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Abstract - This paper addresses the problem of ob-

ject tracking in video sequences. The use of a struc-

tural similarity measure for tracking is proposed.

The measure reflects the distance between two im-

ages by comparing their structural and spatial char-

acteristics and has shown to be robust to illumina-

tion and contrast changes. As a result it guarantees

robustness of the tracking process under changes in

the environment. The previously used Bhattacharyya

distance is not robust to such changes. Addition-

ally, when a tracker is run with the Bhattacharyya

distance, histograms should be calculated in order

to find the likelihood function of the measurements.

With the new function there is no need to calculate

histograms. A particle filter (PF) is implemented

where this measure is used for computing the dis-

tance between the reference and current frame. The

algorithm performance has been tested and evaluated

over real-world video sequences, and has been shown

to outperform methods based on colour and edge his-

tograms.
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1 Introduction

Recently there has been an increasing interest in tar-
get tracking in video sequences. This problem faces
many challenges, some of them are related to the mod-
els of the moving object, the measurement model and
the function characterising the similarity between two
images/video frames. One of the particularities of ob-
ject tracking in video sequences compared to track-
ing with radar data is that there is no measurement
model in explicit form. Some image features, such as
colour, motion, and edges, can be used to track the
moving object [8]. The performance of the tracking
algorithm depends also on the measure characterising
the similarity or dissimilarity between the two subse-
quent images/video frames. Often used functions are
the Bhattacharyya distance [1, 4] and the non-metric
Kullback-Leibler measure.

In this paper we propose the use of structural sim-
ilarity measure for object tracking in video sequences
by means of a particle filter. The motivation of apply-

ing particle filtering is that it has been proven to be a
scalable and powerful approach, able to cope with non-
linearities, and work under uncertainties, which makes
it a suitable approach for object tracking in video se-
quences (see for example [8] and [3]). The similarity
measure proposed in [11] captures spatial characteris-
tics of an image and has shown to be robust to illumi-
nation and contrast changes. It has been used for the
purposes of quality assessment of distorted and fused
images [6, 9], but not for tracking. In the present pa-
per, we show how this measure can be applied for track-
ing purposes. It allows one to substitute histograms
and to calculate in a straightforward way the measure-
ment likelihood function within particle filtering. We
show that it is a good and fast alternative to histogram
based tracking.

The remaining part of the paper is organised as fol-
lows. Section 2 presents the image similarity measure
for tracking. Section 3 describes the motion model of
the region surrounding the object of interest and the
likelihood model. Section 4 presents a particle filter
with the proposed similarity measure. Section 5 con-
tains results over real-world video sequences. Finally,
Section 6 discusses the results and open issues for fu-
ture research.

2 Distance measure

2.1 Structural similarity measure

The proposed method uses a similarity measure com-
puted directly in the image spatial domain. This ap-
proach differs significantly from most of the particle
filter algorithms, that compare image distributions rep-
resented by their sample histograms [8].

Although many simple image similarity measures
exist, for example, Minimum Mean Square Error,
Mean Absolute Error or Peak-Signal to Noise Ratio,
most of these mathematical measures have failed to
capture the perceptual similarity of images when sub-
jected to varying luminance, contrast, compression or
noise [11]. Recently, based on the premise that the hu-
man visual system is highly tuned to extracting struc-
tural information, a new image metric has been de-
veloped, called the Structural SIMilarity (SSIM) In-
dex [11]. The SSIM index, S, between two images, a



and b is defined as follows:
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where µ and σ stand for mean and sample standard
deviation, respectively, and σab corresponds to sample
covariance. The three components of S, reading from
the left, measure how close the luminance, contrast
and structural similarity of the two images are. Such
a combination of the three image properties can be
seen as a case of a image cue fusion. The exponents
α, β, γ ≥ 0, α+β+γ > 0 are used to adjust the impact
of each measurement on the final value of S.

It can easily be shown that the measure defined
in (1) is symmetric and has a unique upper bound:
S(a,b) ≤ c0, S(a,b) = c0 = 1 iff a = b. For detailed
analysis of the SSIM measure, the reader is referred
to [11].

2.2 Image dissimilarity

Below, we present a method of evaluating the likeli-
hood function L (see Section 3), based on the similarity
between two grayscale images, represented here as vec-
tors formed from the image regions. One of the ways to
convert similarity S(a,b) into normalised dissimilarity
D(a,b) is as follows [12]:

D(a,b) =
c0 − S(a,b)

c1
,

where c0 and c1 are chosen to map a distance into the
interval [0, 1]. An alternative way [12],

D(a,b) =
c0

S(a,b)
− 1 (2)

is preferred, however, as it only requires knowledge of
maximal value of S and is more sensitive to very dis-
similar vectors. The dissimilarity between images used
in the method proposed in this paper is obtained by
substituting (1) into (2) (as noted in the previous para-
graph, c0 = 1):
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It can be shown that this measure satisfies nonneg-
ativity (if the absolute value of sample covariance is
used), reflexivity and symmetry conditions. For a dis-
similarity measure to be a metric (distance) a triangle
inequality has to be satisfied. However, for our pur-
poses, the descriptiveness and discriminating ability of
the measure are sufficient and this condition is not ver-
ified.

3 Motion and likelihood models

The initial (reference) region surrounding the object
of interest is chosen manually and is denoted as tref .
In our case this is a rectangular region, and we are
tracking its centre. The model used for this region is
given below.

3.1 Motion model

The motion of the moving object is modelled by the
random walk model,

xk+1 = Fxk + vk, (4)

with a state vector x = (xk, yk, sk)T comprising the
pixel coordinates of the centre of the region surround-
ing the object, and the region scale sk. F is the tran-
sition matrix (F = I in the random walk model) and
vk is the process noise assumed to be white, Gaussian,
with a covariance matrix Q = diag(σ2

x, σ2
y, σ2

s). The es-
timation of the scale permits to adjust the region size
of the moving objects, e.g., when it goes away from the
camera, when it gets closer to it, or when the camera
zoom varies.

3.2 Likelihood model

The normalised distance between the two regions tref

(reference region) and tx (current region), for particle
`, is calculated according to (3), and then substituted
into the likelihood function:

L(zk+1|x(`)
k+1) ∝ exp

(
−D2(tref , tx)/D2

min

)
, (5)

where ` = 1, 2, . . . , N and Dmin = min
x
{D(tref , tx)}.

This likelihood function is then used to evaluate the
importance weights of the particle filter, to update the
particles and finally the overall estimate of the cen-
tre of the current region tx. Here z is a notation of
the measurement vector, although with the SSIM we
have no measurement in explicit form. We extract di-
rectly the structural properties of the region through
the SSIM that are related to the estimates of the cen-
tre of the region of interest and we use directly the
distance between the reference and current region.

4 A particle filter for object
tracking

Particle filtering is a method relying on sample-based
reconstruction of probability density functions. Multi-
ple particles (samples) of the state are generated, each
one associated with a weight which characterises the
quality of a specific particle. An estimate of the vari-
able of interest is obtained by the weighted sum of par-
ticles. Two major stages can be distinguished in the
Particle Filter (PF) method: prediction and update.
During prediction, each particle is modified according
to the state model of the region of interest in the video
frame, including the addition of random noise in or-
der to simulate the effect of the noise on the state. In
the update stage, each particle’s weight is re-evaluated
based on the new data. An inherent problem with par-
ticle filters is degeneracy (the case when only one par-
ticle has a significant weight). A resampling procedure
helps to avoid degeneracy by eliminating particles with
small weights and replicating the particles with larger
weights. Various approaches for resampling have been



Table 1: The particle filter with structural similarity
measure

Initialisation

1. for ` = 1, 2, . . . , N , generate samples {x(`)
0 } from the

initial distribution p(x0). Initialise weights W
(`)
0 =

1/N

For k = 0, 1, . . . ,

Prediction Step

2. For ` = 1, . . . , N , sample
x

(`)
k+1 ∼ p(xk+1|x(`)

k ) from the motion model for the
object region.

Measurement Update: evaluate the importance weights

3. The cue is used as “measurement”. Compute the
weights

W
(`)
k+1 ∝ W

(`)
k L(zk+1|x(`)

k+1). (6)

based on the likelihood L(zk+1|x(`)
k+1) (5) of the cue.

4. Normalise the weights, cW (`)
k+1 = W

(`)
k+1/

PN
`=1 W

(`)
k+1.

Output

5. The posterior mean state estimate xk+1 is computed
using the collection of samples (particles)

x̂k+1 =

NX
`=1

cW (`)
k+1x̂

(`)
k+1. (7)

Selection step (resampling)

6. Multiply/ suppress samples x
(`)
k+1 with high/ low im-

portance weights cW (`)
k+1, in order to introduce vari-

ety and obtain N new random samples. The residual
resampling algorithm described in [5, 10] is applied.
This is a two step process making use of sampling-
importance-resampling scheme.
* For ` = 1, 2, . . . , N , set W

(`)
k = Ŵ

(`)
k = 1/N .

proposed; for the work here the residual resampling
method [5] was used.

The PF developed in this paper based on the simi-
larity measure is given in Table 1.

5 Performance evaluation

The performance of our method is demonstrated over
three video sequences, in which we aim at tracking a
pre-selected moving person. The reference frames are
shown in Figure 1. The first sequence, cross, originates
from our database and contains three people walking
quickly in front of a stationary camera. The main diffi-
culties posed by this sequence are the colour similarity
between the tracked object, the background and other
passing people, and a temporal near-complete occlu-
sion of the tracked person by a passer-by.

The second sequence used, man, has been obtained
from [7]. It is a long recording showing a person walk-

ing along a car park. Apart from some similarities to
the nearby cars, and the shadowed areas, the video
contains numerous instabilities. These result from a
shaking camera (changes in the camera pan and tilt),
fast zoom-ins and zoom-outs, and a slightly altered
view angle towards the end of the sequence.

cross man doorway_ir

Figure 1: Reference frames from the test videos
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Figure 2: Plot of the RMSE of the object’s central
point for sequence cross. The frames marked by the
vertical lines are given in Figure 5
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Figure 3: Plot of the RMSE of the object’s central
point for sequence man. The frames marked by the
vertical lines are given in Figure 6

The third sequence, doorway ir, being a part of our



multimodal database, contains an infra-red recording
of two people walking towards a stationary camera.
The two persons look quite similar and the tracked
object is often partially occluded by nearby objects.

In order to assess the performance of our tracking
algorithm based on the similarity measure, we compare
it with particle filtering tracking based on colour and
edge cues proposed in [3]. The results presented below
show that the PF with similarity measure outperforms
the PF based on a single (colour or edge) and on fused
(colour-and-edge) cue. In the PF based on fused cues,
the likelihood is calculated as a product of the likeli-
hoods of the separate cues as shown in [3].

50 100 150 200
0

10

20

30

40

50

60

70

frame index

E
xy

doorway_ir

 

 

edges cue
colour & edges cue
SSIM cue

Figure 4: Plot of the RMSE of the object’s central
point for sequence doorway ir. The frames are marked
by the vertical lines are given in Figure 7

The model parameters are as follows: σx = 2.5, σy =
10, σs = 0.01 (for the cross sequence), σx = σy = 2.5,
σs = 0.05, (for the man and doorway ir sequence).
The standard deviations of the noises are tuning pa-
rameters, although adaptations procedures are possi-
ble. This is an open issue that can be investigated in
future, together with the necessity of finding an adap-
tive procedure for tuning the parameters of the SSIM,
α, β and γ. Relatively low number N = 100 of particles
has been used for all videos. The similarity measure
has been calculated in the way proposed in [11], with
α = β = γ = 1.

The combined Root Mean Squared Error [2]

Exy(i) =

√√√√ 1
M

M∑
m=1

(x(i)− x̂m(i))2 + (y(i)− ŷm(i))2

(8)
has been used to evaluate the performance of the devel-
oped technique. The pixel coordinates (x(i), y(i)) indi-
cate the true position of the object and (x̂m(i), ŷm(i))
stand for estimated position in current frame i in
m = 1, 2, . . . ,M independent Monte Carlo realisations
(M = 50 in our experiments). The manually created
ground truth (the tracking box surrounding the object)
has been used as the true coordinates.

colour cue

colour & edges cue

frame 39 frame 66

SSIM cue

frame 76

Figure 5: Frames with the tracker output superim-
posed, sequence cross

The error estimates are shown in Figure 2–4. Al-
though all four described methods (based on colour,
edges, colour-and-edges, and similarity measure) have
been used, only the performance of the best three
methods is shown in the plots for clarity. It can clearly
be seen that the proposed method based on structural
similarity, while never loosing the object, outperforms
the other methods at nearly all instances.

A closer look at the selected output frames will illus-
trate the performance of different methods. Figures 5–
7 show the object tracking boxes constructed from the
mean locations and scales estimated during the tests.

edges cue

colour & edges cue

frame 324 frame 674

SSIM cue

frame 866

Figure 6: Frames with the tracker output superim-
posed, sequence man



edges cue
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Figure 7: Frames with the tracker output superim-
posed, sequence doorway ir

In the sequence cross, Figure 5, the first passer-by
causes the colour and colour-and-edges cue tracker to
loose the object (frames 66–76). Both trackers also
seem to be attracted by the road sign (frame 39). The
SSIM cue tracker is not distracted even by the tempo-
rary occlusion (frame 76).

The shaking camera in the sequence man (Figure 6,
frame 324), introduces a small bias in the SSIM posi-
tion estimate (while retaining correct scale), and the
remaining trackers choose the wrong scale (whilst re-
taining the correct position). The two compared meth-
ods do not perform well in case of similar objects ap-
pearing close-by (shadow, tyre, frame 674) and rapid
zoom of the camera (frame 866). Our method, how-
ever, seems to cope with both situations.

Although all the methods tested were able to track
the person in the sequence doorway ir, Figure 7, the
proposed method is the most precise with respect both
to position and correct scaling of the tracking box, for
most frames in the video.

6 Conclusions

The new tracking scheme was tested with real-world
video sequences and has been shown to perform reli-
ably under different conditions. Colour cue itself can-
not provide stable tracking under changing illumina-
tion and when there are regions with similar colour,
such as those of the object. The fused colour-and-edge
cue cannot provide a reliable tracking performance un-
der ambiguous situations neither, especially with mov-
ing camera (with changes in the pan, tilt and zoom).
The proposed particle filter based on the structural
similarity measure shows the most stable and reliable
performance. This is due to the fact that this mea-
sure captures the spatial similarity between the re-

gions of interest, independently of the colour. It mea-
sures only relative changes in contrast and luminance
which makes it more robust to the changes in the en-
vironment. The implemented tracking algorithm uses
a changeable size of the tracking window, which makes
it suitable for many real-world applications (where the
camera–object distance varies significantly).

This paper presents early results obtained with this
new method. Future work will be focussed on the ex-
tension of the presented method to achieve a degree
of rotation invariance, and on theoretical justification
of the results. The good performance of our methods
when applied to both infrared and colour footage in-
dicates that the structural similarity could be used in
multimodal and fused video tracking. These predic-
tions will also be verified by future investigation.
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