
Multiple Object Tracking Using Particle Filters
M. Jaward, L. Mihaylova, N. Canagarajah and D. Bull

Department of Electrical and Electronic Engineering, University of Bristol
Woodland Road, Bristol, BS8 1UB, UK

m.h.jaward@bristol.ac.uk, mila.mihaylova@ieee.org

Abstract—The particle filtering technique with multiple cues
such as colour, texture and edges as observation features is a
powerful technique for tracking deformable objects in image
sequences with complex backgrounds. In this paper, our re-
cent work [1] on single object tracking using particle filters is
extended to multiple objects. In the proposed scheme, track
initialisation is embedded in the particle filter without rely-
ing on an external object detection scheme. The proposed
scheme avoids the use of hybrid state estimation for the es-
timation of number of active objects and its associated state
vectors as proposed in [2]. The number of active objects and
track management are handled by means of probabilities of
the number of active objects in a given frame. These proba-
bilities are shown to be easily estimated by the Monte Carlo
data association algorithm used in our algorithm.

The proposed particle filter (PF) embeds a data association
technique based on the joint probabilistic data association
(JPDA) which handles the uncertainty of the measurement
origin. The algorithm is able to cope with partial occlusions
and to recover the tracks after temporary loss. The probabil-
ities calculated for data associations take part in the calcula-
tion of probabilities of the number of objects. We evaluate
the performance of the proposed filter on various real-world
video sequences with appearing and disappearing targets.
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1. INTRODUCTION

Tracking a group of targets in a video sequence is a common
problem in many video surveillance applications. Video sur-
veillance addresses real-time observation of targets such as
humans or vehicles in some environment, leading to a de-
scription of the objects’ activities with the environment or
among them. It has been used for security monitoring [3], [4],
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as well as for traffic flow measuring [5], accident detection on
highways, and routine maintenance in nuclear facilities.

This paper addresses the problem of tracking multiple tar-
gets in video sequences. The objective is to detect and track
targets which can undergo non-rigid deformations, rotations
or partial occlusions. Tracking is based on multiple inde-
pendent particle filters and the Probabilistic Data Association
(PDA) algorithm which afford to handle the uncertainty due
to the measurement origin. The data association algorithm
also helps to recover from partial occlusions. The proposed
algorithm can estimate the number of active targets in the
video sequence and can accordingly increase the number of
tracking filter(s) or stop unwanted tracking filter(s).

In many of the previously developed tracking techniques, the
first fundamental problem encountered is the object segmen-
tation which extracts the areas (or objects) of interest from the
scene. The extracted regions are used as measurements (ob-
servations) for tracking algorithms. These foreground seg-
mentation techniques are typically computationally expen-
sive because they operate over the whole image scene [6].

Algorithms which attempt to find the target of interest with-
out using segmentation have been proposed for single target
tracking based on cues such as colour, edges and textures [1].
Recently, the integrated detection and tracking using parti-
cles has been extended for multiple targets. Many of these
schemes rely on hybrid sequential state estimation. In [2],
the state vector denoting all the existing targets is augmented
by a discrete random variable which represents the number
of existing objects in a video sequence. The particle filter
developed in [7] has multiple models for the object motion,
and comprises an additional discrete state component, de-
noting which of the motion models is active. The Bayesian
Multiple-Blob Tracker (BraMBLe) [8] presents a multiple-
person tracking system based on statistical appearance mod-
els. The multiple blob tracking is managed by incorporating
the number of objects present in the state vector and state vec-
tor is augmented as in [2] when a new object enters the scene.

The problem of multiple target tracking is more challenging
than the single target tracking and several issues which do
not exist for single target tracking, has to be resolved for the
successful application of multiple target tracking algorithms.
One issue is the management of multiple tracks caused by
newly appearing targets and the disappearance of already ex-
isting targets. In the references mentioned before, this is



handled by the hybrid state estimation framework for joint
tracking of all existing targets (with an extended state vec-
tor). Joint tracking of targets avoids the possibility of several
independent filters, but the identity of the individual targets
might be lost, especially when targets are close to each other.
A separate single tracking filter can be applied to multiple
target tracking, only when all targets are fairly well spaced.

When the targets are closer and/or cross each other, it has
been shown in aerospace applications [9], [10], [11], that data
association techniques can be used to track without loosing
the identity of each targets. However, the methods developed
in [12] for radar data are not applicable to vision problems
due to the absence of measurement equations in explicit form.
In [12] the varying number of targets is estimated via cluster-
ing techniques and the data association is performed by the
2-D assignment algorithm (see e.g. the review from Chapter
2 of [13]).

In this paper, a sequential Monte Carlo version of the data
association scheme is presented for tracking multiple targets
and the track management is handled by existence probabili-
ties calculated from the data association stage. This proposed
scheme is simple and does not demand high computational
resources.

This paper is organised as follows. The model of the mov-
ing object is described in section 2. The particle filter (PF)
JPDA algorithm is given in section 3. Section 4 yields the
new implemented Joint PDA scheme. Section 5 contains the
experimental results, followed by a discussion in section 6.
Finally, the conclusions are highlighted in section 7.

2. PROBLEM FORMULATION

The aim is to sequentially perform simultaneous detection
and tracking of objects described by the same specified colour
histogramq∗, in a video sequenceZk = {z1,z2, . . . ,zk},
wherezk denotes the image (vector of pixel values) at dis-
crete time instantk. The state space approach requires
to specify a motion model, i.e., the evolution of the state
p(xk|xk−1), and a measurement model, i.e., the link between
state and current measurementp(zk|xk). The next two sub-
sections describe the model of the object motion and the mea-
surement likelihood function.

State vector and dynamic model

The state vector at framek of a single object typically consists
of kinematic and region (or shape) parameters. For simplic-
ity we use the random walk model, with the following state
vector xk = [xk, yk]T , where(xk, yk) denotes the center
of the image region used for the colour histogram computa-
tion. Note that other variables can be added, such as width
and height of image region, velocities and scale change rate,
depending on the application. The state dynamics is typically
described by a linear model:

xk = Fxk−1 + vk−1 (1)

whereF is the transition matrix (F = I for our random walk
model) andvk−1 is the process noise, assumed to be white,
zero-mean, Gaussian, with a covariance matrixQ.

Colour measurement model

The work described in this paper is based on colour measure-
ment cue. Other measurements cues, e.g. texture, edges or
motion and joint variations of any of them can be used as
the measurement cue. The choice of the specific cue depends
on many factors such as the resolution of the video, back-
ground/foreground environment and dynamic nature of the
targets to be tracked. Following [14], [15], we do not use the
entire imagezk as a measurement, but rather we extract from
the image the colour histogramqk, computed inside the im-
age region that is specified by the state vectorxk. The center
is defined by(xk, yk). Furthermore, we adopt the Gaussian
density for the likelihood function of the measured colour his-
togram as follows:

p(qk|xk) ∝ N (Dk; 0, σ2) =
1√
2πσ

exp
{
−D2

k

2σ2

}
, (2)

whereDk is the distance between the reference histogramq∗

of objects to be tracked and the histogramqk computed from
the current framezk in the region specified by the state vector
xk. The standard deviationσ of the Gaussian density in (2)
is a design parameter.

If the two histograms are calculated overU bins, the distance
Dk between two histograms is derived in [14] from the Bhat-
tacharya similarity coefficient and defined as:

D2
k = 1−

∑U
u=0

√
q∗(u)qk(u).

3. MULTIPLE TARGET TRACKING

The multiple target tracking is based on a sequential Monte
Carlo filter and a Monte Carlo data association is avoiding
the ambiguities caused by the different measurement origin.
In this section, we explain the conceptual ideas behind the
particle filter.

Sequential Monte Carlo

Sequential Monte Carlo techniques also known as particle fil-
tering and condensation algorithm and their applications in
the specific context of visual tracking, have been described in
length in the literature [16], [17], [18].

For tracking the object of interest, the posterior state distri-
butionp(xk|Zk), also known as filtering distribution has to
be calculated at each time step. In Bayesian sequential esti-
mation the filtering distribution can be computed according
to the two step recursion:prediction step

p(xk|Zk−1) =
∫

p(xk|xk−1)p(xk−1|Zk−1)dxk−1, (3)

and



filtering step

p(xk|Zk) ∝ p(zk|xk)p(xk|Zk−1), (4)

where the prediction step follows from marginalisation, and
the new filtering distribution is obtained through a direct ap-
plication of the Bayes’ rule. This recursion requires the spec-
ification of a dynamic model (see section 2) describing the
state evolution,p(xk|xk−1) and a model that gives the like-
lihood of any state in the light of the current observation,
p(zk|xk). The recursion is initialised with some distribu-
tion for the initial statep(x0). Once the sequence of filter-
ing distribution is known, point estimates of the state can
be obtained according to any appropriate function, leading
for example to the Maximum a Posteriori (MAP) estimate,
arg maxxk

p(xk|Zk), and to the Minimum Mean Square Er-
ror (MMSE) estimate,

∫
xkp(xk|Zk)dxk.

The basic idea behind the particle filter is very simple. Start-
ing with a weighted set of samples{x(i)

k−1, w
(i)
k−1}N

i=1 approx-
imately distributed according top(xk−1|Zk−1), new samples
are generated from a suitable proposal distribution, which
may depend on the previous state and the new measurements,
i.e., x(i)

k ∼ qp(xk|x(i)
k−1,zk), i = 1, . . . , N . To maintain a

consistent sample, the new importance weights are set to

w
(i)
k ∝ w

(i)
k−1

p(zk|x(i)
k )p(x(i)

k |x(i)
k−1)

qp(xk|x(i)
k−1,zk)

, (5)

with
∑N

i=1 w
(i)
k = 1. The new particle set{x(i)

k , w
(i)
k }N

i=1 is
then approximately distributed according top(xk|Zk). The
performance of the particle filter depends on the quality of the
proposal distribution. In this paper, we use the state evolution
modelp(xk|xk−1) as a proposal distribution and this makes
the new importance weights in (5) become proportional to the
corresponding particle likelihoods. This implementation of
the sequential Monte Carlo method corresponds to the boot-
strap filter as proposed in [19].

4. JOINT PROBABILITY DATA ASSOCIATION

Data association is a problem of crucial importance for multi-
ple target tracking because of the necessity to relate each mea-
surement to the correct object. Several methods have been
proposed in the estimation and tracking literature [9], [10].
In general multi-target tracking deals with state estimation of
an unknown number of targets. Some methods consider spe-
cial cases with a constant or known number of targets. The
observations are assumed to originate from different targets
or from clutter. The clutter is a special type of the so-called
false alarms, whose statistical properties are different from
the targets. In some applications only one measurement is as-
sumed available from each target, where in other applications
several returns are available. This will of course reflect which
data association method to use.

Several classical data association methods exist [20]. The
simplest is the nearest neighbour (NN) method. In [9], this

is referred to as thenearest neighbour standard filterand it
uses only the closest observation to any given state to per-
form the measurement update step. The method can also be
implemented as a global optimisation, so that the total num-
ber of observations for tracking the statistical distance is min-
imised. Another multi-target tracking association method is
theJoint Probabilistic Data Association(JPDA) which is an
extension of theProbability Data Associationalgorithm [9]
to multiple targets. It estimates the states by a sum over all
the association hypothesis weighted by the probabilities from
the likelihood. The most general data association method is
a computationally intensive algorithm called the multiple hy-
pothesis tracking (MHT), which calculates every possible up-
date hypothesis [21]. In [22], the so-called probabilistic MHT
(PMHT) method is presented, using a maximum-likelihood
method in combination with the expectation maximisation
(EM) method. A comparative study of JPDAF and PMHT
is made in [23].

In [24], the solution to the assignment problem for data as-
sociation is proposed within the Bayesian framework by in-
corporating the association in the estimation equations. In
[25], [26], this idea is suggested for particle filtering, when
the problem of maintaining a track on a target in the presence
of intermittent spurious objects. Samples are drawn from the
overall target probability density. The so-called joint-filter in
[27] is a solution to the joint data association and estimation
problem for particle filters. The estimation is performed by
a particle filter and a Gibbs sampler [28] is used for the data
association. The case with unknown number of targets is han-
dled by a multiple hypotheses test.

In this paper, the JPDA approach is used, which is an ex-
tension of the PDA approach [9], [10] for single targets. In
the JPDA, a known number of targetsτ is assumed. The in-
dex t = {1, . . . , τ} designates one among theτ targets. The
measurements at time stepk are denoted aszk = {zj

k}
mk
j=0,

where an artificial measurementz0 is introduced to handle
false alarms or clutter and the number of measurements is
given bymk. The measurement to target association proba-
bilities are evaluated jointly across the targets. Letθ denotes
the joint association event (the time indexk is omitted for
simplicity) andθj

t is the particular event which assigns the
measurementj to the targett. By assuming that the estima-
tion problem is Markovian and by applying the Bayes’ theo-
rem, the joint association probabilities are

P (θ|Zk) =
1
c
p(zk|θ, Xk)P (θ|Xk), (6)

wherec is a normalisation constant andXk = {x1, . . . ,xk}.
Additionally, it is assumed that the measurements are de-
tected independently of each other. The probability of the as-
signmentθ conditioned on the sequence of the targets’ states
P (θ|Xk) is approximated by

P (θ|Xk) = P τ−n
D (1− PD)nP

mk−(τ−n)
FA , (7)



wherePD denotes the probability of detection,n is the num-
ber of z0 assignments andPFA denotes the probability of
false alarm.

The innovation between thej-th measurementzj
k and the

predicted measurement̂zj
t,k of target t at time stepk is

νj
t,k = zj

k − ẑj
t,k andSj

t,k is the corresponding innovation

covariance matrix. Then the normalised innovationdj
t,k is

defined as

dj
t,k = (νj

t,k)T (Sj
t,k)−1νj

t,k. (8)

By assuming that the measurement is of dimensionM , it fol-
lows that theM -dimensional Gaussian association likelihood
for thej-th measurement to the targett

p(νj
t,k) =

1
(2π)M/2|Sj

t,k|1/2
exp

{
−(dj

t,k)2

2

}
, (9)

where|Sj
t,k| is the determinant ofSj

t,k.

Finally, the probability of an individual joint association event
is given by

P (θ|Zk) = P τ−n
D (1− PD)nP

mk−(τ−n)
FA

∏
θj

t∈θ

p(νj
t,k). (10)

As shown in [29], the number of associations increases expo-
nentially with an increase in the number of measurements and
targets, rendering the use of all hypothesis infeasible for even
moderate values for these quantities. The number of possi-
ble associationsλ, given thatND of theτ targets have been
detected, is

Nλk
(ND, τ) =

mk!τ !
ND!(mk −ND)!(τ −ND)!

(11)

and so the total number of possible hypotheses (sinceND is
not known) is

min(mk,τ)∑
ND=0

Nλk
(ND, τ). (12)

Even for the case of three targets and three measurements,
this amounts to 34 hypotheses. Therefore, in practice, it is
common to apply gating techniques [9] to reduce the number
of hypotheses and the computational cost respectively.

Monte Carlo JPDA

In this subsection, we describe the Monte Carlo JPDA used in
our tracking algorithm. The Monte Carlo version of JPDA has
been studied by several authors (see e.g. [30], [31]). A recent
paper of Vermaak et al. [32] surveys most of the approaches
developed earlier. In [32] marginal filtering distributions for
each of the targets are represented with Monte Carlo samples,
or particles, instead of based on a Gaussian approximation,
as it is done in the standard JPDAF. The JPDA particle filter
implemented in our paper is given below:

The JPDA particle filter for multiple target tracking

1. Initialisation.

Setk = 0, generateN samplesx(i)
t,0 for all targets

t = 1, . . . , τ independently.x(i)
t,0 is drawn fromp(xt,0),

for i = 1, . . . , N particles

2. Fort = 1, . . . , τ targets,

For j = 0, . . . ,mk measurements

Computeβj
t,k =

∑
θj

t,k∈θ P (θ|Zk) as the

summation over all the joint events in which the

marginal eventθj
t,k of interest occurs.

For i = 1, . . . N particles compute the independent

weights for each particle according to

w
(i)
t,k =

∑mk

j=0 βj
t,kp(zj

k|x
(i)
t,0) and normalise the

weights for each target:̃w(i)
t,k =

w
(i)
t,k

PN
i=1 w

(i)
t,k

.

For each target, generate a new set{x(i∗)
t,k }N

i=1,

by resampling withN times from{x(i)
t,k}N

i=1, where

P (x(i∗)
t,k = x

(i),t
t,k ) = w̃

(i)
t,k.

For i = 1, . . . N predict new particles

x
(i)
t,k+1 = Fx

(i∗)
t,k + v

(i)
t,k.

End For

End For

3. Increasek and iterate to step 2.

The algorithm assumes knowledge of the maximum number
of targets,τ . It starts with a single filter with uniformly dis-
tributed particles across the image scene. The variance of this
filter is used to monitor the convergence of the filter. Once
this filter shows convergence (by convergence we mean that
the variance of the PF, is less than a certain threshold value)
a new filter is initialised with particles a priori uniformly dis-
tributed across the image except at the region around the tar-
get tracked by the first filter. The prior around the region
tracked by the first filter (the exclusion region) is zero. This
selection of prior distribution avoids the likelihood of two fil-
ters tracking the same object. The variance of this second
filter monitors the convergence of the new filter. Once the
second filter reaches convergence, another filter is initialised
with a prior from the region not covered by the first two fil-
ters. During the tracking process the number of objects and



the identity of active objects are estimated as shown in the
next paragraph. This is used to detect when an object disap-
pears from the scene and to stop the corresponding tracking
filter.

Let P (Ht|Zk) (t = 1, . . . , τ) denote the posterior probabil-
ity of the existence oft number of targets. In general, this
probability depends on the ‘full’ hypothesis list which con-
siders all possible hypotheses from frame1 to framek. How-
ever, it can be approximately estimated from the hypotheses
assumed in the Monte Carlo JPDA. According to the total
probability theorem, the existence probability oft number of
targets is given by

P (Ht|Zk) =
∑
θ∈χt

P (θ|Zk), t = 1, . . . , τ. (13)

whereχt is the event (hypothesis) thatt number of targets
exists. Similarly to this, joint existence probabilities of spe-
cific targets (such as the existence of target 1 with target 2 or
target 1 with target 3) also can be estimated. LetHt1,t2,...,tρ

be the hypothesis thatt1, t2, . . . , tρ targets exist, withρ being
the number of active targets. Then the existence probability
of this event is given by:

P (Ht1,t2,...,tρ
|Zk) =

∑
θ∈χt1,t2,...,tρ

P (θ|Zk), (14)

whereχt1,t2,...,tρ
denotes the events that targets{t1, t2, . . . , tρ}

exist. These probabilities are used for the purpose of track
management. If a target (tracked by the algorithm) disap-
pears from the scene, the changes in the number of objects
is reflected in the probabilitiesP (Ht|Zk). From the proba-
bilities P (Ht1,t2,...,tρ

|Zk), we can obtain the identity of the
target which just disappeared. Accordingly, we can stop the
corresponding filter and reinitialise for tracking a new target.
The use of these probabilities in track management is further
explained in the next section with examples.

5. EXPERIMENTAL RESULTS

The proposed algorithm is tested over real-world video se-
quences with a changing number of football players (the same
as in [2]). The aim is to track all red players. The max-
imum number of targets is three (τ = 3). The algorithm
is implemented withN = 500 samples for each filter, with
U = 128×128×128 number of bins for the colour cue, with
a system noise covarianceQ = diag{15, 15} and a mea-
surement noise covarianceσ2 = 0.12. The number of mea-
surements available ismk = 3 and they are obtained from
image regions specified by the state vector. When the number
of objects being tracked is less thanmk = 3, the remain-
ing observations are image regions pointing to a region with
no relevant colour information. This serves as clutter in the
visual tracking process.

Figure 3 shows several frames to illustrate the work of the
proposed algorithm. At frame 1, one filter is initialised with
random samples uniformly spread all over the image frame.

As shown in Figure 1 (frame 20), this filter initially attempts
to track all red players but gradually converges to the red per-
son on the right (frame 40). At frame 41, a new filter is ini-
tialised with an initial prior distribution uniformly distributed
across all regions except the region around the already tracked
object. The frame 41 shows these samples. This selection of
the initial prior avoids the occurrence of a new filter tracking
the already tracked person by the first filter. At frame 52, both
filters are tracking two persons and at frame 53, a new filter
(third filter) is initialised with a prior covering all regions ex-
cept two regions already tracked by first two filters. After
ten frames (at frame 63), all three objects are tracked by the
proposed algorithm.
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Figure 1. Probabilities of the number of targets: one active
object; two active targets or three active targets
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Figure 2. Probabilities of joint existence of possible two
targets

At frame 82, the person tracked by the first filter leaves the
scene. This is also indicated by the changes in the joint exis-
tence probabilities shown in Figure 1. As seen from the Fig-
ure 1, the dominant probability changes from the probability
of having three objects to the the probability of having two
objects. As seen from frame 83, the first filter was stopped
when the person disappeared. The same filter is initialised to



Frame 1 Frame 20

Figure 3. Image frames of a football sequence: detected and tracked players are marked with a rectangle and the circles denote
the locations of particles



track any new objects appearing in the image scene. The ini-
tialisation is similar to the earlier one and the initial samples
are obtained from regions not covered by the two tracking
filters (the 2nd and the 3rd). It is important to know which
object disappeared and which filter is reinitialised. Figure 2
shows different existence probabilities of having two objects
(i.e., probabilities of having object 1 with 2, 1 with 3, and 2
with 3). Figure 2 indicates also that around the frame 82 the
probability of having objects 2 and 3 is very high compared
to other possibilities. This illustrates that the object 1 is the
disappeared object and we can reinitialise then filter 1.

6. DISCUSSION

Advantages of the proposed algorithm are its computational
simplicity. The technique developed can be extended to deal
with full occlusions, e.g. when the targets cross their paths.
In order to be able to cope with full occlusions, unique fea-
tures from each target are required, which is an open issue for
future research. Additionally, separate detection techniques,
such as image segmentation, can be used to detect the targets
and to speed up the process of target track initiation. Inves-
tigations are currently going on the development of adaptive
cues able to deal with changeable illumination on the scene.

7. CONCLUSIONS

This paper presents a JPDA particle filter for multiple targets
tracking in video sequences. The experimental results from
real video sequences show its reliable performance. The al-
gorithm is characterised with low computational complexity
and is able to cope with partial occlusions and recover after
temporary loss. We evaluate the number of objects in the cur-
rent frame and the track management is handled using proba-
bilities of the number of objects in the same frame.
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