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Abstract

At present, the most successful approach for solving large-scale instances of the Symmetric Traveling Salesman Problem
to optimality is branch-and-cut. The success of branch-and-cut is due in large part to the availability of effective separation
procedures; that is, routines for identifying violated linear constraints.

For two particular classes of constraints, known as comb and domino-parity constraints, it has been shown that separation
becomes easier when the underlying graph is planar. We continue this line of research by showing how to exploit planarity in the
separation of three other classes of constraints: subtour elimination, 2-matching and simple domino-parity constraints.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The well-known Symmetric Traveling Salesman Problem (STSP) is the problem of finding a minimum weight
Hamiltonian circuit in an edge-weighted undirected graph. Although the STSP is stronglyNP-hard, many large-scale
instances can be solved to optimality by using the so-called branch-and-cut approach, see Padberg and Rinaldi [37],
Applegate et al. [1] and Naddef [32]. This approach is based on the following integer programming formulation of the
STSP, usually attributed to Dantzig, Fulkerson and Johnson [11]:

Minimise
∑
e∈E

cexe

Subject to:

x(δ({i})) = 2 ∀i ∈ V, (1)

x(δ(S)) ≥ 2 ∀S ⊂ V : 2 ≤ |S| ≤ |V | − 2, (2)

x ∈ {0, 1}
|E |. (3)

∗ Corresponding author.
E-mail address: A.N.Letchford@lancaster.ac.uk (A.N. Letchford).

1572-5286/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.disopt.2007.05.002

http://www.elsevier.com/locate/disopt
mailto:A.N.Letchford@lancaster.ac.uk
http://dx.doi.org/10.1016/j.disopt.2007.05.002


A.N. Letchford, N.A. Pearson / Discrete Optimization 5 (2008) 220–230 221

Here, V is the vertex set, E is the edge set, ce is the cost of traversing edge e, δ(S) denotes the set of edges with
exactly one end-vertex in S and, as usual, x(F) denotes

∑
e∈F xe. It is common, but not necessary, to assume that

the graph G = (V, E) is complete. Eq. (1) are called degree equations. The inequalities (2) are called subtour
elimination constraints (SECs). The polyhedron defined by the degree equations, SECs and non-negativity constraints
is sometimes known as the subtour polytope.

The key to the branch-and-cut approach is to use strong valid linear inequalities as cutting planes. These linear
inequalities come from a study of the so-called symmetric traveling salesman polytope, which is the convex hull
in R|E | of vectors satisfying (1)–(3). Many classes of valid and even facet-inducing linear inequalities have been
discovered. We refer the reader to the surveys Jünger, Reinelt and Rinaldi [25,26] and Naddef [32] for a complete list.
In this paper, we will refer only to the SECs themselves, and to 2-matching, comb, DP, simple comb, simple DP, and
Chvátal comb inequalities. Formal definitions and references are given in the next section. (See also Fig. 2.)

To use inequalities in a given class as cutting planes, one needs a so-called separation algorithm. A separation
algorithm is a procedure which, given a vector x∗

∈ R|E | as input, either finds an inequality in the class which
is violated by x∗, or proves that none exists (see Grötschel, Lovász and Schrijver [20]). Although many effective
heuristics for separation are known for various classes of inequalities (see again the surveys [25,26,32]), the only
exact separation results known are the following.

• The separation problem for the SECs is equivalent to a minimum weight cut problem, and can therefore be solved
in O(nm + n2 log n) time using the algorithm of Nagamochi, Ono and Ibaraki [35]. (We use n and m to denote the
number of vertices and the number of variables which are positive at x∗, respectively.)

• The separation problem for the 2-matching inequalities can be converted to a minimum weight odd cut problem on
an expanded graph, and therefore solved by the algorithm of Padberg and Rao [36]. A newer and faster algorithm,
described by Letchford, Reinelt and Theis [30], runs in O(n2m log(n2/m)) time.

• The separation problem for the simple DP inequalities can be reduced to a sequence of minimum weight odd cut
problems, and thereby solved in O(n3m3 log n) time (Letchford and Lodi [28]). A faster implementation, running
in O(n2m2 log(n2/m)) time, was recently given by Fleischer, Letchford and Lodi [16].

• Carr [5–7] showed that certain inequalities defined by node-lifting operations can also be separated in polynomial
time, although the order of the polynomial is huge for most inequalities of interest.

However, more can be said in the interesting special case in which the fractional point defines a planar graph. More
precisely, let E∗ denote the set of edges whose variables are currently positive at x∗, i.e., E∗

= {e ∈ E : x∗
e > 0}.

(Note that m = |E∗
|.) The support graph, usually denoted by G∗, is the subgraph of G induced by the edges in E∗,

i.e., G∗
= (V, E∗). We say that x∗ has planar support, or more briefly is planar, if the support graph G∗ is planar.

Fleischer and Tardos [17] were the first to observe that planarity of x∗ could be exploited. They gave anO(n2 log n)

algorithm which, given a planar fractional point x∗, either finds a violated comb inequality or concludes that there are
no comb inequalities violated by a large amount (we skip details for brevity). Inspired by that paper, Letchford [27]
gave an O(n3) exact separation algorithm for the DP inequalities, again for the case of planar support. These results
are more useful than they might appear, because planar or near-planar fractional solutions often arise when solving
real-life STSP instances (Boyd, Cockburn and Vella [4], Cook, Espinoza and Goycoolea [10]). Computational results
given in [4,10] show that the DP inequalities can be used to give extremely good lower bounds (typically within 0.1%
of optimal) for large-scale STSP instances.

In this paper, we continue this line of research by describing fast separation algorithms for other inequalities in the
planar case. In particular, we describe:
– an O(n log2 n) algorithm for the SECs;
– an O(n3/2 log n) algorithm for the 2-matching inequalities;
– an O(n2 log n) algorithm for the simple DP inequalities.

These results, together with those in [17,27], suggest that the STSP becomes somehow ‘amenable’ to solution via
branch-and-cut (though still strongly NP-hard) when the underlying graph is planar. This is in line with some other
recent results in the literature, which suggest (from rather different viewpoints) that the planar STSP is somehow
‘relatively easy’:

• Arora et al. [2] gave a polynomial-time approximation scheme (PTAS) for the ‘planar metric’ STSP, in which
the costs correspond to shortest paths in a weighted planar graph. (This includes the planar Hamiltonian circuit
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Fig. 1. A comb with three teeth.

problem as a special case.) Papadimitriou and Yannakakis [38] gave evidence that there is no PTAS for the general
STSP.

• Deineko, Klinz and Woeginger [12] and Dorn et al. [14] gave dynamic programming algorithms for the ‘planar
metric’ STSP which run inO(c

√
n) time, whereas the best known dynamic programming algorithm for the general

STSP runs in O(n22n) time (Held and Karp [23]).

The structure of the remainder of the paper is as follows. In Section 2 we define the relevant valid inequalities in
more detail. In Section 3 we explain the fast separation algorithms for SECs and 2-matching inequalities. In Section 4
we describe the algorithm for simple DP constraints, which is more complex. Some concluding remarks are given in
Section 5.

2. Comb inequalities and variants

The most well-known constraints for the STSP, after the SECs themselves, are probably the comb inequalities of
Grötschel and Padberg [21,22]. These inequalities, which are facet-inducing for all n ≥ 6, can be written in the form:

x(δ(H)) +

t∑
j=1

x(δ(T j )) ≥ 3t + 1, (4)

where t ≥ 3 is an odd integer and H and T1, . . . , Tt are vertex sets satisfying:

Ti ∩ T j = ∅ for 1 ≤ i < j ≤ t,

H ∩ Ti 6= ∅ and Ti \ H 6= ∅ for 1 ≤ i ≤ t.

The set H is called the handle of the comb and the sets T1, . . . , Tt are called the teeth (see Fig. 1 for an illustration).
A number of special cases of the comb inequalities are to be noted. Comb inequalities satisfying |H ∩Ti | = 1 for all

i had been previously discovered by Chvátal [9] and for that reason have come to be called Chvátal comb inequalities.
The Chvátal comb inequalities themselves reduce to the 2-matching (or blossom) inequalities of Edmonds [15] when
|Ti \ H | = 1 for all i . (In this case, the teeth are mere edges.) Finally, Letchford and Lodi [28] call a comb simple if,
for all i , either |Ti ∩ H | = 1 or |Ti \ H | = 1 or both hold. The comb shown in Fig. 1 is simple, but it is not a Chvátal
comb, since |T2 ∩ H | = 2.

The comb inequalities in turn are a special case of the domino-parity (DP) inequalities, introduced by Letch-
ford [27]. A domino is a pair {A, B} of non-empty vertex sets such that A∩ B = ∅ and A∪ B 6= V . Let t ≥ 3 be an odd
integer as before. Given a handle H and dominoes D j = {A j , B j } for j = 1, . . . , t , the DP inequality takes the form:

x(F) +

t∑
j=1

x(δ(A j ∪ B j ) ∪ E(A j : B j )) ≥ 3t + 1, (5)

where the edge set F is defined in the following way: an edge e is in F if and only if exactly one of the following
conditions holds:
(i) it is in the cutset δ(H),
(ii) |{ j : e ∈ E(A j : B j )}| is odd.
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Fig. 2. Relationships between various valid inequalities. An arrow from one class to another means that the latter is a proper generalization of the
former.

Comb inequalities are obtained when A j = T j ∩ H and B j = T j \ H for all j . Although not every DP inequality
induces a facet, there are many DP inequalities which induce facets yet are not comb inequalities [4,27,33,34].

Finally, Fleischer, Letchford and Lodi [16] presented the simple DP inequalities. They say that a domino {A, B} is
simple if |A| = 1, or |B| = 1, or both. A simple DP inequality is a DP inequality in which all dominoes are simple.

To aid clarity, we show in Fig. 2 the relationships between all of the inequalities discussed in this section.

3. Separation of SECs and 2-matching inequalities

In this section, we show how to exploit planarity in separation algorithms for the SECs and the 2-matching
inequalities.

3.1. Subtour elimination constraints

From the definition of the SECs, it follows that an SEC is violated by a given x∗ if and only if there is an edge
cutset in the support graph G∗ whose weight (computed with respect to x∗) is less than 2. Thus, any minimum
weight cut algorithm can be used to solve the separation problem for the SECs. The minimum weight cut algorithm
of Nagamochi, Ono and Ibaraki [35] runs in O(n(m + log n)) time. When G∗ is sparse, i.e., when m = O(n), this
reduces to O(n2 log n).

For planar graphs, however, faster minimum weight cut algorithms are known. Shih, Wu and Kuo [39] described
an O(n3/2 log n) algorithm and, very recently, Chalermsook et al. [8] found an O(n log2 n) algorithm. Both of these
algorithms are based on the following two well-known ideas:

• Given any planar graph G, there exists another planar graph, the so-called (geometric or combinatorial) dual graph
Ḡ, with the following property: every edge cutset in G corresponds to a cycle in Ḡ. Such a dual can be found in
linear time. Thus, to find a minimum weight cut in G it suffices to find a minimum weight cycle in Ḡ.

• In any planar graph G = (V, E), one can find in linear time a vertex set S ⊂ V , called a separator, such that
|S| = O(

√
n) and such that the removal of S causes G to break into two disconnected components of approximately

equal sizes (Lipton and Tarjan [31]). This leads naturally to a ‘divide-and-conquer’ approach for finding a minimum
weight cycle in Ḡ.

3.2. 2-matching inequalities

Although the separation algorithm of Letchford, Reinelt and Theis [30] is faster than that of Padberg and Rao [36],
it turns out to be better to modify the Padberg–Rao algorithm in the planar case. The key to the Padberg–Rao algorithm
is to write the 2-matching inequality in the form:

x(δ(H) \ F) +

∑
e∈F

(1 − xe) ≥ 1,

where H is the handle and F ⊂ δ(H) is the set of teeth. Then, the handle and the teeth define a violated inequality
for x∗ if and only if

x∗(δ(H) \ F) +

∑
e∈F

(1 − x∗
e ) < 1.

Padberg and Rao then create a supergraph of G∗, the so-called split graph, by subdividing each edge into two ‘halves’.
One-half receives a weight equal to x∗

e and is labelled even, whereas the other half receives a weight equal to 1 − x∗
e
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and is labelled odd. Then, a violated 2-matching inequality exists if and only if there exists a cut in the split graph
whose weight is less than 1, and which contains an odd number of odd edges. Padberg and Rao presented an algorithm
to solve such minimum weight odd cut problems, which involves solving a sequence of O(m) max-flow problems.
Using the well-known pre-flow push algorithm (Goldberg and Tarjan [18]) to solve the max-flow problems, along
with some implementation tricks given in Grötschel and Holland [19], the Padberg–Rao separation algorithm can be
implemented to run in O(nm2 log(n2/m)) time, which is O(n3 log n) in the planar case.

Clearly, the split graph is planar if and only if the original support graph is planar. Also, the split graph contains
O(n) vertices and edges in the planar case. To compute the minimum weight odd cut in a planar graph, one can use the
recent algorithm of the authors (Letchford and Pearson [29]), which runs in O(n3/2 log n) time. Like the algorithms
of [8,39], this minimum weight odd cut algorithm uses planar duality to convert the problem into a minimum weight
odd cycle problem in the dual graph, and then uses the Lipton–Tarjan separator theorem to tackle this latter problem
in a ‘divide-and-conquer’ manner.

If one is willing to separate 2-matching inequalities in O(n2 log n) time rather than O(n3/2 log n) time, there is an
alternative algorithm which avoids the computation of separators, and therefore is much simpler to implement. One
simply uses the method of Barahona and Mahjoub [3] for finding a minimum weight odd cycle in the dual of the
split graph. The algorithm of [3] involves calling the shortest-path algorithm of Dijkstra [13] O(n) times. The binary
heap version of Dijkstra’s method, due to Williams [40], runs in O(n log n) time on planar graphs and is very easy to
implement.

4. Separation of simple DP inequalities

In this section we show that, when x∗ is planar, the separation problem for simple DP inequalities can be solved
in O(n2 log n) time. As in [27], we follow a ‘two-phase’ approach. In phase 1, we find a set of ‘candidate’ simple
dominoes, i.e., simple dominoes whose ‘contribution’ to the slack of a simple DP inequality is sufficiently small to
make it worthwhile considering them. In phase 2, we then test whether there is a violated simple DP inequality which
uses some of the candidate simple dominoes.

As in [8,27,29,39], we will be making heavy use of planar duality. If the embedding of G∗ in the plane is fixed,
there is a unique dual of G∗, which we will denote by Ḡ∗.

We now describe each phase of the separation algorithm in turn.

4.1. Phase 1: Finding candidate dominoes

Given a domino {A, B}, we define the edge sets:

δ∗(A ∪ B) = δ(A ∪ B) ∩ E∗

and

E∗(A : B) =
{
{u, v} ∈ E∗

: u ∈ A, v ∈ B
}
.

It is shown in [27] that a necessary condition for a domino {A, B} to appear in a violated DP inequality is that the edge
set δ∗(A ∪ B) ∪ E∗(A : B) forms three internally node-disjoint (s, t)-paths in Ḡ∗ (for suitable vertices s, t in Ḡ∗).
See Fig. 3 for an illustration. Phase 1 of the planar DP separation algorithm involves computing, for each pair s, t in
Ḡ∗, a set of three disjoint (s, t)-paths of minimum total x∗-weight. This yields a so-called ‘optimal’ domino for each
pair s, t . It is shown in [27] that, if any violated DP inequality exists, then there exists a most-violated DP inequality
which uses only optimal dominoes.

We will now show that the computation of the optimal dominoes can be performed inO(n2) time when we impose
the extra condition that the dominoes should be simple. Let us assume without loss of generality that A is a singleton,
say, A = {i}. The relevant edge set, δ∗({i} ∪ B) ∪ E∗({i} : B), is readily shown to be equal to

δ∗({i}) ∪ E∗(B : V \ (B ∪ {i})).

The edge cutset δ∗({i}) corresponds to a face of Ḡ∗, and the edge set E∗(B : V \ (B ∪ {i})) corresponds to a path in
Ḡ∗ connecting two vertices of the face. See Fig. 4 for an illustration.
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Fig. 3. (a) Edge set δ∗(A ∪ B) ∪ E∗(A : B). (b) Three paths in dual.

Fig. 4. (a) Edge set when A = {i}. (b) Three paths in dual.

Now, observe that, if x∗ satisfies all degree equations, the term x∗(δ∗({i})) is equal to 2. Thus, if we fix the
vertex i and the dual vertices s and t , finding the optimal simple domino amounts to minimising the other term
x∗(E∗(B : V \ (B ∪ {i}))). This can be done by removing the edges in the face from Ḡ∗, and then computing a
shortest path from s to t in the remaining graph. Of course, if this is done in a naive way, an excessive number of
shortest-path computations will be needed. However, for a fixed i and s, it is possible to compute the optimal dominoes
for all potential vertices t with a single call to a single-source shortest-path algorithm. This immediately suggests the
following algorithm for phase 1:

1. Assume that x∗ lies in the subtour polytope. Construct a planar embedding of G∗ and the corresponding dual graph
Ḡ∗.

2. For each vertex i ∈ V :
2.1. Let F(i) be the corresponding face of Ḡ∗.
2.2. Remove the edges of F(i) from Ḡ∗.
2.3. For each vertex s lying in F(i):

2.3.1. Call a single-source shortest-path algorithm with s as source.
2.3.2. For each vertex t 6= s lying in F(i):

2.3.2.1. Store s, t and the weight of the (s, t)-path.
2.4. Add the edges of F(i) back to Ḡ∗.

This algorithm is illustrated in Figs. 5–7. Fig. 5(a) shows the support graph G∗ for a fractional vector x∗ for n = 7.
Solid, dashed and dotted lines have weights 1, 2/3 and 1/3, respectively. The point is easily shown to violate a Chvátal
comb inequality, and therefore a simple DP inequality. For clarity, G∗ is redrawn in Fig. 5(b), in which vertices are
numbered from 1 to 7 and faces are labelled from ‘a’ to ‘ f ’. (Note that the outer face is labelled ‘ f ’). Fig. 6(a) is a
straight line embedding of the dual graph Ḡ∗, where the letters now represent vertices.

Suppose we select i = 3. The corresponding face of Ḡ∗ is bounded by vertices a, b, c and d and is labelled F(3) in
Fig. 6(a). Fig. 6(b) depicts the subgraph of Ḡ∗ obtained by removing the edges of F(3). Now suppose that we choose
vertex a as our source vertex. The shortest-path tree with source a is shown in Fig. 7(a). This immediately yields the
three shortest paths a– f –b, a–e–c, a–e–d , which correspond to three optimal simple dominoes. The path a–e–c, for
example, when added to the face F(3), yields the configuration displayed in Fig. 7(b). This corresponds to an optimal
simple domino in which i = 3 and B is the set of vertices bounded in G∗ by the faces a, d, c and e, i.e., B = {4, 5}.

We now analyse the running time of this version of phase 1.
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Fig. 5. (a) Support graph of a fractional point and (b) a labelling of its vertices and faces.

Fig. 6. (a) Dual graph Ḡ∗ and (b) Ḡ∗ with edges of F(3) removed.

Fig. 7. (a) Shortest-path tree rooted at a. (b) Induced simple domino, with A = {3} and B = {4, 5}.

Lemma 1. Phase 1 of simple DP separation can be performed in O(n2) time in the planar case.

Proof. A planar embedding and the associated dual can be found in linear time. For a fixed i and a fixed vertex s in
the face, we can call the linear-time planar single-source shortest-path algorithm of Henzinger et al. [24]. For a fixed
i , the number of such calls is equal to the number of edges in the corresponding face of Ḡ∗. Thus, the total number of
shortest-path calls is equal to 2|E∗

|. Since G∗ is planar, |E∗
| is O(n). �
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Fig. 8. Supergraph Ḡ+ for the previous example (parallel edges omitted).

In practice, we would recommend using the binary heap version of Dijkstra’s method to compute the shortest paths
in phase 1. As mentioned above, it runs in O(n log n) time on planar graphs, and it is far easier to implement than the
algorithm of [24]. The resulting version of phase 1 runs in O(n2 log n) time. This increase of a log n factor in phase 1
has no effect on the overall running time bound, since phase 1 is not the bottleneck of the algorithm.

4.2. Phase 2: Finding the best handle

Now we briefly review phase 2 of the algorithm of [27]. The ‘weight’ of an optimal domino is defined as the sum
of the weights of the three (s, t)-paths, minus 3. It is shown in [27] that, if x∗ lies in the subtour polytope, then the
weights of all dominoes are non-negative, and that any domino with a weight of 1 or more can be discarded. A labelled
supergraph of Ḡ∗, which we will denote by Ḡ+, is then constructed as follows. For each remaining optimal domino,
an additional edge is added to Ḡ∗ connecting the corresponding vertex pair (s, t). The edge is labelled ‘odd’ and given
a weight equal to the weight of the associated optimal domino. A violated DP inequality then exists if and only if there
exists an odd cycle (i.e., a cycle containing an odd number of odd edges) of weight less than 1 in Ḡ+.

When we restrict attention to simple dominoes, things simplify a little. First, when all degree equations are satisfied,
the weight of the optimal simple domino for a given pair (s, t) is equal to the weight of the single (s, t)-path found
in phase 1, minus 1. Moreover, an odd edge can only exist in Ḡ+ if its end-vertices lie on the same face of Ḡ∗.
Unfortunately, Ḡ+ can still be non-planar, as shown in Fig. 8.

The key for obtaining a fast algorithm for phase 2 is to borrow a concept from [28]. They say that an optimal simple
domino is light if its weight is less than 1/2, and heavy if its weight is at least 1/2 but less than 1. In our context, a
domino is light if the associated (s, t)-path has a weight less than 3/2, and heavy if it has a weight greater than or
equal to 3/2 and less than 2. We will say that an (s, t)-path itself is light or heavy accordingly. We denote by Ḡ1/2 the
supergraph of Ḡ∗ obtained by adding odd edges only for the light simple dominoes. (Clearly, Ḡ1/2 is a subgraph of
Ḡ+.) We have the following theorem:

Theorem 1. Ḡ1/2 is planar.

Proof. In [28] it was shown that there cannot exist two light dominoes {{i}, B}, {{i}, B ′
} that cross, i.e., such that all

of the vertex sets B ∩ B ′, B \ B ′, B ′
\ B and V \ (B ∪ B ′

∪ {i}) are non-empty. This means that, for a given face F in
step 2 of our algorithm for phase 1, it is impossible for two light (s, t)-paths to share an internal vertex in common.
(See Fig. 9 for an illustration.) Thus, for a given face F , the extra odd edges added to Ḡ∗ to represent light (s, t)-paths
can be embedded in the plane inside F without crossing (Fig. 10). Doing this for each face conserves planarity. Hence
Ḡ1/2 can be embedded in the plane. �

Although it is not crucial to the overall argument, the following corollary is of independent interest:

Corollary 1. If x∗ is planar and phase 1 has already been performed, we can detect if a violated simple DP inequality
exists which uses only light simple dominoes in O(n3/2 log n) time.
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Fig. 9. For a fixed face F of Ḡ∗, two light (s, t)-paths cannot cross.

Fig. 10. (a) Light (s, t)-paths associated with a fixed face F . (b) Corresponding odd edges embedded in the plane inside F .

Proof. Ḡ1/2 has O(n) vertices and is planar. To test if such a violated inequality exists, it suffices to find a minimum
weight odd circuit in Ḡ1/2. This can be done in O(n3/2 log n) time by the algorithm in [29]. �

To deal with the heavy simple dominoes, we use two more results proved in [28]. First, a violated DP inequality
can have at most one heavy domino. Second, it is never necessary to use two simple dominoes of the form {{i}, B},
{{i}, B ′

} with the same ‘root’ vertex i . This implies that one should never use two odd edges lying in the same face of
Ḡ∗. This leads to the following algorithm for phase 2.

1. Assume that G∗, Ḡ∗ and the optimal simple dominoes are already available from phase 1.
2. For each light simple domino, add an odd edge to Ḡ∗, leading to the labelled weighted supergraph Ḡ1/2.
3. For each face f of Ḡ∗:

3.1. Remove the odd edges connecting vertices in that face from Ḡ1/2.
3.2. For each vertex s lying in the face:

3.2.1. Add odd edges to Ḡ1/2 connecting s to other vertices in the face (regardless of whether the associated
domino is light or heavy).

3.2.2. Find a minimum weight odd circuit passing through s in Ḡ1/2.
3.2.3. If the odd circuit has a weight less than 1, output the violated simple DP inequality.
3.2.4. Remove the odd edges which were added in step 3.2.1.

3.3. Add back the odd edges which were removed in step 3.1.

The analysis of the running time for this version of phase 2 is fairly straightforward.

Lemma 2. Phase 2 of simple DP separation can be performed in O(n2 log n) time in the planar case.

Proof. As in the proof of Lemma 1, step 3.2 is performed O(n) times. Each time step 3.2 is called, the bottleneck is
the minimum weight odd circuit problem in step 3.2.2. As noted in [29], such a minimum weight odd circuit can be
computed in O(n log n) time with one Dijkstra call, using the method of Barahona and Mahjoub [3]. �

Thus, we have proved:

Theorem 2. When G∗ is planar and lies in the subtour polytope, the separation problem for simple DP inequalities
can be performed in O(n2 log n) time.

Proof. By Lemma 1, phase 1 can be performed inO(n2) time. By Lemma 2, phase 2 can be performed inO(n2 log n)

time. Clearly, phase 2 is the bottleneck of the overall algorithm. �
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Table 1
Separation of inequalities for planar STSP: new status

Inequalities General Sparse Planar

Subtour elimination O(nm + n2 log n) O(n2 log n) O(n log2 n)

2-matching O(n2m log(n2/m)) O(n3 log n) O(n3/2 log n)

Simple DP O(n2m2 log(n2/m)) O(n4 log n) O(n2 log n)

DP Unknown Unknown O(n3)

As well as being very fast, the new algorithm is relatively easy to implement. The core subroutine needed is merely
a binary heap version of Dijkstra’s method.

We close this section with the following conjecture:

Conjecture 1. If x∗ is planar, a simple DP inequality is violated if and only if a simple comb inequality is violated.

Note that a similar result does not hold for non-planar points x∗; see [16] for a counter-example.

5. Conclusions

The goal of this paper has been to build on the results of [17,27], showing that the separation problem for various
valid inequalities becomes a lot easier if the fractional point to be separated has planar support. Table 1 summarizes
the results discussed. The column headed ‘general’ gives the worst-case running time for general graphs. The column
headed ‘sparse’ shows how these times simplify for sparse graphs (i.e., graphs for which m = O(n)). Finally, the
column headed ‘planar’ gives the corresponding times for planar graphs. It is obvious that significant gains can be
made by exploiting planarity.

There are some interesting open questions. Among them, the most pressing one seems to be the following: can the
separation problem for general (i.e., non-simple) DP inequalities be solved in polynomial time, on general support
graphs? A less ambitious goal would be to find a DP separation algorithm for large and interesting superclasses of
planar graphs, such as graphs without K3,3 minor or graphs without K5 minor.
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