunity
for subcontractors and service vendors. Such out-
sourcing enables manufacturers to focus on their core
business and saves the costs involved in maintain-
ing in-house repair facilities. However, it does expose
manufacturers to the risk of poor post-sales service
resulting in customer dissatisfaction which may be
expressed, inter alia, in lost sales. Contact by col-
leagues with a large equipment manufacturer uncov-
ered a situation in which several external vendors
were contracted to undertake warranty repairs. Such
a situation is not uncommon.
A range of recent articles and surveys have high-

lighted risk reduction, geographic coverage, and bear-
ing down on cost as important factors in the recent
trend toward the use of multiple vendors when out-
sourcing business processes. Briskman (2005, p. 2)

states that “multivendor situations can lower risk� � � �
Certainly there are cases where more than one ven-
dor is selected for a single service.” A report in
ZDNet News (2005, p. 1) quotes a Deloitte Consult-
ing LLP study to the effect that “73% of the partic-
ipants are working with multiple vendors to reduce
vendor dependency.” It is certainly the case that in
an area as sensitive to customer relations as warranty
repairs, a manufacturer may not wish to take the risk
of being totally reliant on a single service vendor. See,
for example, the related comments in the Aberdeen
Group’s 2005 study “Best Practice in Strategic Ser-
vice Management” (cited by Violino 2006). Further, in
their study of a model for the outsourcing of war-
ranty repairs, Buckowski et al. (2005) cite a desire to
increase the geographic reach of (high-quality) ser-
vice as a rationale for contracting several repair ven-
dors. This was also cited by McDougall (2005, p. 1)
as a factor in ABN Amro’s move to multiple ven-
dors. He adds that a company wants “enough service
providers familiar with the company and its business
so that it’s possible to shift work among them and
keep all the vendors competing for new work.” More
simply than geographic coverage, the volume of a
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company’s output may be such that there may not
be a single vendor capable of handling all warranty
repairs. Business Outsourcing Corporation (2006) cite
a case study in which a major computer company
contracted two service vendors to undertake a large
volume of emergency repairs to machines under war-
ranty.
As far as the equipment manufacturer cited in

the opening paragraph was concerned, many of the
decisions relating to the management of the repair
workload appeared to be taken in a somewhat ad hoc
fashion. In this paper, we propose analyses which
shed light on a range of important questions which
could inform the manufacturer’s decision making
in this area. These include: What level of service
capacity among contracted vendors needs to be avail-
able to meet the anticipated demand for the manu-
facturer’s post-sales repair service effectively? Given
that the manufacturer’s contracted vendors do pos-
sess sufficient service capacity, how should the repair
work be best distributed among them? How much
might the manufacturer be losing (economically and
in customer goodwill) by maintaining an existing
suboptimal approach to workload distribution? It is
the second of these questions which holds the key to
answering the other two and whose study is the cen-
tral focus of this paper. One way of thinking about
this workload distribution question is in two stages:
at the first stage, consider the (simpler static optimiza-
tion) problem of determining the proportions of the
warranty population for which the respective vendors
should be responsible overall. At the second stage
consider the (more complex dynamic optimization)
problem of how those overall proportions might be
delivered to the vendors in a way which reduces the
extent to which their workloads vary over time. This
will in turn reduce the chance of excessive repair
queue lengths causing unacceptable response times
for customers.
In response to the first-stage problem above, Opp

et al. (2003) and Ding and Glazebrook (2005) have
formulated simple static allocation models in which
it is supposed that there is a fixed number (K) of
items under warranty for all time. These are to be
divided between the (V ) vendors, vendor v receiv-
ing a fixed allocation (kv) of the items which will be
under the vendor’s care. The problem of determining
vendor allocations to minimize an overall cost rate
is formulated as a static optimization problem whose
objective is typically convex and separable, and hence
which is often solvable by a greedy heuristic. See,
for example, Gross (1956), Ibaraki and Katoh (1988),
and Fox (1966). However, such static formulations do
not do justice to the dynamic and stochastic nature
of the population of items under warranty where
new items arrive when purchased (whether singly

or in batches) and depart when their warranty peri-
ods expire. In other words, static formulations can-
not shed any direct light on the second-stage dynamic
optimization problem identified at the conclusion of
the preceding paragraph.
The scenario we consider is described in detail in §2

and formulated as Model 1. In outline, new equip-
ment purchases are made according to a compound
Poisson process. All items within a single order are
assumed to be allocated to a single vendor who will
carry out all repairs on those items until the expiry
of their warranty period when they leave the sys-
tem. We discuss how this assumption may be relaxed
in §4 after the main analysis. The date and size of
each order and the vendor to which it is allocated are
all logged, and these data form the basis of all sub-
sequent allocation decisions. In particular, whenever
an allocation decision is to be made, the number of
items under warranty at each vendor is known along
with the amount of time remaining of the warranty
period for each item. However, the decision maker is
not able to observe the current repair queue at each
vendor which is the locus at which costs are actu-
ally incurred. Continuous observation of all vendor
repair queues would involve a substantial administra-
tive overhead but results in a simpler fully observable
stochastic dynamic optimization problem (Opp et al.
2005). That analysis is of a relatively conventional
model concerning the dynamic routing of incoming
items to alternative service stations to minimize aver-
age cost rates over an infinite horizon. While such
problems are known to be very difficult, there is at
least a substantial literature devoted to them. See, for
example, Hordijk and Koole (1990), Weber (1978), and
Winston (1977).
As will become clear in §2, Model 1 gives rise

to a nonstandard stochastic and dynamic optimiza-
tion problem which is challenging to solve. It has a
number of features which make conventional use of
dynamic programming (DP) for its solution unreal-
istic. Following a brief discussion in §3 of a static
allocation model (Model 2) and of dynamic alloca-
tion heuristics which may be inferred from it, our
primary analysis is contained in §4. Here we adopt
a two-stage approach to design an allocation heuris-
tic which makes full use of system-state information.
At the first stage we design an optimal static alloca-
tion using an approximating model (Model 3). This
establishes an appropriate proportion of work overall
which should be directed to the respective vendors.
At the second stage, we apply a single DP policy
improvement step. The resulting dynamic heuristic
makes allocation decisions in light of values of cal-
ibrating indices for the vendors which are functions
of all of the available data. This index heuristic has
the effect of allocating newly arriving items to the
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vendors whose current workload is relatively low
when due account is taken of their service capacity. It
is both a policy of interest in its own right and also
provides a benchmark against which other simpler
procedures are assessed. A simple dynamic greedy
policy is found to perform strongly in a simulation
study reported in §5. We also assess the sensitivity of
our conclusions to model assumptions.

2. An Allocation Model for a Dynamic
Warranty Population (Model 1)

Purchases of a finished good (item) occur according
to a compound Poisson process ��� F 
. The positive
real � is the rate at which orders for the item occur,
while F is the cumulative distribution function (c.d.f.)
of the order size. We use X ∼ F for a generic order
size, a positive integer-valued random variable with
mean � and finite second moment �2. Upon receipt of
an order, a decision must be made concerning which
one of V vendors should be responsible for repair-
ing all the items in that order during the ensuing
warranty period (W years). Later in the paper, we
consider the possibility that items in an order might
be sent to several vendors. Once a decision is made,
the order size, purchase date, and vendor chosen are
recorded and are available to inform future decisions.
The following information (current at the time of

receipt of any order) is available for the allocation
decisions described above:
(i) the size of incoming order (x);
(ii) the number of items currently under warranty

at vendor v (Nv) along with the durations �tv
n�1 ≤ n

≤Nv
 of their unexpired warranties, 1≤ v ≤ V .
Given that items within the same order have identi-

cal unexpired warranties, this information may alter-
natively be presented as

�xv� tv
≡ ��xv
1� tv

1 
� �xv
2� tv

2 
� � � � � �xv
Mv

� tv
Mv


�� (1)

where the xv
m� 1 ≤ m ≤ Mv, are order sizes and the

tv
m� 1 ≤ m ≤ Mv, are the corresponding durations of
unexpired warranties, numbered such that

W ≥ tv
Mv

> tv
Mv−1 > · · ·> tv

2 > tv
1 ≥ 0� 1≤ v ≤ V �

We have

Nv =
Mv∑
m=1

xv
m� 1≤ v ≤ V � with N =

V∑
v=1

Nv�

the total number of items under warranty. All of the
quantities � ≡ �Nv� �xv� tv
�1≤ v ≤ V � evolve through
time driven by the dynamics of the order process
��� F 
 and the allocation decisions. Standard results
indicate that, once the above system has been in

operation for (at least) time W , the mean and the vari-
ance of the total number of items under warranty are
given by

E�N
= �W� (2a)

and
var�N 
= �W�2� (2b)

The breakdown/repair process for items at each
vendor is Markovian and not observable by the deci-
sion maker. We suppose that at time t� Nv�t
 items
are under warranty at vendor v, with Dv�t
 the
number awaiting or undergoing repair (down) and
Uv�t
 = Nv�t
−Dv�t
 the number which are function-
ing satisfactorily (up). In the absence of new arrivals
at vendor v, the rate associated with the transition
�Dv�t
�Uv�t
� → �Dv�t
 + 1�Uv�t
 − 1� (a breakdown)
is �Uv�t
, while that associated with the transition
�Dv�t
�Uv�t
� → �Dv�t
 − 1�Uv�t
 + 1� (a repair) is
�vmin��v�Dv�t
�. Equivalently, items draw succes-
sive up-times independently from an exp��
 distribu-
tion, with � > 0 the breakdown rate for individual
items. Further, repairs are effected at vendor v by �v

repairers working in parallel, each at rate �v > 0� 1≤
v ≤ V . We suppose that repairs are carried out on a
first-come-first-served basis and that any item which
breaks down during its warranty period will have its
repair completed. See Opp et al. (2003) and Ding and
Glazebrook (2005) for a discussion of the above model
assumptions.
Should an item under warranty at vendor v break

down and experience a response time (time between
its breakdown and the ensuing completion of its
repair) of r , then a cost cv�r
 is incurred. This may
include repair costs (parts and labour) in addition to
costs which assess the impact on the manufacturer of
lost customer goodwill when repair times are long. In
their static model, Opp et al. (2003) assume the linear
form

cv�r
= cv +hr� (3a)

while Ding and Glazebrook (2005) consider models
for which

cv�r
= cv +hI�r > !
� (3b)

cv�r
= cv +h�r − !
+� (3c)

where I�·
 is the indicator function. In (3a), a single
time unit spent by a single item awaiting repair incurs
a fixed goodwill cost of h. In (3b), a goodwill cost
of h is incurred for those items whose response times
exceed some service quality threshold ! , while in (3c),
a cost of h is incurred for every unit of time by which
the response time exceeds ! . In both (3b) and (3c),
goodwill costs are only incurred if a manufacturer
guarantee of service quality fails to be met.
The above costs are aggregated over all repairs

(across all vendors) and averaged over time. The goal
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of analysis is to develop policies for the allocation
of incoming orders to vendors on the basis of the
data in � which will minimize (or come close to
minimizing) the resulting average cost rate incurred
over an infinite horizon. Good allocation policies will
take account of the work already committed to each
vendor in relation to its service capacity. Vendors
which become overloaded are likely to produce large
response times and high costs. However, how the cur-
rent vendor loads should be used to support alloca-
tion decisions is far from clear. Particular difficulties
for an analysis of this model (hereafter referred to as
Model 1) based on stochastic DP are as follows:
(a) The breakdown/repair processes which gen-

erate the costs are not observable. Costs for ven-
dor v may only be inferred from its current state
�Nv� �xv� tv
�.
(b) This state is itself complex, being both continu-

ous and of high (and variable) dimension.
Despite these formidable difficulties, we will suc-

ceed in developing effective allocation procedures.
These will be described in the upcoming sections and
will be subject to numerical evaluation.
Before proceeding further, we offer an explana-

tion of some terms. The descriptors “static” and
“dynamic” are applied in the paper both to models of
allocation problems and to policies for making allo-
cations. A static model is one in which the warranty
population is taken to be constant over time, while in
a dynamic model, the population varies in size. A static
allocation policy is one which takes no account of the
system state information in � in making decisions,
while a dynamic policy does take such account.

3. Heuristics Developed from Static
Models

The static model approach to the design of allocation
heuristics ignores the dynamic and stochastic nature
of the warranty population. A static model (called
Model 2) considers a fixed item population of size K
and designs a collection k = �k1� k2� � � � � kV 
 of fixed
allocations to vendors to minimize a resulting cost
rate. The static model approach infers heuristics for
Model 1 in §2 from the results of analyses of static
Model 2.
We write gv�kv
 for the average cost rate incurred

at vendor v when it has a fixed number kv of items
in its warranty population for all time. The allocation
problem for Model 2 may be expressed as

�P
 min
V∑

v=1
gv�kv
≡ �G�K


s.t.
V∑

v=1
kv =K�

kv ∈�� 1≤ v ≤ V �

In outline, to develop the cost rate gv, we con-
sider Dv the (random) number of down items at
the vendor v. For a fixed vendor population of size
kv, Dv evolves as a birth-death process with state
space �d% 0 ≤ d ≤ kv� whose stationary distribution
�&vd�kv
% 0 ≤ d ≤ kv� is straightforward to compute.
See, for example, Opp et al. (2003) and Ding and
Glazebrook (2005). See also Taylor and Karlin (1998)
for a discussion of birth-death processes. Now write

c̄v�d
= E�cv�r
 �Dv = d�� 0≤ d ≤ kv − 1� 1≤ v ≤ V �

for the conditional expected cost incurred when an
item breaks down at a time at which d other items are
already queued for repair at vendor v. Because the
repair times of individual items at vendor v are inde-
pendent and have an exponential distribution with
rate �v, it is a straightforward matter to compute c̄v�·

for the cost models (3a)–(3c). An appropriate cost rate
for vendor v may now be developed as

gv�kv
=
kv∑

d=0
��kv − d
&vd�kv
c̄v�d
� kv ∈�� 1≤ v ≤ V �

(4)
for use in the optimization problem �P
.
Note that for a wide range of plausible cost mod-

els, we may expect the vendor-specific cost rates
gv' �→ �+� 1≤ v ≤ V , to be increasing convex in kv

or nearly so.
Example 1 (Opp et al. 2003). For the linear cost

model in (3a), the associated vendor cost rate gv will
be increasing convex in kv for all values of the model
parameters, provided only that h > �cv.
Example 2 (Ding and Glazebrook 2005). When

single repairer approximations (in which the service
rate of the single repairer is taken to be �v�v) are
deployed for the cost models in (3b) and (3c), the
resulting vendor cost rates gv are increasing in kv for
all values of the model parameters. They are also close
to convex in a sense which is made precise in Ding
and Glazebrook (2005). Note that for realistic scenar-
ios, single repairer approximations have been found
to be adequate. They are, moreover, appropriate in
situations where the manufacturer has knowledge of
each vendor’s effective service rate but not of its num-
ber of repairers.
The significance of the above is that when each of

the gvs is increasing convex in kv, then the optimiza-
tion problem �P
 is solved by a greedy algorithm. This
solution was first proposed by Gross (1956); see also
Fox (1966). The greedy algorithm which solves �P

may be described as follows:

Greedy Algorithm for (P)
Step 0. Set kv = 0� 1≤ v ≤ V .
Step 1. Choose any w ∈ argmin1≤v≤V �)gv�kv + 1
 −

gv�kv
*�.
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Step 2. Set kw = kw + 1.
Step 3. If

∑V
v=1 kv < K, go to Step 1; otherwise stop.

The reader should note that if we introduce into
�P
 a capacity constraint (of the form kv ≤ Bv) for each
vendor, then we only require each gv to be convex up
to the capacity Bv for a greedy approach to provide
an optimal solution. See Ding and Glazebrook (2005).
The above discussion of static Model 2 yields a nat-

ural allocation heuristic for dynamic Model 1 of §2
for cases in which the fixed allocation, vendor-specific
cost rates gv are increasing convex or nearly so. Sup-
pose that an order of size x has arrived and is await-
ing allocation and that the current system state is
given by � . For each vendor v, compute the average
cost-rate escalation

gv�Nv + x
− gv�Nv
 (5)

experienced when a (fixed) warranty population at
vendor v is increased from Nv to Nv + x. The reader
should note from (4) that in the computations of
gv�Nv
 and gv�Nv + x
, different stationary distribu-
tions �&vd�Nv
�0 ≤ d ≤ Nv� and �&vd�Nv + x
�0 ≤ d ≤
Nv + x� are used. The dynamic greedy allocation heuris-
tic (denoted GRE) will assign the incoming order x
to any vendor for which the quantity in (5) is mini-
mal. Please note that GRE makes no use of the time
remaining under warranty of the items at each ven-
dor, only how many there are. As will become clear,
numerical evidence suggests that this simple heuristic
performs outstandingly well.
We now describe another way of using static

Model 2 to develop dynamic allocation heuristics.
Suppose that the mean size of the warranty popula-
tion �W� is an integer (and otherwise take the nearest
integer to it). Now consider the static optimization
problem �P
 with K = �W�. Use

k��W�
= �k1��W�
�k2��W�
� � � � � kV ��W�
�

for an optimal set of vendor allocations. We propose
a heuristic for Model 1 which dynamically tracks this
static solution by allocating an incoming order to any
vendor for which the difference

Nv − kv��W�
 (6)

is minimal. Note that this tracking heuristic (denoted
TRA) takes no account of the order size x.
Comment. The models discussed in this paper sup-

pose that the administrative overhead involved rules
out observation of the repair queues at the vendors
when allocation decisions are made. The work of Opp
et al. (2005) considered static models with costs given
by (3a) in which utilisation of information regarding
the lengths of the repair queues reduced overall costs
by between 0% and 18%, with figures of 1%–5% being
typical. We would expect a similar degree of cost
improvement to be available for our dynamic war-
ranty populations.

4. An Approximate DP Approach to
Heuristic Development

We shall now proceed to develop an allocation heuris-
tic for Model 1, which makes full use of system
state information, unlike the heuristics GRE and TRA
developed in §3. To do so, we must overcome the
two challenges posed by Model 1 of partial observ-
ability and system-state complexity, and expressed in
(a) and (b) of §2. We shall use an approximate DP
approach, which has proved effective in other appli-
cation domains. See, for example, Glazebrook et al.
(2004), Krishnan (1987), and Tijms (1994). This is a
two-stage approach to policy development in which
the problem’s inaccessible value function is approxi-
mated by deployment of an assumption that all deci-
sions beyond the current one are made according to
a strongly performing static (state-independent) allo-
cation policy. The first stage of the approach con-
cerns the development of such a static policy. This
policy indicates the proportion of workload over-
all which should be allocated to each vendor. An
effective dynamic heuristic is then developed at the
second stage by the application of a single DP pol-
icy improvement step. The resulting heuristic will be
used both as a benchmark by which other simpler
policies may be judged and as a policy of interest in
its own right.

Stage 1: Initial Static Policy. We write p =
�p1� p2� � � � � pV 
 for any static policy for Model 1 which
independently allocates each incoming order to ven-
dor v with probability pv, where

pv ≥ 0� 1≤ v ≤ V � and
V∑

v=1
pv = 1�

At the first stage of our approximate DP approach, we
choose p to minimize the system cost rate. Recall that
costs in Model 1 depend on the unobserved response
times of repaired items. Write H�p
 for the system cost
rate incurred under p, with �p such that

H��p
=min
p

H�p
�

The partially observed nature of the system make the
cost rates H�p
 difficult to compute. We overcome
this by making use of a fully observed approximat-
ing model (called Model 3) which modifies Model 1
by assuming that costs are incurred at (observable)
rate

∑V
v=1 gv�Nv
 when the system is in state � =

�Nv� �xv� tv
�1 ≤ v ≤ V �. Here the gv� 1 ≤ v ≤ V , are
vendor cost rates inferred from Equation (4) in §3. In
words, in this approximation to Model 1, a cost rate
is assumed for the system in state � which would
be exact if the respective vendor populations were to
remain fixed at their current size. We write G�p
 for
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the system cost rate under static policy p for approx-
imating Model 3.
While the cost rates G�p
 for approximating

Model 3 are easily available, simulation evidence sug-
gests that they slightly overestimate the true cost
rates H�p
. The extent of this overestimate was 1.07%
on average for the cases studied involving single-
ton orders and 6.07% on average for the cases in
which order sizes were random. Therefore, to achieve
greater precision in our approximate DP approach,
we considered the introduction of a tuning parame-
ter / into approximating Model 3 (which in all cases
studied was set at a value between 0.985 and 1.00)
such that the system cost rate in state � is adjusted
to

∑V
v=1 gv�/Nv
. This reflects the fact that the true

cost rate under any static policy is approximated with
greater accuracy if the vendor populations are slightly
reduced in approximating Model 3. Details of how /
is chosen are given in the discussion of our numeri-
cal results. However, in no case did this /-adjustment
in Model 3 result in a dynamic allocation heuristic
whose cost performance was significantly changed
thereby. We therefore conclude that the unadjusted
version of approximating Model 3 (i.e., with /= 1) is
perfectly adequate for our approximate DP approach.
Nonetheless, to enable a full discussion of the issues,
we describe the development of our dynamic heuris-
tic with the /-adjustment in place.
In steady state (namely, after time W has elapsed

from the beginning of the process), under static
policy p the number of orders allocated to ven-
dor v whose warranties have yet to expire is �Mv ∼
Poisson��Wpv
� 1 ≤ v ≤ V . Moreover these random
variables are independent. Now write Sn = X1 + X2
+ · · · +Xn� n ∈ �, where the Xi are i.i.d. with Xi ∼ F ,
the order size distribution, 1≤ i ≤ n. Further, write

2v�n
= E�gv�/Sn
�� 1≤ v ≤ V � n ∈�� (7)

where in (7), gv is the vendor-specific cost rate func-
tion developed in (4). The quantity 2v�n
 is the mean
cost rate for vendor v while responsible for items
from n orders under approximating Model 3 with tun-
ing parameter /. The approximating average system
cost rate incurred when policy p is applied is then
given by

G�p
=
V∑

v=1
E�Wpv

�2v� �Mv
�� (8)

where the subscript �Wpv in (8) denotes an expecta-
tion taken under the assumption that �Mv has the Pois-
son distribution with this mean. An intermediate goal
of analysis is the search for a static policy p∗ such that

G�p∗
=min
p

G�p
� (9)

Following discussion of the gv� 1 ≤ v ≤ V , in §3 it is
important to point out (and straightforward to show)

that if the gv are all increasing convex, then so are the
2v� 1≤ v ≤ V . In this event, the optimization problem
in (9) is convex and separable, and simple efficient
algorithms exist for its solution. The quantity G�p∗

is an accessible upper bound on the average cost rate
incurred when an optimal (dynamic) policy is applied
to approximating Model 3.

Stage 2: DP Policy Improvement Step. Suppose
now that at time zero an order of size x arrives
and awaits allocation to a vendor when the system
state is � = �Nv� �xv� tv
�1≤ v ≤ V �. Under DP policy
improvement (PI), a decision regarding this allocation
is made on the assumption that all subsequent allo-
cations are made according to static policy p∗. This
assumption enables us to make a suitable approxima-
tion to optimal (future) costs. More specifically, we
shall use C�v�p∗�T �� �x
 to denote the expected cost
incurred under approximating Model 3 over the hori-
zon T ≥W when the initial allocation is made to ven-
dor v and all subsequent allocations are according
to p∗. Our PI heuristic will, in any state � , choose
to allocate an order of size x to any vendor v�x�� 

satisfying

C�v�x�� 
�p∗�T �� �x�

= min
1≤v≤V

C�v�p∗�T �� �x
� T ≥W� (10)

It will follow from the analysis below that there is
indeed such a choice of vendor.
If the incoming order at time zero is allocated to

vendor v, then, from (1), the vendor v state undergoes
a transition �xv� tv
→ �xv� tv
x, where

�xv� tv
x ≡ ��xv
1� tv

1 
� �xv
2� tv

2 
� � � � � �xv
Mv

� tv
Mv


� �x�W
��
(11)

Subsequent evolution under policy p∗ is independent
for distinct vendors. Further, at any time T > W , the
time zero allocation of the size x order does not im-
pact the system state then. The latter has been evolv-
ing under allocation p∗ for the previous W time units.
Hence,

C�v�p∗�T �� �x


=Cv�p
∗
v�W � �xv� tv
x�−Cv�p

∗
v�W � �xv� tv
�

+
V∑

w=1
Cw�p∗

w�W � �xw� tw
�

+ �T −W

V∑

w=1
E�Wp∗w �2w� �Mw
��

1≤ v ≤ V � T ≥W� (12)

Expression (12) partitions the expected system cost
during )0�T * between costs incurred during )0�W*
and those incurred during )W�T * (the final term
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in (12)). Costs incurred during )0�W* are partitioned
between those incurred at the chosen vendor v under
p∗ and those at other vendors. The following result
follows immediately from (10) and (12).

Theorem 1 (Characterization of the PI Heuris-
tic). The allocation policy obtained when a single DP pol-
icy improvement step is applied to static policy p∗ operates
as follows: If an order of size x arrives when the system
state is

� = �Nv� �xv� tv
�1≤ v ≤ V ��

it should be allocated to any vendor v which has a minimal
value of the calibrating index

Ixv��x
v� tv
� ≡ Cv�p

∗
v�W � �xv� tv
x�

−Cv�p
∗
v�W � �xv� tv
�� (13)

It is a straightforward matter to compute the cali-
brating indices in (13). To develop appropriate formu-
lae, we expand the notation in (7) such that for any
y ∈�� n ∈� and any 1≤ v ≤ V , we have that

2v�y�n
= E)gv�/�y + Sn
�*�

It will clarify matters if we now focus on indices for
an individual vendor and drop the vendor identi-
fier v. Hence, we write

Ix��x� t
�=C�p∗�W � �x� t
x�−C�p∗�W � �x� t
�� (14)

where

�x� t
≡ ��x1� t1
� �x2� t2
� � � � � �xM� tM
�� (15)

The following result gives an expression for the index
in (14). Note that we now adopt the notational con-
ventions t0 = 0� tM+1 =W .

Lemma 1 (Vendor-Specific Calibrating Indices).
The vendor-specific indices which determine the PI alloca-
tion heuristic are given by

Ix��x� t
� =
M∑

m=0

∫ tm+1

tm

E�tp∗

{
2

(
x+

M∑
m+1

xr� �M
)

−2

( M∑
m+1

xr� �M
)}

dt (16)

for all values of the arguments concerned.

Proof. Consider the computation of

C�p∗�W � �x� t
x�� (17)

Choose some fixed time t such that tm < t ≤ tm+1� 0≤
m≤M . If the state at time zero is �x� t
x, then by time t
the items represented by the pairs �xi� ti
� 1 ≤ i ≤ m,
will no longer be under warranty at the vendor. Of
those items which had been under warranty at time

zero, a total of x+∑M
m+1 xr will remain so. These items

will have been joined at t by a Poisson distributed
number of orders (with mean �tp∗) which have been
allocated to the vendor since time zero. Hence, in the
computation of (17) for approximating Model 3, the
expected instantaneous cost rate at t is given by

E�tp∗

[
g

{
/

(
x+

M∑
m+1

xr +S �M

)}]
≡E�tp∗

[
2

(
x+

M∑
m+1

xr� �M
)]

�

(18)
If we now consider the computation of C�p∗�W �
�x� t
�, we can derive equivalent expected instanta-
neous cost rates by inserting x = 0 into the expressions
in (18). The expression in (16) is then derived from
(14) by integration of the appropriate instantaneous
cost rates. This concludes the proof. �

The next result has three parts, each of which
describes aspects of the behaviour of the calibrating
indices introduced in Theorem 1 and Lemma 1. The
first part will be utilized in comment 2 following
the result which concerns problems where we drop
the assumption that each incoming order is sent to
a single vendor. The remaining two parts assert that
the indices increase with vendor workload (in a suit-
ably defined sense) for the important cases in which
the vendor cost rate functions g are increasing con-
vex. Hence, the heuristic described in the statement
of Theorem 1 favours vendors with smaller relative
workloads when making allocations, as would seem
sensible. Theorem 2, Parts (ii) and (iii) confirm that
the calibrating indices have the kind of properties that
the decision maker might wish for. First, we need to
introduce for the vendor state �x� t
 the related func-
tion �x� t
�t
' )0�W*→�, where �x� t
�t
 is the number
of items in the state �x� t
 whose unexpired warranties
exceed t. We have that

�x� t
�t
=
M∑

m+1
xr� tm < t ≤ tm+1� 0≤m≤M�

We now say that the system state �x� t
 dominates sys-
tem state �y� s
 if and only if

�x� t
�t
≥ �y� s
�t
� 0≤ t ≤W� (19)

The proof of Theorem 2 may be found in the online ap-
pendix to this paper (provided in the e-companion).1

Theorem 2 (Properties of the Vendor-Specific
Calibrating Indices). If the vendor-specific cost rate g
is increasing convex, then the calibrating index Ix�x� t
 has
the following properties:
(i) Ix�x� t
 is increasing and convex in x for all �x� t
;
(ii) Ix�x� t
 is increasing componentwise in both x and t

for all x;

1 An electronic companion to this paper is available as part of
the online version that can be found at http.//mansci.journal.
informs.org/.
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(iii) If �x� t
 dominates �y� s
, then, for all x,

Ix�x� t
≥ Ix�y� s
�

Comments.
1. To give the reader more sense of the likely form

of the key calibrating indices in (16), we consider a
toy example in which all orders are of size 1 (xv

m = 1
for all m�v), and all vendor-specific cost rates are
quadratic such that

gv�k
= av + bvk+ cvk
2� 1≤ v ≤ V � k ∈�� (20)

where in (20) and what follows we restore the vendor
identifier v. It is possible to show that the vendor-
specific calibrating indices are then given by

/−2Iv�t
v
= cv

(
2

Mv∑
1

tv
m −�p∗

vW
2

)
+ const� 1≤ v ≤ V �

(21)
where in (21) const denotes a constant common to
all indices. The expression in (21) has a simple inter-
pretation:

∑Mv
1 tv

m is the total of all unexpired war-
ranties at vendor v, and �p∗

vW
2/2 is the mean value

of this quantity under the static policy p∗. Hence, an
allocation policy based on the indices in (21) (see The-
orem 1) will favour vendors whose current commit-
ments (as measured by

∑Mv
1 tv

m) are most below those
indicated by the optimal static policy, the difference
being factored by the (positive) cost constant cv. In
this sense, the PI heuristic can be said to dynamically
track the optimal static solution. This could be thought
of as a more refined version of the tracking heuristic
TRA described at the end of §3.
2. A variety of elaborations of the material in this

section are readily available, including to models in
which warranty periods may differ between orders.
We can also consider alternatives to the assumption
that each order should be allocated to a single ven-
dor. Suppose, for example, that we allow each order
to be distributed between vendors in any fashion. In
that event, the result of Stage 2 of the above approx-
imate DP analysis is modified as follows: Should
an order of size x arrive when the system state is
� = �Nv� �xv� tv
�1 ≤ v ≤ V �, a PI allocation heuristic
would propose that the order be divided between the
vendors such that vendor v receives yv items, where
y= �y1�y2� � � � � yV � is chosen to

minimize
V∑

v=1
Iyvv��x

v� tv
�

subject to
V∑

v=1
yv = x� (22)

Further, the result of Theorem 2(i) implies (via the
result of Gross 1956) that in the important cases for

which the vendor-specific cost rates gv are all increas-
ing convex, then the minimization in (22) is achieved
by a greedy procedure. Note that we can also define
versions of the heuristics GRE and TRA, developed
at the end of §3, which are suitable for this version of
the allocation problem. Early numerical results sug-
gest that allowing an order to be placed with several
vendors instead of just one results in a modest reduc-
tion in the cost rates (of 0.38% on average in the cases
studied) incurred by good heuristics.
3. It is a straightforward matter to compute the

vendor-specific calibrating indices online as the sys-
tem evolves over time. To see this, note that standard
integration results mean that the quantity in (16) may
be re-expressed as

Ix��x� t
�

=
M∑

m=0

�∑
n=0

{
2

(
x+

M∑
m+1

xr�n

)
−2

( M∑
m+1

xr�n

)}

×
{ �∑

s=n+1
��p∗
s−1�ts

m+1e
−�p∗tm+1 − ts

me−�p∗tm
�s!
−1
}
�

(23)

To compute this accurately and quickly, it is enough
to create a library of values of the quantities 2�y�n

for the range 0≤ y ≤ �W� + 3√�W�2� 0≤ n ≤ �W +
3
√

�W , and import these values, as appropriate, into
the expression in (23). In practice, the two infinite
sums converge quickly and may be well approxi-
mated by taking the upper limit of summation to be
�W + 3√�W .
4. It has already been pointed out that G�p∗
 is

an accessible upper bound on the average cost rate
incurred when an optimal (dynamic) policy is applied
to approximating Model 3. To obtain a useful approx-
imative lower bound, use �G�K
, K ∈ �+, for the opti-
mal value of the optimization problem �P
 without
the integrality constraints, namely,

��P
 min
V∑

v=1
gv�kv
≡ �G�K


s.t.
V∑

v=1
kv =K�

kv ≥ 0� 1≤ v ≤ V �

The proof of Lemma 2 may be found in the online
appendix.

Lemma 2. When the vendor-specific cost rates gv� 1≤
v ≤ V , are convex, �G�/�W�
 is a lower bound on the aver-
age cost rate achieved by any allocation policy for approxi-
mating Model 3.
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5. Simulation Study
The proposals for allocation procedures made in the
previous two sections have been assessed by an exten-
sive simulation study. Questions to which we seek
answers include the following:
1. When does the static Model 2 of §3 provide an

adequate basis for the development of good alloca-
tion policies? In particular, are the very simple heuris-
tics derived from static Model 2 competitive with the
PI heuristic, given that the latter makes much more
extensive use of system state information?
2. What cost penalties might be incurred if the war-

ranty repair work is divided equally between ven-
dors in contexts where their service capacities are
different?
3. How sensitive are our conclusions to model

assumptions?
4. What do our analyses and numerical results

tell us about the research questions posed in the
introduction?
To shed light on such matters, we conducted sim-

ulation studies of an extensive range of systems, all
having four vendors �V = 4
 to conduct the warranty
work. The means and standard deviations of the total
population of items under warranty at any time for
the cases reported here are given in Table 1. The
results of part of this study are summarized in Tables
2 and 3. We adopt single-repairer approximations for
vendor dynamics throughout. All items have a war-
ranty period of two years �W = 2
 and a breakdown
rate of 1.2 per year �� = 1�2
. The repair cost model
(3c) is used, with cv = 0� 1 ≤ v ≤ V � h = 1, and ! =
0�04. Hence, goodwill costs grow linearly (at the rate
of one unit per year) once the response time for a
repair exceeds 10 working days.
Table 2 concerns problems in which items are pur-

chased as singletons at rates of 50 per year (Table 2(a))
and 250 per year (Table 2(b)), respectively. Through-
out Table 3, orders are placed (and require allocation
to a vendor) at a rate of 25 per year. The order
size X is such that X − 1 has a Poisson distribution
with mean � − 1, where � takes values 1 (Table 3(a)),
5 (Table 3(b)), 11 (Table 3(c)), 15 (Table 3(d)), and
19 (Table 3(e)). Note that the introduction of the ran-
dom order size into the examples in Table 3 increases
the variability of the population size N , with the
standard deviation of N growing approximately in a
linear fashion with its mean. Finally, for problem spec-
ification, each of the seven subtables within Tables 2

Table 1 Means and Standard Deviations of N, the Total Number of
Items Under Warranty, for Examples in Subsequent Tables

2(a) 2(b) 3(a) 3(b) 3(c) 3(d) 3(e)

E�N� 100 500 100 300 600 800 1�000√
var�N� 10�00 22�36 15�81 45�28 88�03 116�40 144�74

Table 2 Results of a Simulation Study of the Comparative
Performance of Five Allocation Heuristics When Orders
Are Singletons

Scenario �G�100� G�p∗� PIH APIH GRE TRA SMA

(a)
1 2�976 3�624 3�153 3�153 3�159 3�159 3�153

�0�007� �0�007� �0�006� �0�006� �0�007�
2 2�957 3�599 3�128 3�134 3�136 3�138 3�512

�0�007� �0�007� �0�007� �0�008� �0�008�
3 2�886 3�513 3�065 3�054 3�063 3�090 4�960

�0�007� �0�007� �0�007� �0�006� �0�013�
4 2�745 3�348 2�914 2�922 2�919 2�926 8�671

�0�006� �0�007� �0�006� �0�007� �0�021�
5 2�517 3�081 2�697 2�689 2�691 2�720 16�480

�0�006� �0�006� �0�006� �0�006� �0�033�
6 2�183 2�690 2�357 2�361 2�360 2�410 46�743

�0�006� �0�006� �0�006� �0�006� �1�041�

Scenario �G�500� G�p∗� PIH APIH GRE TRA SMA

(b)
1 11�224 15�109 12�291 12�291 12�303 12�303 12�291

�0�033� �0�033� �0�034� �0�034� �0�033�
2 11�186 15�057 12�302 12�255 12�267 12�283 20�262

�0�030� �0�031� �0�032� �0�030� �0�049�
3 11�042 14�879 12�115 12�119 12�125 12�138 45�997

�0�030� �0�033� �0�031� �0�031� �0�070�
4 10�765 14�535 11�857 11�861 11�847 11�862 86�468

�0�030� �0�032� �0�030� �0�032� �0�093�
5 10�315 13�973 11�405 11�397 11�403 11�427 140�494

�0�031� �0�033� �0�033� �0�032� �0�125�
6 9�642 13�135 10�736 10�717 10�700 10�813 �

�0�028� �0�029� �0�033� �0�031�

Note. See the text for further details.

and 3 considers six vendor scenarios, in all of which
the total of the vendor service rates are equal, but
where the degree of inequality between the vendors
increases from scenario 1 (where the service rates are
all equal) through scenario 6 (where vendor 1 has a
service rate which is eight times that for vendor 4).
More specifically, in scenario 1, service rates have
the form �v1 = �62�5
H� 1 ≤ v ≤ 4, while in scenario
j > 1, vendor v has service rate �vj = 250Hxv−1

j �1−xj
 ·
�1 − x4j 


−1� 1 ≤ v ≤ 4� 2 ≤ j ≤ 6, where xj = 1 − 0�1 ·
�j − 1
� 2 ≤ j ≤ 6. The constant H is adjusted to give
a reasonable service capacity for the problem con-
cerned and takes the values 0.7 (Tables 2(a) and 3(a)),
1.5 (Table 3(b)), 2.5 (Table 2(b)), 3.0 (Table 3(c)), 3.8
(Table 3(d)), and 4.7 (Table 3(e)). Rows in the table
correspond to a given scenario (i.e., choice of service
rates). The column heads in the tables are as follows:

�G��W�
: These columns contain the values of the
optimization problem �P
 evaluated for the relevant
mean population size. Because the vendor-specific
cost rates for our examples are close to convex, then
by Lemma 2, these values are close to the lower
bounds on achievable cost performance for approxi-
mating Model 3 when /= 1.
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Table 3 Results of a Simulation Study of the Comparative
Performance of Five Allocation Heuristics When Order Sizes
Are Random

Scenario �G�100� G�p∗� PIH APIH GRE TRA SMA

(a)

1 2�976 4�860 3�390 3�381 3�400 3�400 3�381
�0�010� �0�010� �0�010� �0�010� �0�009�

2 2�957 4�829 3�363 3�363 3�379 3�386 3�781
�0�010� �0�010� �0�010� �0�010� �0�011�

3 2�886 4�720 3�290 3�288 3�298 3�316 5�321
�0�010� �0�010� �0�011� �0�010� �0�016�

4 2�744 4�510 3�150 3�157 3�162 3�200 9�147
�0�009� �0�010� �0�009� �0�010� �0�026�

5 2�517 4�171 2�926 2�927 2�940 3�038 16�949
�0�009� �0�009� �0�009� �0�010� �0�040�

6 2�183 3�672 2�617 2�607 2�619 2�801 51�456
�0�009� �0�009� �0�010� �0�010� �1�150�

Scenario �G�300� G�p∗� PIH APIH GRE TRA SMA

(b)

1 11�548 30�412 16�709 16�719 16�775 16�775 16�698
�0�077� �0�071� �0�075� �0�075� �0�075�

2 11�512 30�333 16�670 16�701 16�755 16�761 20�641
�0�070� �0�072� �0�073� �0�074� �0�080�

3 11�379 30�601 16�599 16�576 16�671 16�789 33�564
�0�075� �0�073� �0�073� �0�073� �0�105�

4 11�116 29�537 16�428 16�371 16�490 16�763 56�276
�0�076� �0�078� �0�077� �0�075� �0�130�

5 10�694 28�682 16�117 16�060 16�180 16�848 93�139
�0�076� �0�070� �0�074� �0�077� �0�280�

6 10�066 27�405 15�687 15�579 15�709 17�238 �
�0�076� �0�076� �0�078� �0�079�

Scenario �G�600� G�p∗� PIH APIH GRE TRA SMA

(c)

1 10�793 52�522 22�113 22�098 22�227 22�227 22�095
�0�137� �0�144� �0�137� �0�137� �0�141�

2 10�753 52�386 22�113 22�061 22�221 22�263 31�349
�0�142� �0�143� �0�143� �0�141� �0�156�

3 10�611 51�918 22�069 22�006 22�169 22�447 60�359
�0�139� �0�139� �0�139� �0�143� �0�199�

4 10�336 51�014 21�882 21�779 22�045 22�533 107�938
�0�135� �0�142� �0�138� �0�139� �0�259�

5 9�887 49�544 21�734 21�589 21�838 23�072 178�670
�0�132� �0�136� �0�138� �0�140� �0�482�

6 9�214 47�350 21�413 21�092 21�527 24�124 �
�0�135� �0�133� �0�129� �0�151�

Scenario �G�800� G�p∗� PIH APIH GRE TRA SMA

(d)

1 19�056 84�432 39�928 39�882 40�096 40�102 39�953
�0�236� �0�239� �0�240� �0�241� �0�234�

2 19�007 84�258 39�941 38�890 40�061 40�098 54�693
�0�235� �0�233� �0�236� �0�239� �0�258�

3 18�830 83�660 39�864 39�997 40�115 40�403 93�887
�0�242� �0�244� �0�242� �0�243� �0�303�

4 18�483 82�504 39�836 39�997 40�012 40�829 163�249
�0�241� �0�244� �0�239� �0�241� �0�356�

5 17�916 80�626 39�762 40�151 39�999 41�632 289�603
�0�241� �0�242� �0�248� �0�248� �1�959�

6 17�060 77�824 39�692 40�425 39�885 43�477 �
�0�246� �0�249� �0�247� �0�260�

Table 3 (Continued)

Scenario �G�1�000� G�p∗� PIH APIH GRE TRA SMA

(e)
1 22�406 108�173 51�082 51�058 51�358 51�327 51�113

�0�327� �0�325� �0�325� �0�329� �0�321�
2 22�356 107�961 50�970 51�061 51�263 51�369 70�364

�0�323� �0�318� �0�318� �0�323� �0�336�
3 22�166 107�233 51�028 50�900 51�221 51�623 124�578

�0�319� �0�317� �0�320� �0�318� �0�371�
4 21�798 105�826 51�127 50�908 51�363 52�264 208�585

�0�317� �0�325� �0�325� �0�328� �0�430�
5 21�194 103�541 51�183 50�865 51�406 53�524 393�394

�0�321� �0�325� �0�321� �0�332� �4�113�
6 20�278 100�135 51�335 50�837 51�574 55�338 �

�0�324� �0�317� �0�319� �0�338�

Note. See the text for further details.

G�p∗
: These columns contain the values of the
average cost rates incurred when an optimal static
policy is applied to approximating Model 3 with
/= 1.
PIH: This is the PI heuristic of Theorem 1/

Lemma 1 developed for the case /= 1. These columns
contain simulation-based estimates of the average cost
rates incurred when PIH is applied to Model 1.
APIH: This is a PI heuristic as in Theorem 1/

Lemma 1, but now developed for an /-value cho-
sen to yield greater precision in our approximate
DP methodology. A single /-value applies to each of
the seven subtables within Tables 2 and 3. To obtain
the chosen /, for each subtable a simulation-based
estimate was obtained of the overall overestimate of
true costs, which resulted when an optimal static pol-
icy was applied in all scenarios of approximating
Model 3 without adjustment �/= 1
. The /-value was
then chosen to secure the appropriate percentage cost
reduction for the simple scenario 1 in which all opti-
mal static policies are such that p∗

v = 0�25� 1 ≤ v ≤ 4.
Details of the /s chosen and the degree of agreement
post adjustment between approximating (Model 3)
and true (Model 1) costs may be found in Table 4.
The columns headed APIH in Tables 2 and 3 contain
simulation-based estimates of the average cost rates
incurred when this adjusted PI heuristic is applied to
Model 1.
GRE, TRA, SMA: These columns report on the cost

performances of, respectively, the dynamic greedy
allocation heuristic (GRE) described at the conclusion
of §3 near (5), the tracking heuristic (TRA) described
near (6), and a heuristic (SMA), which allocates each
incoming order to any vendor whose current com-
mitted workload (i.e., total of all unexpired warranty
times) is smallest. The policy SMA is included in
the study to give an indication of how a simple,
indeed naive, allocation rule that treats all vendors
equally performs. Each column contains the appro-
priate simulation-based estimates of the average cost
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Table 4 The � Values Use for the APIH Heuristics of Tables 2 and 3 Together with the Resulting Optimal Static Cost Rate for Approximating Model 3
and Model 1

2(a) 2(b) 3(a) 3(b) 3(c) 3(d) 3(e)
Scenario �= 0�999 �= 0�998 �= 0�991 �= 0�990 �= 0�985 �= 0�988 �= 0�989

1 Model 3 3�616 14�827 4�693 28�954 48�321 79�343 101�904
Model 1 3�617 (0.009) 14�842 (0.041) 4�692 (0.017) 29�026 (0.096) 48�379 (0.209) 79�317 (0.311) 101�832 (0.398)

2 Model 3 3�593 14�785 4�661 28�872 48�187 79�202 101�688
Model 1 3�598 (0.008) 14�784 (0.038) 4�660 (0.016) 28�917 (0.100) 48�268 (0.201) 79�293 (0.301) 101�671 (0.386)

3 Model 3 3�504 14�608 4�549 28�593 47�691 78�553 100�869
Model 1 3�504 (0.009) 14�579 (0.036) 4�555 (0.015) 28�611 (0.094) 47�774 (0.202) 78�641 (0.312) 101�001 (0.394)

4 Model 3 3�339 14�250 4�339 28�035 46�718 77�252 99�272
Model 1 3�338 (0.008) 14�286 (0.034) 4�357 (0.015) 28�035 (0.104) 46�847 (0.200) 77�463 (0.307) 99�361 (0.379)

5 Model 3 3�073 13�686 4�008 27�179 45�226 75�354 97�041
Model 1 3�066 (0.008) 13�691 (0.034) 4�022 (0.016) 27�263 (0.099) 45�391 (0.211) 75�620 (0.312) 97�353 (0.389)

6 Model 3 2�682 12�856 3�520 25�956 43�192 72�686 93�819
Model 1 2�689 (0.008) 12�880 (0.039) 3�531 (0.015) 25�979 (0.105) 43�357 (0.207) 73�143 (0.326) 94�244 (0.394)

rates incurred when the heuristic concerned is applied
to Model 1.
In the tables, the standard errors of the correspond-

ing cost-rate estimates appear in parentheses.
The following comments relate to questions 1–4

posed at the start of this section.
Question 1. A major feature of the results in

Tables 2 and 3 is the strong performance of the
heuristics GRE and TRA based on solutions to static
Model 2. For the singleton order problems of Table 2,
the performance of GRE is almost indistinguishable
from that of the PI heuristics. In Table 3, where orders
are of random size, the PI heuristics tend to outper-
form the others but the margins are often small and
in most cases fail to be statistically significant. In the
worst case, for GRE its average cost rate exceeds that
of APIH by 2.06%. We conclude that in most envi-
ronments in which the warranty population is subject
to moderate temporal variability, the dynamic greedy
heuristic will perform well. The equivalent worst-case
performance for TRA is 14.38%. With regard to the
latter allocation procedure, there is some evidence of
deteriorating performance as the differences between
vendor service rates increase, especially so for the
bulk order cases of Table 3. It appears that TRA’s
failure to take account of order size in making allo-
cations may lead it on occasion to overload vendors
with small service capacity. Finally, we note that there
is no real evidence in the tables that the introduc-
tion of the tuning parameter and the corresponding
modification of PIH to APIH has made any significant
impact on the resulting heuristic’s cost performance.
Relative costs range from a 1.85% advantage in favour
of PIH to a 1.52% advantage in favour of APIH. In
most cases, the difference in cost rate between the
two is very small and of no practical significance.
We conclude that the simple version of approximat-
ing Model 3 (with /= 1) is perfectly adequate for our

approximate DP approach. For clarity, future com-
ments concerning the PI approach will focus exclu-
sively on the heuristic PIH.
An interesting inference from the above strong per-

formance of GRE is that in the current models, once
the number of items at each vendor is known, fur-
ther information regarding unexpired warranty times
adds relatively little to effective decision making. To
understand why, see Table 5, which records the means
and standard deviations of the times between suc-
cessive allocations of newly purchased items to ven-
dor 1 for the six scenarios of Table 2(a) under the
heuristics PIH, GRE, and the optimal static policy p∗

(computed for / = 1). Note that, while the aver-
age rates at which the three heuristics send items
to the vendor are equal (within sampling error), the
dynamic heuristics impose greater regularity on the
allocations as reflected in the smaller standard devia-
tions for the interallocation times. We conclude that,
if past allocations have been made effectively, it will
be rare to encounter a situation in which, from the
perspective of making an optimal allocation deci-
sion, one vendor dominates another with regard to
numbers of items �Nv
 but is dominated with regard
to (any reasonable measure of) the unexpired war-
ranties �tv
. Note that all of this relates to the Poisson
assumption (with uniform rate) concerning arriving
orders. Should the arrival process be, for example,
nonhomogeneous Poisson with substantial fluctua-
tions in the arrival rate, then we would expect the pat-
terns of unexpired warranties to be necessarily much
more irregular and potentially more informative for
(good) allocation decisions. Further consideration of
this issue will be the subject of a later paper.
Question 2. One way of understanding Tables 2

and 3 is as follows: Our simulations show that the
overall proportions of items allocated to the vendors
under static policy p∗ agree well with those allo-
cated under the heuristics PIH, APIH, GRE, and TRA.
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Table 5 Estimated Means and Standard Deviations of the
Interallocation Times at Vendor 1 Generated by Three
Heuristics for the Scenarios in Table 2(a)

Sample
Sample mean standard deviation Sample size

Scenario 1
PIH 0�0786 0�0399 1�017
GRE 0�0774 0�0668 1�030
p∗ 0�0826 0�0808 967

Scenario 2
PIH 0�0678 0�0372 1�180
GRE 0�0675 0�0597 1�184
p∗ 0�0641 0�0638 1�247

Scenario 3
PIH 0�0543 0�0307 1�474
GRE 0�0541 0�0517 1�477
p∗ 0�0558 0�0572 1�433

Scenario 4
PIH 0�0446 0�0264 1�794
GRE 0�0445 0�0424 1�978
p∗ 0�0454 0�0454 1�760

Scenario 5
PIH 0�0391 0�0267 2�044
GRE 0�0389 0�0348 2�054
p∗ 0�0398 0�0402 2�010

Scenario 6
PIH 0�0322 0�0233 2�485
GRE 0�0320 0�0306 2�501
p∗ 0�0313 0�0306 2�557

See Table 5 and the above comments. The dynamic
heuristics improve the cost performance of the static
policy p∗ by offering these proportionate workloads
to the vendors in a manner that reduces variabil-
ity, and hence, lessens the chance of excessive queue
lengths for repair. It is clear from the tables that this
dynamic workload management can be important in
cost terms. In most of Tables 3(c)–3(e), for example,
the cost rates associated with these dynamic heuris-
tics are little more than 0�5G�p∗
. A point to note is

Table 6 An Exploration of the Sensitivity of the Performance of PIH and GRE to Departures from Model Assumptions

(I) (II) (III) (IV)
Case
Scenario PIH GRE PIH GRE PIH GRE PIH GRE

1 12�283 12�283 12�304 12�303 3�341 3�349 3�152 3�153
�0�033� �0�033� �0�033� �0�030� �0�008� �0�009� �0�006� �0�007�

2 12�275 12�254 12�268 12�262 3�320 3�329 3�129 3�136
�0�031� �0�032� �0�034� �0�032� �0�009� �0�008� �0�007� �0�006�

3 12�112 12�134 12�096 12�131 3�244 3�255 3�054 3�060
�0�031� �0�031� �0�031� �0�033� �0�009� �0�009� �0�006� �0�006�

4 11�846 11�834 11�858 11�850 3�113 3�119 2�918 2�914
�0�031� �0�031� �0�033� �0�033� �0�009� �0�009� �0�006� �0�006�

5 11�418 11�422 11�406 11�424 2�900 2�897 2�689 2�695
�0�033� �0�032� �0�027� �0�034� �0�008� �0�008� �0�005� �0�006�

6 10�732 10�716 10�740 10�713 2�575 2�560 2�355 2�353
�0�032� �0�031� �0�032� �0�030� �0�008� �0�009� �0�006� �0�006�

that Tables 2 and 3 are broadly consistent in indicating
that a good dynamic allocation heuristic can achieve a
cost rate, which moves from G�p∗
 around 70% of the
way toward �G��W�
. Hence, these simply calculated
values give a good prior indication of the cost savings
achievable from dynamic workload management.
The heuristic SMA departs from this general pat-

tern in being committed to splitting the workload
evenly between the vendors, notwithstanding any dif-
ferences in the vendor service rates. The cost conse-
quences of this are evident from the tables. While in
Tables 2 and 3 it is the results for scenario 6 that
are most dramatic, it may be that the results for sce-
nario 2 carry more weight. For the latter problems, the
between-vendor differences are fairly small (with the
smallest vendor service rate being 73% of the largest),
and yet the cost rate for SMA can exceed that from
PIH by nearly 65% (see Table 2(b)) in individual cases.
Note that in some cases of scenario 6, the amount of
congestion experienced by the least capable vendor
under SMA was so severe that we could not obtain
good cost rate estimates in simulation runs of rea-
sonable length. In these cases, the cost rate has been
entered as �.
Question 3. We conducted a number of simulation

experiments to explore how the performance of the
allocation heuristics stood up to a range of modest
departures from model assumptions. In Table 6, we
find that simulation-based estimates of average cost
rates incurred under PIH and GRE for the following
cases:
(I) PIH and GRE are derived for the model consid-

ered in Table 2(b), but are applied in an environment
in which new orders arrive as a nonhomogeneous
Poisson process with arrival rate 240 for the first three
quarters of each year and 280 for the final quarter.
(II) As in case I, but the annual arrival rate is now

240 for quarters 1 and 3 and 260 for quarters 2 and 4
of each year.
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(III) PIH and GRE are derived for the model con-
sidered in Table 3(a), but are applied in an environ-
ment in which the order size X is such that X − 1 has
a Binomial�2�0�5
 distribution. Hence, the order size
has the same mean, but a variance which is half that
for the assumed Poisson model.
(IV) PIH and GRE are derived for the model con-

sidered in Table 2(a), but are applied in an envi-
ronment in which the up-times for items are drawn
independently from a gamma distribution with shape
parameter 2 and scale parameter 2.4. Hence, the
up-times have the same mean, but a variance which
is half that of the assumed exponential.
From Table 6, in cases (I) and (II) the cost rates

and hence the relative performance of the two heuris-
tics are only slightly changed by the modifications
to the arrivals process. In case (III), reducing the
variance of the order size distribution has led to
reduced cost rates, with the relative performance of
GRE marginally strengthened. Recall that neither the
process of arriving orders nor the order size distri-
bution plays any role in the development of greedy
heuristic GRE.
From (IV), we see that halving the variance of the

item up-times while keeping the mean constant has
yielded a reduction in cost rates, while leaving the
relative performance of the dynamic heuristics largely
unchanged. See Ding and Glazebrook (2005) for com-
ments on the likely impact of other departures from
the Markovian assumptions made in relation to the
breakdown/repair process at the vendors. We believe
these will continue to hold good for our dynamic war-
ranty population models.
Question 4. In the introduction, we posed three

research questions related to a manufacturer’s deci-
sion making in managing the warranty repair work-
load in our multiple vendor context. The second
question concerns the distribution of the repair work
among the vendors and has been the main theme of
the paper. The first research question raised the issue
of how one might determine whether a given level
of service capacity among the vendors was adequate
to deliver a post-sales repair service at an accept-
able cost. The results in Tables 2 and 3 suggest that
such questions are relatively straightforward in the
sense that in all cases studied, the average cost rates
incurred by good allocation heuristics (PIH, GRE,
TRA) seem insensitive to how any total service capac-
ity is divided between the vendors (i.e., the choice of
scenario). It then follows that a good idea of the cost
rate achievable from any total service capacity may
be obtained from a simulation of the performance of
any of our dynamic heuristics in the simplest case in
which all vendor service rates are equal (scenario 1).
From Tables 2 and 3, it would appear that cost-rate
estimates derived for scenario 1 may modestly exceed

those for other scenarios in most cases. Plainly, if the
indicated achievable cost rate is not acceptable, then
an increase in total service capacity is required. Our
simulation evidence suggests that, should an increase
in the total service rate be needed, it does not mat-
ter very much (in terms of cost performance) whether
this is achieved via an increase in the committed ser-
vice capacities of existing vendors or by contracting
with additional vendors.
The third research question raises the issue of how

much the manufacturer might be losing by maintain-
ing an existing suboptimal approach to workload dis-
tribution. The comments in response to Question 2
above make it clear that serious losses can result over
time if the overall proportions of the warranty popu-
lation allocated to the respective vendors are inappro-
priate. Happily, guidance on what these proportions
should ideally be is available from the solution to sim-
ple static Model 2. Once appropriate proportions are
established, an indication of whether there is poten-
tial for further substantial reduction in costs from the
adoption of a dynamic approach to workload man-
agement may be obtained by comparing appropriate
values of G�p∗
 and �G��W�
.

6. Conclusions
We have developed heuristic policies for the alloca-
tion of newly purchased items to one of a collec-
tion of external vendors contracted to an equipment
manufacturer to conduct repairs under warranty. The
goal of such policies is the minimization of a cost
rate in which goodwill penalties incurred for large
response times typically predominate. We have seen
that a good idea of what overall proportions should
be allocated to each vendor is available from sim-
ple static models. However, it is often the case that
considerable further savings are available from the
adoption of a dynamic approach to workload man-
agement that seeks to reduce variability in the ven-
dor subpopulations, and thereby lessen the chance of
excessive repair queue lengths causing unacceptable
response times for customers. The stochastic dynamic
optimization problems involved in determining effec-
tive approaches are nonstandard, being only partially
observed and having a system state of high and
varying dimension. We utilize an approximate DP
approach based on policy iteration to develop bench-
mark policies. It emerged from simulation studies
that a simple dynamic greedy heuristic performs out-
standingly well. An indication of the scope of the cost
savings achievable by strongly performing dynamic
policies is available from the relative values of quan-
tities that are easy to calculate (denoted �G��W�
 and
G�p∗
 in the paper). The conclusions of our study are
robust to a range of modest departures from model
assumptions.
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The authors are grateful to Kulkarni (2006) for a
wider discussion of the benefits of this work. He
pointed out that the diminished variability resulting
from a dynamic approach to workload management
may have the ancillary benefit to an equipment man-
ufacturer of making it easier for her to keep to a ven-
dor contract that (say) specifies a minimum number
of items for repair over the contract period.

7. Electronic Companion
An electronic companion to this paper is available as
part of the online version that can be found at http://
mansci.journal.informs.org/.
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