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Abstract

Consider the following heuristic for planar Euclidean instances of the traveling salesman problem (TSP): select a subset of the
edges which induces a planar graph, and solve either the TSP or its graphical relaxation on that graph. In this paper, we give several
motivations for considering this heuristic, along with extensive computational results. It turns out that the Delaunay and greedy
triangulations make effective choices for the induced planar graph. Indeed, our experiments show that the resulting tours are on
average within 0.1% of optimality.

Scope and purpose

The traveling salesman problem (TSP) is a fundamental and well-known problem in combinatorial optimisation. It has many
applications, for example in vehicle routing and machine scheduling. This paper proposes several heuristics methods for the Euclidean
TSP, based on the use of triangulations, and gives extensive computational results.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The traveling salesman problem (TSP) is the problem of finding a Hamiltonian circuit (or tour) of minimum weight
in a complete edge-weighted graph. The TSP is a classic example of a hard combinatorial optimisation problem. For
surveys, we refer the reader to the two excellent volumes edited by Lawler et al. [1] and Gutin and Punnen [38]. In this
paper, we assume that edge-costs are symmetric, or, equivalently, that the graph is undirected.

A special case of the TSP that has attracted much interest, and which also arises in many practical applications, is
obtained when the vertices of the graph correspond to points in the Euclidean plane, and the distance between any two
vertices is equal to the Euclidean distance between the corresponding points. For brevity, we will call such instances
simply Euclidean. The Euclidean TSP is a special case of the so-called metric TSP, in which the costs obey the triangle
inequality. Nevertheless, it is strongly NP-hard [3].

Related to, but distinct from, the Euclidean TSP is the planar graph TSP. This is the version of the TSP in which
a planar graph G = (V , E) is given, with weights on the edges of E, and one seeks the minimum cost tour which
uses only edges in E. This problem too is strongly NP-hard. Indeed, it is NP-hard even to test if a planar graph is
Hamiltonian [4].
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In this paper, we examine the following natural heuristic for the Euclidean TSP: take a triangulation of the vertices
in the plane, and then solve the planar graph TSP on the triangulation. As possible candidates for the triangulation, we
consider the Delaunay and greedy triangulations, which are well-known in computational geometry. We give several
reasons for considering these triangulations in what follows.

The possibility of using the Delaunay triangulation to generate heuristic tours was in fact already suggested by
Reinelt [5] and Stewart [6]. However, here we give a deeper theoretical analysis, and present extensive computational
results for several variants of the heuristic. As well as considering the two triangulations mentioned, we also consider
the option of solving the so-called graphical relaxation of the planar graph TSP, i.e., the relaxation in which vertices are
permitted to be visited more than once and edges are permitted to be traversed more than once [7,8]. We also consider
the possibility of obtaining even better tours by ‘short-cutting’ the solution to the graphical relaxation.

The structure of the remainder of the paper is as follows. In Section 2 we review the relevant literature. In Section 3
we describe the various heuristics in more detail and make some theoretical observations. In Section 4 we describe some
extensive computational experiments performed on instances from the well-known TSPLIB library. The results confirm
that the tours obtained after short-cutting, in particular, are of remarkably high quality. Some concluding remarks are
given in Section 5.

2. Literature review and basic concepts

In this section we briefly review the relevant literature, and along the way recall some basic concepts and definitions.
In Section 2.1 we cover the various planar variants of the TSP mentioned above. In Section 2.2 we cover the Delaunay
and greedy triangulations, and related concepts such as proximity graphs and spanners.

2.1. Planar variants of the TSP

Although, as mentioned above, the TSP remains strongly NP-hard even when restricted to Euclidean instances,
there are some theoretical and empirical evidence that the Euclidean TSP is in some sense a ‘relatively easy’ special
case of the metric TSP:

• The metric TSP is APX-hard (e.g., [9]), which means that no polynomial-time approximation scheme (PTAS) is
likely to exist, whereas a PTAS is known for the Euclidean TSP [10].

• The best known time bound for solving the metric TSP exactly is O(n22n) [11], whereas for the Euclidean TSP an
exact O(c

√
n) algorithm is known [12].

• Large-scale Euclidean instances, with several thousands of vertices, can often be solved to proven optimality in a
reasonable amount of time using the so-called branch-and-cut approach (see Naddef [2] for a survey).

We now consider the planar graph TSP and its graphical relaxation. For brevity, we refer to the graphical relaxation
as the planar GTSP. It is well-known, and easy to show, that a planar GTSP instance defined on an edge-weighted
graph G can be transformed to a TSP instance on a complete graph: it suffices to set the cost of traversing from i to j in
the complete graph equal to the cost of the shortest path from i to j in G. Note that the resulting TSP instance is metric.
Thus, the planar GTSP can be viewed as a special case of the metric TSP. The planar graph TSP, on the other hand, is
not regarded as a special case of the metric TSP: although an instance of the planar graph TSP can be transformed to a
metric TSP instance using the standard ‘big M’ method, this transformation is not approximation-preserving.

In any case, there is a sense in which the planar graph TSP and planar GTSP, too, are in some sense ‘relatively easy’
special cases of the TSP:

• A PTAS is known for the planar GTSP [13].
• For the planar graph TSP and the planar GTSP, exact O(c

√
n) algorithms are known (e.g., [14]).

Moreover, there are two good reasons to think that the planar graph TSP and planar GTSP will be in practice much
easier to solve to optimality via branch-and-cut than the Euclidean TSP:

• Since planar graphs are sparse, one only needs O(n) variables, compared to O(n2) in the case of the Euclidean TSP
(see, e.g., [8]). Thus, no pricing (column generation) is necessary.
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Fig. 1. (a) MST, (b) after doubling of edges, (c) after short-cutting.

• There are exceptionally fast separation algorithms, i.e., algorithms for generating useful cutting planes, known for
the planar graph TSP and planar GTSP [15–17].

As, in addition, the tours resulting from the heuristics proposed in this paper are of exceptionally high quality, we
believe that the heuristics could be of practical as well as theoretical interest.

For what follows, it will also be useful to mention the ‘twice-around-the-tree’ heuristic for the metric TSP, due to
Rosenkrantz et al. [18], and the associated concept of ‘short-cutting’. This well-known heuristic involves computing
the minimum spanning tree (MST), doubling its edges to make each vertex degree even, and then taking ‘short-cuts’
to obtain a tour (Fig. 1). The heuristic yields a tour of cost no more than twice the optimum. In general, there may be
several ways to take shortcuts. It was shown by Burkard et al. [19] that the optimal set of shortcuts can be computed
in polynomial time, but it is not known whether this leads to an improvement in the performance guarantee.

We note in passing that the MST is a trivial example of a planar graph, and the ‘doubled’ tree is a trivial GTSP
tour. Therefore, the double spanning tree heuristic can be regarded as involving the solution of a trivial planar GTSP
instance.

2.2. The Delaunay triangulation and related graphs

Let V be a set of points in the plane. A triangulation of V is a planar graph G = (V , E), embedded in the plane in
such a way that each edge {i, j} ∈ E is represented by a straight-line, and such that all internal faces are triangles. (The
outer face need not be a triangle.) The number of possible triangulations grows exponentially with the cardinality |V |.

The Delaunay triangulation, and its dual graph, the Voronoi diagram, are well-known in computational geometry.
To construct the Voronoi diagram, one partitions the plane into convex (polygonal) regions, one for each i ∈ V . A point
is assigned to a given i ∈ V if it is closest to i. The points which are assigned to two vertices in V lie on line-segments,
which define the Voronoi diagram [20]. The geometric dual of the Voronoi diagram is the Delaunay triangulation [21].
Rather than go into the formal details, we simply display Fig. 2 and refer the reader to a book on computational geometry
such as Okabe et al. [22].

For brevity we say ‘DT’ rather than ‘Delaunay triangulation’ in what follows. The DT has a number of remarkable
properties. For example:

• It is the triangulation which maximises the smallest angle of all the triangles in the triangulation.
• It contains a number of other well-known ‘proximity graphs’as subgraphs. Proximity graphs, well-known in compu-

tational geometry, provide a succinct (linear-sized) representation of how ‘close’ each vertex is to the other vertices.
Examples of proximity graphs contained in the DT include the nearest neighbour graph and the MST [23], the
relative neighborhood graph [24], and the Gabriel graph [25].

• It is unique (non-degenerate) if there are no four cocircular points, i.e. four points on the same circle.
• It can be computed in O(n log n) time, using O(n) space [23].
• Each triangle of the DT has an empty circumcircle [26], i.e., for each triangle there exists a circle containing the

triangle’s vertices but not containing any other vertex of the graph.

Another important property, for our purposes, is the fact that the DT is a ‘2.42-spanner’. This means that the length
of the shortest path between any two points in the DT is never larger than 2.42 times the Euclidean distance [27].
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Fig. 2. Delaunay triangulation (solid lines) and Voronoi diagram (dashed lines). Lines on convex hull are doubled.

Fig. 3. If points are located on a circle, a ratio approaching �/2 can occur.

In fact, the worst known family of examples gives a ratio approaching only �/2 ≈ 1.57 [28]. As shown in Fig. 3, this
ratio is approached when the points are equally spaced on a circle. If the DT takes the ‘zig-zag’ form indicated in the
figure, the shortest path on the triangulation between the two end-vertices of the ‘zig-zag’ (labelled A and B in the
figure) will be �/2 times the diameter.

Despite the attractive features of the DT as a ‘good’ planar subgraph on which the Euclidean TSP can be solved, its
most troubling feature is that it may not contain a Hamiltonian cycle [29]. Moreover, the problem of testing whether a
DT is Hamiltonian is NP-complete [30]. Nevertheless, Genoud’s study [31] indicates that non-Hamiltonian Delaunay
triangulations are rare.

Another triangulation which has received much attention is the so-called greedy triangulation, which we will refer
to as ‘GT’. It is the triangulation obtained by adding nonintersecting edges, in non-decreasing order, to the point set
until no further edges can be added. Less is known about the GT than about the DT. In fact, to the best of the authors’
knowledge, no research has been done to determine whether the GT is even Hamiltonian. Nevertheless several important
properties are known, such as the following:

• It is unique, provided that no pair of edges are equal in length.
• It can be computed from the DT in linear time [32].
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Fig. 4. (a) MST, (b) DT, (c) GT.

• It does not necessarily contain the MST as a subgraph. Fig. 4 shows a simple counterexample on four vertices, which
was provided to us by Levcopoulos [33].

• It is a t-spanner for some constant t [34], but no good upper bound on t is known.

Both the DT and GT eliminate ‘long’ edges to some extent, however, neither the DT nor the GT yields the minimum
weight triangulation (MWT) (see [35]). Nevertheless, the DT and GT are on average close to the MWT [36]. Interest-
ingly, Manacher and Zobrist [35] have shown that the total edge length of the DT can be significantly larger than the
total edge length of the GT for the same point set. Therefore, the GT seems to be the better of the two in approximating
the MWT.

It is worth noting that there are several important differences between the DT, GT and MWT (see [34]). For our
purposes, the most significant difference is that both the DT and GT can be computed in O(n log n) time [23], whereas
for general point sets there is no known polynomial-time algorithm to compute the MWT. This underlies the selection
of the DT and GT, rather than the MWT, in this paper.

3. The heuristics and their analysis

As mentioned in the introduction, for each of the two triangulations, the DT and the GT, we explore three ways of
generating tours:

1. Solve the planar graph TSP on the triangulation: This means finding the best tour using only edges in the
triangulation. The disadvantage here, at least in theory, is that the triangulation may not be Hamiltonian. In this case,
the heuristic will fail even to find a tour.

2. Solve the planar GTSP on the triangulation: This resolves the Hamiltonicity problem, and, perhaps more impor-
tantly, considerably expands the set of feasible solutions. As we will see, solutions of much lower cost can be obtained
in this way.

3. Shortcut the planar GTSP solution: In the majority of cases, the optimal planar GTSP tour visits some vertices more
than once. As in the ‘twice-around-the-tree’ heuristic mentioned above, we can convert it into a Hamiltonian circuit
by ‘short-cutting’. Short-cutting can be performed easily in linear time and causes the cost of the tour to decrease (in
theory at least).

This yields six variants of the heuristic in total.
A natural question which arises is, what is the performance guarantee of the six heuristics (i.e., the worst-case ratio

between the cost of the heuristic tour and the optimal tour)? Since the DT can fail to be Hamiltonian, and the same
seems likely to be true of the GT, the variants based on the planar graph TSP have no performance guarantee.

For the variants based on the solution of the planar GTSP (possibly with short-cuts) on the DT, we can say something
better. Since the DT contains the MST as a subgraph, these heuristics yield tours which are at least as good as the one
obtained from the twice-around-the-tree heuristic. Thus, they have a performance guarantee of at most 2. Moreover,
if the DT is indeed a �/2-spanner, as conjectured by several authors, then the heuristics will automatically have a
performance guarantee of �/2. In fact, we would like to make the following conjecture:

Conjecture 1. The heuristics based on solving the planar GTSP on the DT have a performance guarantee strictly
better than �/2.
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The motivation for this conjecture is as follows: when these heuristics are applied to the ‘bad’ instances of the form
illustrated in Fig. 3, they yield the optimal TSP tour. Thus, the known ‘bad’ examples for the DT are in fact ‘good’
examples for these particular TSP heuristics.

Finally, for the heuristics based on the solution of the planar GTSP on the GT, it follows from the result of Das and
Joseph [34] that they have a constant performance guarantee. However, the precise value of this constant is unknown.

4. Computational experiments

4.1. Test problems

Rather than construct random instances of our own to compare the performance of the six heuristics for the Euclidean
TSP, we decided to use instances taken from TSPLIB [37]. TSPLIB is a library of TSP instances, mostly taken from
real applications, which are widely regarded as representative. TSPSLIB contains over 70 two-dimensional Euclidean
instances. We selected those with n < 1500, leading to 58 instances in total.

In fact, the use of TSPLIB instances revealed an interesting phenomenon. As mentioned above, short-cutting a GTSP
tour should lead to a decrease in the total cost. At least, it should lead to no increase. In our computational experiments,
however, we noticed that this was not always true. This anomaly turned out to be caused by the TSPLIB standard for
rounding Euclidean distances to the nearest integer. The resulting edge costs do not always obey the triangle inequality.
Suppose, for example, that the Euclidean distance from u to v is 6.6, whereas w is at a distance of 3.4 from both u and
v. If the path u–w–v appears in the GTSP tour, the cost contribution will be �3.4� + �3.4� = 6. If, after short-cutting,
we obtain the edge u–v, the cost contribution will be �6.6	 = 7. Thus, on rare occasions, short-cutting a tour can lead
to a small increase in length. We actually observed this phenomenon in a few cases.

4.2. Methodology

To perform our experiments, we used the software package CONCORDE, which is available on the web. CONCORDE
is a state-of-the-art computer code for the symmetric TSP written by Applegate, Bixby, Chvátal and Cook, and has been
used to solve the largest known TSP to optimality, 24,978 cities in Sweden. In the two-dimensional case, CONCORDE
takes as input the Cartesian coordinates of the vertices, calculates Euclidean distances for the complete graph and
solves the corresponding TSP. It also contains code for some related network optimisation problems, such as the
Lin–Kernighan TSP heuristic, several edge generation routines, and algorithms for solving fractional two-matching
problems. One of these edge generation routines was used to obtain a set of Delaunay triangulations. We created our
own code for the greedy triangulations.

Although CONCORDE is extremely fast, it has one important limitation: it is designed to deal with instances in
which the graph is complete. Thus, we had to devise a way of restricting it to using only edges in the given triangulation
for each of our heuristics. We accomplished this, in a rather ad hoc manner, as follows:

Finding the best tour using only edges in the triangulation: This required three modifications to the CONCORDE
code: start with only the edges in the triangulation, switch off the column generation algorithms and switch off the
initial tour-finding heuristic(s). CONCORDE then required a starting tour, i.e., an arbitrary tour using only edges in
the triangulation.

To obtain the starting tour, CONCORDE was used to solve the TSP in a graph in which every edge not in the
triangulation was given a weight of 1 and every triangulation edge a weight of 0. The idea is to test if the triangulation
is Hamiltonian and, if so, to produce a starting tour. Each of our test instances was found to be Hamiltonian.

Solving the GTSP on the triangulation: Since CONCORDE is not designed to solve GTSP instances, it was necessary
to convert the GTSP instance into a complete (and metric) TSP instance. This involved computing all-pairs shortest
paths in the triangulation and using the costs of these paths in place of the original Euclidean costs. Therefore, we
coded a simple routine which takes an edge-weighted triangulation as input and uses Dijkstra’s shortest path algorithm
to calculate the distance between each pair of vertices. The tour found by CONCORDE can then easily be converted
back into a GTSP tour on the triangulation.

Shortcutting the GTSP tour: Due to the way in which we compute the GTSP tour using CONCORDE, there is no
need to perform short-cutting explicitly. Indeed, it suffices to take the tour output from CONCORDE when solving the
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Table 1
Number of instances solved to optimality, maximum and mean percentage gap for both heuristics on the DT and GT

No. optimal Maximum Mean

Delaunay triangulation:
Planar graph TSP 18 3.30 0.28
Planar GTSP 18 0.73 0.13
GTSP with shortcuts 19 0.73 0.10

Greedy triangulation:
Planar graph TSP 11 3.70 0.32
Planar GTSP 11 0.79 0.21
GTSP with shortcuts 12 0.67 0.18

Table 2
Euclidean TSPLIB instances: percentage gap heuristic results

Name Delaunay triangulation Greedy triangulation

TSP GTSP GTSP with s-cuts TSP GTSP GTSP with s-cuts

eil51 0.00 0.00 0.00 0.00 0.00 0.00
berlin52 0.00 0.00 0.00 0.00 0.00 0.00
st70 0.00 0.00 0.00 0.15 0.15 0.15
eil76 0.00 0.00 0.00 0.00 0.00 0.00
pr76 0.48 0.48 0.07 0.87 0.41 0.20
rat99 0.00 0.00 0.00 0.08 0.08 0.08
kroA100 0.05 0.05 0.05 0.59 0.59 0.17
kroB100 0.00 0.00 0.00 0.05 0.05 0.05
kroC100 0.00 0.00 0.00 0.02 0.02 0.02
kroD100 0.06 0.06 0.06 0.51 0.51 0.51
kroE100 0.00 0.00 0.00 0.00 0.00 0.00
rd100 0.28 0.28 0.28 0.28 0.28 0.28
eil101 0.48 0.16 0.00 0.00 0.00 0.00
lin105 0.58 0.30 0.16 0.33 0.16 0.16
pr107 0.00 0.00 0.00 0.00 0.00 0.00
pr124 0.86 0.73 0.73 0.97 0.79 0.37
bier127 0.52 0.38 0.16 0.52 0.37 0.22
ch130 0.03 0.03 0.03 0.05 0.05 0.05
pr136 0.00 0.00 0.00 0.00 0.00 0.00
pr144 0.00 0.00 0.00 0.00 0.00 0.00
ch150 0.00 0.00 0.00 0.00 0.00 0.00
kroA150 0.00 0.00 0.00 0.10 0.10 0.10
kroB150 0.03 0.03 0.03 0.23 0.23 0.23
pr152 0.35 0.23 0.23 0.55 0.55 0.55
u159 0.00 0.00 0.00 0.05 0.05 0.05
rat195 0.00 0.00 0.00 0.00 0.00 0.00
d198 0.10 0.10 0.10 0.30 0.30 0.27
kroA200 0.19 0.07 0.03 0.04 0.04 0.04
kroB200 0.05 0.05 0.05 0.08 0.08 0.08

second heuristic, and recompute its cost using original Euclidean distances in place of shortest-path distances. This
may not be the optimal way to short-cut, but it is extremely fast and trivial to implement.

We want to stress that CONCORDE is not at all optimised for sparse graphs, and, as a result, we focus solely on the
bounds obtained by our heuristics and not on their comparative running times. Nevertheless, we discuss the potential
for specially tailored branch-and-cut code and improved running times in Section 5.
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Table 3
Euclidean TSPLIB instances: percentage gap heuristic results

Name Delaunay triangulation Greedy triangulation

TSP GTSP GTSP with s-cuts TSP GTSP GTSP with s-cuts

ts225 3.30 0.65 0.53 3.70 0.65 0.62
tsp225 0.00 0.00 0.00 0.00 0.08 0.08
pr226 1.70 0.05 0.05 0.67 0.67 0.67
gil262 0.34 0.25 0.25 0.38 0.38 0.29
pr264 0.11 0.11 0.11 0.23 0.17 0.17
a279 0.00 0.00 0.00 0.00 0.00 0.00
pr299 0.68 0.32 0.27 0.25 0.25 0.25
lin318 0.54 0.29 0.18 0.49 0.28 0.25
rd400 0.01 0.01 0.01 0.11 0.10 0.03
fl417 0.50 0.29 0.18 0.54 0.54 0.54
pr439 0.28 0.10 0.04 0.07 0.07 0.07
pcb442 0.05 0.05 0.05 0.04 0.04 0.04
d493 0.03 0.03 0.03 0.94 0.62 0.56
u574 0.34 0.20 0.12 0.56 0.43 0.34
rat575 0.10 0.10 0.10 0.12 0.12 0.12
p654 0.23 0.23 0.23 0.36 0.36 0.36
d657 0.19 0.13 0.13 0.14 0.14 0.14
u724 0.08 0.08 0.08 0.22 0.17 0.18
rat783 0.00 0.00 0.00 0.05 0.05 0.05
pr1002 0.09 0.09 0.05 0.21 0.21 0.19
u1060 0.25 0.10 0.07 0.22 0.18 0.13
vm1084 0.17 0.09 0.04 0.21 0.16 0.11
pcb1173 0.12 0.03 0.01 0.10 0.09 0.08
d1291 0.31 0.16 0.14 0.51 0.30 0.20
rl1304 1.45 0.53 0.39 1.05 0.56 0.48
rl1323 1.08 0.61 0.38 0.93 0.68 0.55
nrw1379 0.05 0.02 0.01 0.03 0.03 0.03
fl1400 0.08 0.06 0.05 0.35 0.33 0.31
u1432 0.05 0.03 0.03 0.04 0.01 0.00

4.3. Results

All experiments were performed on Lancaster University’s High Performance Computing facility which consists of
a set of dual-processor Sun-Blade workstations, each having between 1 and 8 GB of memory.

Table 1 shows percentage gap results for each of the heuristics and the number of instances solved to optimality.
The percentage gap is calculated as the difference between the heuristic tour bound and the optimal tour bound as a
percentage of the optimal tour bound. The DT results indicated that planar graph TSP tours (respectively, GTSP tours
with shortcuts) were within 3.3% (respectively, 0.73%) of optimal in the worst case, but were on average 0.28% and
0.1% larger than optimal. The GT heuristics had less impressive results. The shortcut heuristic solved 12 instances to
optimality, and had an average percentage gap of 0.18%.

Percentage gap results on all 58 instances for the DT and GT heuristics are given in Tables 2 and 3. Instances which
were solved to optimality are shown in bold.

The running times, however, were less conclusive.Although we have not reported them here in detail, we can mention
that the times taken by CONCORDE to find the heuristic tours were typically only slightly smaller than the times taken
to solve the original TSP instances themselves. This is unsurprising, given that CONCORDE is not designed to exploit
sparsity, nor is it designed to solve GTSP instances.

5. Conclusion

The results in Table 1 show that the planar GTSP heuristics, in particular, perform extremely well. In our opinion
this fact, together with the fast separation algorithms presented in [15–17], provides a strong motivation for devising
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and coding a branch-and-cut algorithm specifically designed for solving planar TSP and GTSP instances. Such an
algorithm may be the subject of a future paper.

A final comment: although the DT and GT are internally triangulated, they are not usually full triangulations (unless
only three points lie on the convex hull of the points, which almost never occurs in practice). In theory, then, extra
edges could be added to the DT and GT while preserving planarity. These additional edges could lead to even better
performance of the heuristics.
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