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Abstract – This paper considers the problem of joint maneuver-
ing target tracking and classification. Based on recently proposed
Monte Carlo techniques, a multiple model (MM) particle filter and
a mixture Kalman filter (MKF) are designed for two-class identi-
fication of air targets: commercial and military aircraft. The clas-
sification task is carried out by processing radar measurements
only, no class (feature) measurements are used. A speed likelihood
function for each class is defined using a priori information about
speed constraints. Class-dependent speed likelihoods are calcu-
lated through the state estimates of each class-dependent tracker.
They are combined with the kinematic measurement likelihoods in
order to improve the process of classification. The two designed
estimators are compared and evaluated over a rather complex tar-
get trajectory. The results are demonstrating the usefulness of the
proposed scheme for the incorporation of an additional speed in-
formation. Both filters illustrate the opportunity of the particle
filtering and MKF to incorporate constraints in a natural way,
providing reliable tracking and correct classification.

Keywords: Joint tracking and classification, particle filter, multi-
ple model, maneuvering target tracking, mixture Kalman filtering

1 Introduction

Recently there has been a great interest in the problem of
joint target tracking and classification. Actually, the simul-
taneous implementation of these two important tasks in the
surveillance systems facilitates the situation assessment, re-
source allocation and decision-making [1, 2].Classification
(or identification) usually includes target allegiance deter-
mination and/or target profile assessment such asvehicle,
shipor aircraft type. Target class information could be ob-
tained from anelectronic support measure(ESM) sensor,
friend-and-foe identification system, high resolution radar
or other identity sensors. It could be inferred from a tracker,
using kinematic measurements only or in a combination
with identity sensors. Target type knowledge applied to the
tracker can improve tracking performance by the possibility
of selecting appropriate target models. Classification infor-
mation can assist in correct data association and false tracks
elimination in multiple target tracking systems.

Two basic approaches to classification exist based on
Bayesianand Dempster-Shafer theories[3, 2, 1]. Challa
and Pulford [4] reveal the feedback loop between tracking
and identification and introduce the notion ofjoint track-
ing and classification (JTC). They suggest a Bayesian al-

gorithm for JTC using ESM and radar data. The numeri-
cal implementation of their algorithm utilizes a grid-based
approach. It is well known that the computational effi-
ciency of thegrid-based algorithmsdepends on the state
vector dimension. In contrast to the grid-based algorithms,
theMonte Carlo algorithmsare more easily implementable
for highly dimensional systems. Feasible implementa-
tions of Bayesian JTC via particle filtering are reported in
[5, 6, 2, 7]. We have to mention that [5] is one of the first pa-
pers devoted to the application of the particle filtering tech-
nique to tracking and identification of two closely spaced
objects in clutter. Particle filter for tracking and classify-
ing multiple targets is proposed in [6] as well. Automatic
target recognition is realized by the inclusion of radar cross
section measurements into the measurement vector.

The Monte Carlo approach allows for an accurate repre-
sentation of joint state and class probability distributions.
This is guaranteed by calculating all integrals as accurately
as possible [2] and is achieved at the expense of increased
computational costs. The highly non-linear relationships
between state and class measurements and non-Gaussian
noise processes can be easily processed by the particle fil-
tering technique. In addition, flight envelope constraints,
particularly useful for this task, can be incorporated into
the filtering algorithm in a natural and consistent way [8].

The authors of [2] suggest a unified algorithm for joint
tracking and identification in the framework of the Bayesian
theory. A bank of filters, covering the state and feature
space are run in parallel with each filter matched to a differ-
ent target class. An example of the successful application
of this particle filter to littoral tracking with classification is
presented in [7]. The authors assign a target class to each
land or water region and use a reflecting boundary condi-
tion to enforce the region constraints. A special feature of
this algorithm is that the number of particles for each class
remains constant during the tracking process. The class-
conditioned independent filters stay in position “alert” and
the filtering system can “change its mind” regarding the
class identification if changes in the target behavior occur.
This feature makes the filter versatile, but in some cases
(e.g. for maneuvering target tracking) it could lead to mis-
classification or may increase the computational load due
to a delayed stopping time of the unlikely filters.



In the present paper, motivated by the results reported in
[7], we develop twosequentialMonte Carlo algorithms: a
particle filter and a mixture Kalman filter (MKF) for solv-
ing the problem of tracking and classifyinga maneuvering
target using kinematic measurements only. Two air target
classes are considered:commercialaircraft (slowly maneu-
verable, mainly straight line) andmilitary aircraft (highly
maneuverable turns are possible). We should be able to un-
derstand which type of aircraft we are observing. In view
the fact that both types of aircraft can perform slow ma-
neuvers, the recognition can only be achieved during the
aircraft’s maneuvers with high speed and acceleration. For
this purpose, a bank of twomultiple model(MM) class-
dependent particle filters is designed and implemented. The
novelty of the paper relies also on accounting for two kinds
of constraints : both on theaccelerationand on thespeed.
We show that “hard constraints” can be naturally incorpo-
rated into the Monte Carlo framework. Two speed like-
lihood functions are defined based on a prior information
about speed constraints of each class. Such kind of con-
straints are incorporated in other approaches for decision
making [9]. At each filtering step, the estimated speed
from each class-dependent filter is used to calculate a class-
dependent speed likelihood and together with kinematic
likelihood both are improving the classification process.

The remaining part of the paper is organized as follows.
Section 2 summarizes the Bayesian formulation of the JTC
problem according to [2, 7, 10]. Section 3 presents a devel-
oped MM particle filter and MKF using both speed and ac-
celeration constraints. Simulation results are given in Sec-
tion 4, and conclusions generalized in Section 5.

2 Bayesian joint target tracking and
classification

Consider the following model of a discrete-time jump
Markov system, describing the target dynamics and sensor
measurements

xk = F (mk−1)xk−1+G (mk−1)uk−1+B (mk−1) wk−1,
(1)

zk = h (mk, xk)+D (mk) vk, k = 1, 2, . . . , (2)

wherexk ∈ Rnx is thebase (continuous) statevector with
transition matrixF , zk ∈ Rnz is the measurement vec-
tor with measurement functionh, anduk ∈ U is a known
control input. The noise processeswk andvk areindepen-
dent identically distributed(i.i.d.) Gaussian having charac-
teristicswk ∼ N(0, Q) andvk ∼ N(0, R), respectively.
wk is the random input vector, andvk is the random mea-
surement error vector. All vectors and matrices are as-
sumed of appropriate dimensions. Themodal (discrete)
statemk ∈ S , {1, 2, . . . , s} is a time-homogeneous
first-order Markov chain with transition probabilities

πij , Pr {mk = j | mk−1 = i} , (i, j ∈ S) (3)

and initial probability distributionP1(i) , Pr {m1 = i}
for i ∈ S, such thatP1(i) ≥ 0, and

∑s
i=1 P1(i) = 1.

We assume that the target belongs to one of theM classes

c ∈ C whereC = {c1, c2, . . . , cM} represents the set of
the target classes. Generally, the number of the discrete
statess = s(c), the initial probability distributionP c

1 (i)
and the transition probability matrixπ = [πij ]

c
, i, j ∈ S

are different for each target class.

The joint state and class is time varying with respect to
the state and time invariant with respect to the class [2]. Let

{
Zk, Y k

}
= {zi, yi} : i = 1, . . . , k (4)

be the cumulative set ofkinematic(Zk) andclass (feature)
measurements (Y k) up to timek.

Thegoalof the joint tracking and classification task is to
estimate thestatexk and theposterior classification prob-
abilities P

(
c | {Zk, Y k

})
, c ∈ C based on all available

measurement information
{
Zk, Y k

}
.

If we can construct theposterior joint state-class prob-
ability density function(pdf) p

(
xk, c | {Zk, Y k

})
, then

the posterior classification probabilities can be obtained by
marginalization overxk:

P
(
c | {Zk, Y k

})
=

∫

xk

p
(
xk, c | {Zk, Y k

})
dxk. (5)

Suppose that we know the posterior joint state-class pdf
p

(
xk−1, c |

{
Zk−1, Y k−1

})
at time instantk−1. Accord-

ing to the Bayesian framework,p
(
xk, c | {Zk, Y k

})
can

be computed recursively fromp
(
xk−1, c |

{
Zk−1, Y k−1

})
in two steps –predictionandmeasurement update[2, 7].

The predicted state-class pdfp
(
xk, c | {Zk−1, Y k−1

})
at timek is given by the equation

p
(
xk, c | {Zk−1, Y k−1

})
= (6)∫

xk−1

p (xk | xk−1, c) p
(
xk−1, c |

{
Zk−1, Y k−1

})
dxk−1,

where the class- and state-conditioned state prediction pdf

p
(
xk | xk−1, c,

{
Zk−1, Y k−1

})
is obtained from the state

transition equation (1)

p
(
xk | xk−1, c,

{
Zk−1, Y k−1

})
= (7)

s(c)∑

j=1

p
(
xk | xk−1,mk = j,

{
Zk−1, Y k−1

})

×P
(
mk = j | xk−1, c,

{
Zk−1, Y k−1

})
=

s(c)∑

j=1

p
(
xk | xk−1,mk = j,

{
Zk−1, Y k−1

})

×
s(c)∑

l=1

πljP
(
mk−1 = l | c, {Zk−1, Y k−1

})
.

The form of the conditional pdf of the measurements

p ({zk, yk} | xk, c) = λ{xk,c} ({zk, yk}) (8)

is usually known. This is the likelihood of the joint state and
feature and has a key role in the classification algorithm.



It should be noted that because in our case we don’t have
feature measurements, the set{Y k} is replaced in the MM
particle filter and in the MKF by the speed estimates from
theM classes. Together with a speed envelope which form
is given in subsection 3.3, they form avirtual “feature mea-
surement”.

When the measurements{zk, yk} arrive, the update step
can be completed

p
(
xk, c | {Zk, Y k

})
= (9)

λ{xk,c} ({zk, yk}) p
(
xk, c | {Zk−1, Y k−1

})

p ({zk, yk} | {Zk−1, Y k−1}) ,

where

p
({zk, yk} |

{
Zk−1, Y k−1

})
= (10)

∑

c∈C

∫

xk

p ({zk, yk} | xk, c) p
(
xk, c | {Zk−1, Y k−1

})
dxk.

The recursion (6)-(9) begins with the prior density
P {x1, c} , x1 ∈ Rnx , c ∈ C, which is assumed known.

Using Bayes’ theorem, the posterior probability of the
discrete statemk for classc is expressed by

P
(
mk = j | c,{Zk, Y k

})
= (11)

1
lk

p
({zk, yk} | mk = j, c,

{
Zk−1, Y k−1

})

×
s(c)∑

l=1

πljP
(
mk−1 = l | c,{Zk−1, Y k−1

})
,

wherelk is a normalizing constant. Eq. (11) is substituted
in (7) in order to predict the state pdf at timek + 1.

Then the target classification probability is calculated by
the equation

P
(
c | {Zk, Y k

})
= (12)

p
({zk, yk} | c,

{
Zk−1, Y k−1

})
P

(
c | {Zk−1, Y k−1

})
∑

c∈C p ({zk, yk} | c, {Zk−1, Y k−1})P (c | {Zk−1, Y k−1})
with an initial prior target classification probabilityP1(c),
∑

c∈C P1(c) = 1.

The state estimatêxc
k for each classc

x̂c
k =

∫

xk

xkp
(
xk, c | {Zk, Y k

})
dxk, c ∈ C (13)

takes part in the calculation of thecombinedstate estimate

x̂k =
∑

c∈C

x̂c
kP

(
c | {Zk, Y k

})
. (14)

It is obvious from (6)-(14) that the estimates, needed for
each class, can be calculated independently from the other
classes. Therefore, the JTC task can be accomplished
by the simultaneous work ofM independent filters [11].
The scheme of the particle filter bank, implemented in the
present paper is described in Section 3.

3 Maneuvering target tracking and
classification

3.1 Maneuvering target model

The two-dimensional target dynamics is given by

xk = Fxk−1 + G (uk−1 + wk−1) , k = 1, 2, . . . , (15)

where the state vectorx = (x, ẋ, y, ẏ)′ contains target po-
sitions and velocities in the horizontal (Oxy) Cartesian co-
ordinate frame. The control input vectoru = (ax, ay)′ in-
cludes target accelerations alongx andy coordinates. The
process noisew = (wx, wy)′ models perturbations in the
accelerations. The transition matricesF andG are [12]

F =




1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1


 , G =




T 2

2 0
T 0
0 T 2

2
0 T


 , (16)

whereT is the sampling interval andB = G. The target is
assumed to belong to one of two classes (M = 2), repre-
senting either a lower speedcommercial aircraftwith lim-
ited maneuvering capability (c1) or a highly maneuvering
military aircraft (c2) [4]. The flight envelope information
comprises speed and acceleration constrains, characteriz-
ing each class. The speed v=

√
ẋ2 + ẏ2 of each class is

limited respectively to the interval:

{c1 : v ∈ (100, 300)} [m/s] and

{c2 : v ∈ (150, 650)} [m/s].

The range of the speed overlap section is
[150, 300] [m/s]. The control inputs are restricted to
the following sets of accelerations:

{c1 : u ∈ (0, +2g,−2g)} [m/s2] and

{c2 : u ∈ (0, +5g,−5g)} [m/s2],

whereg = 9.81 [m/s2] is the acceleration due to gravity.
The acceleration processuk is a Markov chain with five

states (modes)s(c1) = s(c2) = 5 [13]:

1. ax = 0, ay = 0 2. ax = A, ay = A
3. ax = A, ay = −A 4. ax = −A, ay = A
5. ax = −A, ay = −A,

whereA = 2g stands for classc1 target andA = 5g refers
to the classc2. The initial probabilities of the Markov chain
are selected as follows:P1(1) = 0.6, P1(2) = P1(3) =
P1(4) = P1(5) = 0.1. The matrixπ of transition proba-
bilities πij , i, j ∈ S is assumed of the same form for both
types of targets:

π =




0.70 0.10 0.05 0.10 0.05
0.15 0.70 0.05 0.05 0.05
0.15 0.05 0.70 0.05 0.05
0.15 0.05 0.05 0.7 0.05
0.15 0.05 0.05 0.05 0.70




(17)

The standard deviations of the process noise
w ∼ N(0, diag(σ2

wx, σ2
wy)) are different for each



mode and class:

{
c1 : σj

w = 5.5 [m/s2], j = 1, . . . , 5
}

and{
c2 : σ1

w = 7.5, σj
w = 17.5 [m/s2], j = 2, . . . , 5

}
,

where (σwx = σwy = σw).

3.2 Measurement model

The measurement model at time k is described by

zk = h(xk) + vk, (18)

where

h(x) =
(√

x2 + y2, arctan
x

y

)′
. (19)

The measurement vectorz = (D,β)′ contains the dis-
tance to the targetD and bearingβ, measured by the
radar. The parameters of the measurement error vector
v ∼ N(0, R), R = diag(σ2

D, σ2
β) are as follows:σD =

100.0 [m]; σβ = 0.15 [deg].

3.3 Speed constraints

Acceleration constraints are imposed on the filter operation
by the use of an appropriate control input in the target
model. The speed constraints are enforced through the
speed likelihood functions. They are constructed based on
the speed envelope information (3.1). If we assume that

g1 (vc1
k ) =





0.8 if v c1
k ≤ 100 [m/s]

0.8− κ1 (vc1
k − 100) if (100 < vc1

k ≤ 300)
0.1 if v c1

k > 300 [m/s]

and

g2 (vc2
k ) =





0.1 if v c2
k ≤ 150 [m/s]

0.1 + κ2 (vc2
k − 150) if (150 < vc2

k ≤ 650)
0.95 if v c2

k > 650 [m/s]

for κ1 = 0.7/200 and κ2 = 0.85/500, then the class-
conditioned speed likelihood functions will have the form,
depicted in Fig. 1.

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Speed interval

g c(v
)

class 1

class 2

Fig. 1: Speed likelihood functions

According to the problem formulation, presented in Sec-
tion 2, two class-dependent filters work in parallel with
Nc number of particles for each class. At time stepk,
each filter gives a state estimate{x̂c

k, c = 1, 2}. Let us as-
sume, that the estimated speed from the previous time step,{

v̂c
k−1, c = 1, 2

}
, is a kind of “feature measurement”.

The likelihoodλ{xk,c} ({zk, yk}) is factorized [2]

λ{xk,c} ({zk, yk}) = fxk
(zk) gc (yc

k) , (20)

whereyc
k = v̂c

k−1. Practically, the normalized speed like-
lihoods represent estimated by the filters speed-based class
probabilities. The posterior class probabilities are modified
by this additional speed information at each time stepk.
The inclusion of the speed likelihoods is done after some
“warming-up” interval, comprising filter initialization

3.4 Multiple model particle filter algorithm
Assuming two classes of targets (commercial and non
commercial), we design a bank of twoindependentparticle
filters for each class. Every particle filter is based of
multiple models for the unknown target accelerationuk.
The hybrid particlex = {x, m, c} contains then all the
necessary information about the target state, mode and
class.

The scheme of each particle filter incorporates the steps:

1. Initialization, k = 1.

For class c = 1, 2, . . . , M set P (c) = P1(c)
* For j = 1, . . . , Nc, sample{
x

(j)
1 ∼ p1(x1, c), m

(j)
1 ∼ {P c

1 (m)}s(c)
m=1 , c(j) = c

}

and setk = 2.
End forc

2. For c = 1, . . . , M (possibly in parallel) execute

* Prediction step

For j = 1, . . . , Nc generate samples
m

(j)
k−1 ∼ {πc

lm}s(c)
m=1 for l = m

(j)
k−2 andc(j) = c

x
(j)
k = Fx

(j)
k−1 + Guk−1(m

(j)
k−1, c) + Gwk−1,

wk−1 ∼ N(0, Q(m(j)
k−1, c)),

* Measurement processing step

on receipt of a new measurement{zk, yk}:
For j = 1, . . . , Nc evaluate the weights

W
(j)
k = f(zk | x(j)

k )gc (yc
k) ,

wheref(zk | x(j)
k ) = N(zk; h(x(j)

k ), R)
andgc (yc

k) = gc

(
v̂c

k−1

)
;

calculate
p

({zk, yk} | c,
{
Zk−1, Y k−1

})
=

∑Nc

j=1 W
(j)
k

setL(c) =
∑Nc

j=1 W
(j)
k

* Selection step

normalize the weightsW
(j)
k = W

(j)
k /

∑Nc

j=1 W
(j)
k

resample with replacementNc particles
(x(j)

k ; j = 1, . . . , Nc) from the set

(x(l)
k ; l = 1, . . . , Nc) according to the weights

* Compute updated state estimate and posterior
mode probabilities

x̂c
k = 1

Nc

∑Nc

j=1 x
(j)
k ,

P (mk = l) =
∑

(m
(j)
k =l,j∈{1,...,Nc})∑Nc

j=1 m
(j)
k

, l = 1, . . . , s(c)

End forc



3. Output: Compute posterior class probabilities and
combined output estimate

P
(
c | {Zk, Y k

})
=

L(c)P(c|{Zk−1,Y k−1})∑M
c=1 L(c)P (c|{Zk−1,Y k−1}) ,

x̂k =
∑M

c=1 P
(
c | {Zk, Y k

})
x̂c

k,

4. Setk ←− k + 1 and go to step 2.

Actually, there is fusion at two levels:(i) of state estimates
and their pdfs with respect to the classes; and(ii) regarding
the acceleration grid within each particle filter.

4 The mixture Kalman filter algorithm

The mixture Kalman filter (MKF) [14, 15] is another se-
quential Monte Carlo estimation technique which has been
successfully applied to different problems in target tracking
and digital communications (See e.g. [16]). The MKF is
essentially a bank of Kalman filters (KFs) or extended KFs
run with Monte Carlo sampling approach. The MKF is de-
rived for state-space models in special form, namelycondi-
tional dynamic linear model, conditional linear Gaussian
model, or partially linear Gaussian model:

{
xk = Fλk−1xk−1 + Gλk−1(uk−1 + wk−1),
zk = Hλk

xk + Vλk
vk,

(21)

wherewk ∼ N (0,Σw), vk ∼ N (0, Σv) are Gaussian dis-
tributed processes. The termconditionaljustifies the char-
acteristic of these models: they are linear and their formu-
lation depends on extra random variables, calledlatent, de-
noted asλ. Then, the Monte Carlo sampling is working in
the space oflatent variablesinstead of in the space of the
state variables. The matricesFλ andHλ are known, as-
suming thatλ is known. For simplicity, in the sequel we
are omitting the subscriptλ from the matrices of (21).

Given the indicator variable, the KF provides a sufficient
statistical characterization of the system dynamics. The
MKF relies on the conditional Gaussian property and uses a
marginalization operation in order to improve the efficiency
of the sequential Monte Carlo estimation technique.

In our JTC problem the indicator variableλ (correspond-
ing to m from the previous sections) takes values from a
finite discrete setS , {1, 2, . . . , s(c)} and evolves ac-
cording to a Markov chain with transition probabilities (3).

Let KF
(j)
k = {µk(λ(j)

1:k),Σ(λ(j)
1:k)} denote the sufficient

statistics that characterize the posterior mean and covari-
ance matrix of the statexk, conditional on the observations
z1:k accumulated up to the time instantk, and indicator
variableλ

(j)
1:k.

The MKF algorithm [15] which we developed for JTC
has the following form:

1. Initialization, k = 1
For classc = 1, 2, . . . , M set P (c) = P1(c)
* For j = 1, . . . , Nc,

sampleλ(j)
1 ∼ {P c

1 (λ)}s(c)
λ=1

and set KF
(j)
1 = {µ1(λ

(j)
1 ),Σ(λ(j)

1 )},
where µ1(λ

(j)
1 ) = µ̂1 andΣ(λ(j)

1 ) = Σ1

are the mean and covariance of the initial state

x1 ∼ N(µ̂1, Σ1). Set k = 2.
End forc

2. For classc = 1, 2, . . . ,M execute

For j = 1, . . . , Nc,
* For λi

k−1, i = 1, . . . , s(c) (λi
k−1 , λk−1 = i)

• run a KF time update step
(µ(j)

k|k−1)
i = Fµ

(j)
k−1|k−1 + Guk−1(λi

k−1, c),

(Σ(j)
k|k−1)

i = FΣ(j)
k−1|k−1F

T +GΣw(λi
k−1, c)GT ,

(z(j)
k|k−1)

i = h((µ(j)
k|k−1)

i),

(S(j)
k )i = (H(j)

k )i(Σ(j)
k|k−1)

i(H(j)
k )iT + V ΣvV T .

• on receipt of a measurementzk calculate
vv

(j)
i = f(zk|λi

k,KF
(j)
k−1)p(λi

k|λ(j)
k−1), where

f(zk|λi
k,KF

(j)
k−1) = N(zk; (z(j)

k|k−1)
i, (S(j)

k )i),
and
p(λi

k|λ(j)
k−1) is the prior transition probability of

the indicator.

• end forλi
k−1

* Sampleλ
(j)
k from a setS with probability, propor-

tional tovv
(j)
i , i = 1, . . . , s(c).

Let KF
(j)
k be the one withλ(j)

k = l.

* complete the KF iteration

K
(j)
k|k = (Σ(j)

k|k−1)
l(H(j)

k )lT [(S(j)
k )l]−1,

µ
(j)
k|k = (µ(j)

k|k−1)
l + K

(j)
k|k[zk − (z(j)

k|k−1)
l],

Σ(j)
k|k = (Σ(j)

k|k−1)
l −K

(j)
k|k(S(j)

k )lK
(j)T
k|k ,

* update the importance weights
W

(j)
k = W

(j)
k−1gc

(
v̂c

k−1

)∑s(c)
i=1 vv

(j)
i

end forj

* Resamplingin the same way as in the particle
filter: generate a new set of samples with associated
weights

* Compute the updated state estimate and posterior
class probabilities(as in the particle filter)

End forc
Setk ←− k + 1 and go to step 2.

A reasonable choice of the proposal distribution
q(λ(j)

k+1|λ(j)
1:k,KF

(j)
k ) for the indicator variable is its pre-

dictive distributionq(λ(j)
k+1|λ(j)

1:k, KF
(j)
k , zk+1) [14].

The designed here MKF is based on Extended KFs, ob-
tained after linearizing the measurement equation (2).



5 Simulation results

The performance of the implemented filters for JTC is eval-
uated by simulations over a representative test trajectory
given in Figure 2, together with the radar location, indicated
by a triangle. The target motion is generated without pro-
cess noise. The MM particle filter and the MKF accounting
for speed and acceleration constraints are compared to fil-
ters without speed constraints, i.e. which likelihood is com-
puted not such as in (20), but is equal toλ{xk,c} = fxk

(zk).

Measures of performance. Root-Mean Squared Errors
(RMSEs) [17]: on position (both coordinates combined)
and speed (magnitude of the velocity vector),average prob-
ability of correct class identificationandaverage time per
updateare used to evaluate the filters performance. The
results presented below are based on 100 Monte Carlo
runs. The cloud of the particles for each class is with
size Nc = 3000 for the MM particle filter (PF) and
Nc = 300 for the MKF, whereas the sampling period is
T = 5 [s]. The prior class probabilities are chosen as
follows: P1(1) = P1(2) = 0.5. The parameters of the
base state vector initial distributionx1 ∼ N (x1; m1, P1) in
the particle filter algorithm are selected as follows:P1 =
diag{1502 [m], 20.02 [m/s], 1502 [m], 20.02 [m/s]};
m1 contains the exact initial target parameters. The MKF
initial parameters are:̂µ1 the mean and the covariance
Σ1 of the initial statex1 ∼ N(µ̂1,Σ1) are obtained by
a two-point differencing technique [12] (p 253). Notice
that the noise covariance matrices of the MKF coincide
with those of the particle filter, namelyΣv = R, V = I,
Σw = diag{σ2

wx, σ2
wy} with σwx = σwy, given in Sec. 3.1

Test trajectory.The target performs four turn maneuvers
with intensity1g, 2g, 5g, 2g. The speed is constant, equal
to 260 [m/s]. After the5g maneuver, the MM particle filter
without speed constraints correctly identifies the real sec-
ond class, but after the last maneuver of2g, a tendency for
misclassification is present (Figure 5). The MM particle
filter with speed constraints correctly determines the class
(Figure 6). According to the results from the RMSEs (Fig-
ures 3, 4) the developed MM particle filter with accelera-
tion and speed constraints can reliably track maneuvering
targets.

Nevertheless, as evident from Figures 7 and 12, the filters
clearly distinguish different motion segments and provide
good estimates of the model probabilities.

It should be mentioned that the selected target model (15)
in combination with the particle filtering technique or MKF
provides an easy way of imposing acceleration constraints
on the target dynamics. Air targets usually perform turn
maneuvers with varying accelerations alongx andy coor-
dinates. These varying accelerations consecutively make
active different models from the designed multiple model
configuration, since the models have fixedx- and y- ac-
celeration inputs. During maneuvering different models
may have similar probabilities which makes difficult to in-
fer which is the most probable between them.
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Fig. 3: PF position RMSE [m]
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Fig. 4: PF speed RMSE [m/s]
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Fig. 5: PF class probabilities (without speed constraints)
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Fig. 6: PF class probabilities (speed constraints)
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Fig. 7: PF posterior mode (m=1) probabilities

Figures 8-11 illustrate the performance for the MKF. An
important advantage of the MKF compared to the MM par-
ticle filter is the smaller peak-dynamic errors during inten-
sive maneuvers (with an acceleration5 g in the test).
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Fig. 8: MKF position RMSE [m]

The speed-based class probabilitiesgc(v̂
c), c = 1, 2,

obtained by the MM particle filter and MKF are quite
similar. For these reasons we present only the estimated
by the MKF functions in Figure 13. The target speed of
260[m/s] provides a slight superiority of the probability,
that the target belongs to class 2, according to the speed
constraints. The estimated speed probabilities assist in the
proper class identification, as we can seen in Figure 11.
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Fig. 9: MKF speed RMSE [m/s]
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Fig. 10: MKF class probabilities calculated without taking
into account speed constraints
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Fig. 11: MKF class probabilities calculated using both
speed and acceleration constraints

We have to notice that the MM particle filter and MKF com-
putational complexity allow for an on-line implementation.
An advantage of the MKF is its reduced complexity com-
pared to the MM particle filter. The computational time of
the PF (withNc = 3000 samples) versus the respective one
of the MKF (with Nc = 300) is 1.73. We obtained very
good results for the MKF withNc = 200 as well. In this
case the ratio PF computation time/ MKF computation time
becomes 2.7. All experiments were performed on PC com-
puter with AMD Athlon processor 2 GHz. Both algorithms
permit parallelization at least of some parts: the MM filters
corresponding to each class can be definitely run in parallel.
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Fig. 12: MKF posterior mode (m=3) probabilities
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Fig. 13: MKF speed-based class probabilities

6 Conclusions

A Bayesian joint tracking and classification technique has
been recently proposed in [2]. It offers the designer a possi-
bility of selecting different state spaces and different filter-
ing procedures, suitable for each target type. Motivated by
this approach, we have designed a multiple model particle
filter and a mixture Kalman filter for the purposes of joint
maneuveringtarget tracking and classification and evalu-
ated their performance. We have shown that distinct con-
straints, enforced by the changeable target behavior can be
easily incorporated into the Monte Carlo framework. Two
air target classes are considered:commercialandmilitary
aircraft. The classification task is accomplished by process-
ing kinematic information only, no class (feature) measure-
ments are used. For that purpose a bank of twomultiple
modelclass-dependent particle filters is designed and im-
plemented in the presence of speed and acceleration con-
straints. The acceleration constraints for each class are im-
posed by using different control inputs in the target model.
The speed constraints are enforced by constructing class-
dependent speed likelihood functions. Speed likelihoods
are calculated at each filtering step and assist in the process
of classification. It was shown that speed and acceleration
constraints can be accounted for in a similar way in a MKF.

The filters performance is analyzed by simulation over
typical target trajectory in a plane. The results show a
reliable tracking and correct target type classification. A
generalization of the algorithms’ application to the three-
dimensional case is straightforward.
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