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Abstract — This paper considers the problem of joint maneuvegorithm for JTC using ESM and radar data. The numeri-
ing target tracking and classification. Based on recently proposegl implementation of their algorithm utilizes a grid-based
Monte Carlo techniques, a multiple model (MM) particle filter angypproach. It is well known that the computational effi-
a mixture Kalman filter (MKF) are designed for two-class idemiciency of thegrid-based algorithmslepends on the state
fication of air targets: commercial and military aircraft. The (:Ias-\/ec,[or dimension. In contrast to the grid-based algorithms,

sification task is carried out by processing radar measuremer}ﬁ%Mome Carlo algorithmsre more easily implementable

only, no class (feature) measurements are used. A speed Iikelih?or highly dimensional svstems. Feasible implementa-
function for each class is defined using a priori information abou gnly y ’ P

speed constraints. Class-dependent speed likelihoods are cal[!ﬁns of Bayesian JTC via partlcle fllte_rlng are repqrted In
lated through the state estimates of each class-dependent tracker6: 2, 7]. We have to mention that [5] is one of the first pa-
They are combined with the kinematic measurement likelihoodddRr'S devoted to the application of the particle filtering tech-
order to improve the process of classification. The two designgifjue to tracking and identification of two closely spaced
estimators are compared and evaluated over a rather complex tabjects in clutter. Particle filter for tracking and classify-

get trajectory. The results are demonstrating the usefulness of fhg multiple targets is proposed in [6] as well. Automatic

proposed scheme for the incorporation of an additional speed igarget recognition is realized by the inclusion of radar cross

formation. Both filters illustrate the opportunity of the particlesection measurements into the measurement vector.
filtering and MKF to incorporate constraints in a natural way,

providing reliable tracking and correct classification. The Monte Carlo approach allows for an accurate repre-

. . N _ _sentation of joint state and class probability distributions.
Keywords: Joint tracking and classification, particle filter, multi-

) . . .. This is guaranteed by calculating all integrals as accurately
ple model, maneuvering target tracking, mixture Kalman fllterlng f . . .
s possible [2] and is achieved at the expense of increased

ducti computational costs. The highly non-linear relationships
1 Introduction between state and class measurements and non-Gaussian

Recently there has been a great interest in the problem9§S€ processes can be easily processed by the particle fil-
joint target tracking and classification. Actually, the simuft€ring technique. In addition, flight envelope constraints,
taneous implementation of these two important tasks in tR@rticularly useful for this task, can be incorporated into
surveillance systems facilitates the situation assessment,f€: filtering algorithm in a natural and consistent way [8].

source allocation and decision-making [1, @]assification  The authors of [2] suggest a unified algorithm for joint
(or identificatior) usually includes target allegiance detefyacking and identification in the framework of the Bayesian
mination and/or target profile assessment suchediicle theory. A bank of filters, covering the state and feature
shipor aircraft type. Target class information could be obgpace are run in parallel with each filter matched to a differ-
tained from arelectronic support measueSM) sensor, ent target class. An example of the successful application
friend-and-foe identification system, high resolution radgj thjs particle filter to littoral tracking with classification is
or other identity sensors. It could be inferred from atraCkeﬁresented in [7]. The authors assign a target class to each
using kinematic measurements only or in a combinati¢gng or water region and use a reflecting boundary condi-
with identity sensors. Target type knowledge applied to th@yy to enforce the region constraints. A special feature of
tracker can improve tracking performance by the possibilityis algorithm is that the number of particles for each class
of selecting appropriate target models. Classification infqsmains constant during the tracking process. The class-
mation can assist in correct data association and false tragkgditioned independent filters stay in position “alert” and
elimination in multiple target tracking systems. the filtering system can “change its mind” regarding the
Two basic approaches to classification exist based diass identification if changes in the target behavior occur.
Bayesianand Dempster-Shafer theorid8, 2, 1]. Challa This feature makes the filter versatile, but in some cases
and Pulford [4] reveal the feedback loop between trackirfg.g. for maneuvering target tracking) it could lead to mis-
and identification and introduce the notionjofnt track- classification or may increase the computational load due
ing and classification (JTC)They suggest a Bayesian alto a delayed stopping time of the unlikely filters.



In the present paper, motivated by the results reporteddre C whereC = {¢1,¢a,...,cpr} represents the set of
[7], we develop twosequentiaMonte Carlo algorithms: a the target classes. Generally, the number of the discrete
particle filter and a mixture Kalman filter (MKF) for solv-statess = s(c¢), the initial probability distributionPs ()
ing the problem of tracking and classifyimgmaneuvering and the transition probability matrix = [r;;]°, i,j € S
target using kinematic measurements only. Two air targete different for each target class.

classes are consideretbmmerciakircraft (slowly maneu-  The joint state and class is time varying with respect to

verable, mainly straight line) anuhilitary aircraft (highly - the state and time invariant with respect to the class [2]. Let
maneuverable turns are possible). We should be able to un-

derstand which type of aircraft we are observing. In view {Z’“,Y"’} ={z,yit:i=1,...,k (4)
the fact that both types of aircraft can perform slow ma-

neuvers, the recognition can only be achieved during thé the cumulative set dinematic(Z*) andclass (feature)
aircraft's maneuvers with high speed and acceleration. Fpgasurements{*) up to timek.

this purpose, a bank of twmultiple model(MM) class- Thegoal of the joint tracking and classification task is to
dependent particle filters is designed and implemented. Téftimate thestatex;, and theposterior classification prob-
novelty of the paper relies also on accounting for two kindpilities P (¢ | {Z*,Y*}) ¢ € C based on all available
of constraints : both on thaccelerationand on thespeed measurement informatiopz*, Y'*}.

We show that “hard constraints” can be naturally incorpo- If we can construct th@osterior joint state-class prob-
rated into the Monte Carlo framework. Two speed likeability density function(pdf) p (zy,c| {Z*,Y*}), then
lihood functions are defined based on a prior informatidhe posterior classification probabilities can be obtained by
about speed constraints of each class. Such kind of caparginalization ovegy,:

straints are incorporated in other approaches for decision

making [9]. At each filtering step, the estimated speed

from each class-dependent filter is used to calculate a class? (c | {Z*,Y*}) = / p(zhoc| {25, Y*}) day. (5)
dependent speed likelihood and together with kinematic YTk

likelihood both are improving the classification process. syppose that we know the posterior joint state-class pdf
The remaining part of the paper is organized as foIIowjg.(xkd’C | {z+=1,Y*=1}) attime instant: — 1. Accord-

Section 2 summarizes the Bayesian formulation of the Jfﬁ‘g to the Bayesian frameworl, (l,k c| {Zk Yk}) can

problem according to [2, 7, 10]. Section 3 presents a devgb computed recursively frOlm(xk_1 ¢ {Z"’—l Y’“—l})

oped MM particle filter and MKF using both speed and aGA o steps -predictionandmeasurement updafe, 7.

celeration constraints. Simulation results are given in Sec-r,, predicted state-class polfzy, ¢ | {27! Y’;*l})

tion 4, and conclusions generalized in Section 5. b ’

at timek is given by the equation
2 Bayesian joint target tracking and

k—1 k—1 .
classification pzr e[ {21 Y1) = (6)

k—1 k—1
Consider the following model of a discrete-time jump/m Pk | zho1,0)p (wh—1,e [ {2771V} ) dogy,
Markov system, describing the target dynamics and sensor’
measurements where the class- and state-conditioned state prediction pdf

op = F (mp1) 25 14+G (mpp_1) up_14B (mp_1) wp_1, P (xk.|.ack,1,c7 {_Z’“*l,Y’“l}) is obtained from the state
(1) transition equation (1)

2k = h(mg,xx)+D (my)vg, k=1,2,..., @) » (3319 | 251, ¢, {Zk-—17yk—1}) _ @)
wherez;, € R"= is thebase (continuous) statector with s(c)
transition matrixF, z;, € R"= is the measurement vec- Zp (zk | Tpo1,my = 4, {ZF 1 YR
tor with measurement functiol, andwu, € U is a known =1
control input. The noise processes andv;, areindepen- P (mg = j | ze_1,0 {25 V1)) =
dent identically distributedi.i.d.) Gaussian having charac- «(0)
teristicsw, ~ N(0,Q) andv, ~ N(0, R), respectively. . _ _
wy, is the random( inpat vector, ang (is th)e random mea- Zp (wn [ opa,me =5, {271 Y })

. =1
surement error vector. All vectors and matrices are as- J

sumed of appropriate dimensions. Thwdal (discrete) 5) el k1
statem, € S £ {1, 2, ..., s} is a time-homogeneous szjp(mkfl =1le,{z" LY.
first-order Markov chain with transition probabilities =1

The form of the conditional pdf of the measurements

p({zkayk} | l'k;,C) =A Tk ,C ({Zkvyk}) (8)
and initial probability distributionP; (i) £ Pr{m; =1} towed
for i € S, such thatP;(i) > 0, and)_;_, P;(i) = 1. isusuallyknown. Thisis the likelihood of the joint state and
We assume that the target belongs to one offthelasses feature and has a key role in the classification algorithm.

Tij 2 Primy=7|mp_1 =i}, (i,j €S) 3)



It should be noted that because in our case we don'thase Maneuvering target tracking and
feature measurements, the §&t*} is replaced in the MM classification
particle filter and in the MKF by the speed estimates frolr’?h . del
the M classes. Together with a speed envelope which fo 1 Maneuvering target mode
is given in subsection 3.3, they fornviatual “feature mea- The two-dimensional target dynamics is given by
surement”.

When the measurementsy;, y;. } arrive, the update step z;, = Fap 1 + G (up_1 +wi_1), k=1,2,.
can be completed

.., (15)

where the state vectar = (z, &, y,y)’ contains target po-

p(ze,c | {28, YF}) = (9) sitions and velocities in the horizontab¢y) Cartesian co-
Maries ({2 i }) p (2, ¢ | {281, VR=1) ordinate frame. The control input vector= (a,, a,)" in-
' =1 VE—1 ) cludes target accelerations alop@ndy coordinates. The
p({Zk,yk} | {Z >Y }) : _ ’ ; ;
process noisev = (w,,w,)" models perturbations in the
where accelerations. The transition matricBandG are [12]
p({zmu} | {ZF 1Y) = (10) 1 7 0 0 o
01 0 0 T 0
Z/ ? ({2 yn} | :L‘k,C)p(:Ek,C‘ {Zkilvykil}) dzxy. F= o0 1T\ G = 0 T | (16)
ceC v Tk 0 0 0 1 0 72_,

The recursion (6)-(9) begins with the prior density . o ]
P{z1,c},z1 € R™, c € C, which is assumed known. whereT is the sampling interval anB = G. The target is
assumed to belong to one of two classés & 2), repre-

Using Bayes’ theorem, the posterior probability of théenting either a lower speedmmercial aircraftwith lim-

discrete staten for classe is expressed by ited maneuvering capability() or a highly maneuvering
military aircraft (c2) [4]. The flight envelope information
P(my=j|c{Z*Y*}) = (11) comprises speed and acceleration constrains, characteriz-
1 _ bl ko1 ing each class. The speedv /%2 + 52 of each class is
Ep ({2} [ =g e, {2771, V1Y) limited respectively to the interval:

{c1 : v €(100,300)} [m/s] and

{co : v € (150,650)} [m/s].
F The range of the speed overlap section is
1

50,300] [m/s]. The control inputs are restricted to
the following sets of accelerations:

()
x Y omP(mgy =1 e, {ZF1, YY),
=1

wherel;, is a hormalizing constant. Eq. (11) is substitute
in (7) in order to predict the state pdf at time}- 1.

Then the target classification probability is calculated by {c; : u € (0, +2g, —2g)} [m/s%] and
the equation {c2:u € (0,+5g,—59)} [m/s?],

P(c|{ZFY"}) = (12) whereg = 9.81 [m/s?] is the acceleration due to gravity.
D ({Zk ud | e {Z’“l Y’“*l}) p (C| {Z’“*l Y’“*l} The acceleration process; is a Markov chain with five

Zcecp({zkvyk} | e, {ZF1 Y1 P(c| {Zk—17yk—1})>tates (modes)(c1) = s(ca) =5 [13]:

with an initial prior target classification probabili#, (c), l.az=0, a,=0 2.a,=4A, ay,=A
iag =4, ay=—A 4da,=—-4A, aq=A4
>ocec Pr(e) =1. 5.0, =—-A, ay,=-A,
The state estimate, for each class whereA = 2g stands for class, target and4 = 5¢ refers

to the clasg,. The initial probabilities of the Markov chain
Ty :/ akp (zr,c | {25, Y*}) daog, c€ C - (13)  are selected as follows?; (1) = 0.6, P,(2) = P(3) =
o Py(4) = P1(5) = 0.1. The matrixr of transition proba-
takes part in the calculation of thrembinedstate estimate bilities 7;;,4,j € S is assumed of the same form for both
types of targets:

gp=) 2P (c|{Z"YF)). (14)
c; ( { }) 0.70 0.10 0.05 0.10 0.05
. . . 0.15 0.70 0.05 0.05 0.05
It is obvious from (6)-(14) that the estimates, needed for =1 015 005 070 005 0.05 17)

each class, can be calculated independently from the other
classes. Therefore, the JTC task can be accomplished
by the simultaneous work a#/ independent filters [11].
The scheme of the patrticle filter bank, implemented in thghe standard deviations of the process noise
present paper is described in Section 3. w ~ N(0,diag(c?,,02,)) are different for each

wx) Y wy

0.15 0.05 0.05 0.7 0.05
0.15 0.05 0.05 0.05 0.70



mode and class: The likelihoodAy,, c ({zk, v }) is factorized [2]

{Cl . O._Iju =55 [m/SQ],j — 1”5} and /\{wk,C} ({Zk:ayk}) :f.Lk (Zk)gc (yk)7 (20)
{C2 ol =75, 00 =175 [m/s?,j =2, .. .,5}7 \{vherey; =Vi_q- Prgctically, the nqrmalized speed like-
lihoods represent estimated by the filters speed-based class
where gue = owy = ow). probabilities. The posterior class probabilities are modified
by this additional speed information at each time step
3.2 Measurement model The inclusion of the speed likelihoods is done after some
The measurement model at time k is described by “warming-up” interval, comprising filter initialization
2 = h(zx) + vk, (18) 3.4 Multiple model particle filter algorithm
Assuming two classes of targets (commercial and non
where , commercial), we design a bank of twadependenparticle
h(z) = ( /22 + 42, arctan 5”) ] (19) fiIter; for each class. Every particle filter is baged of
Y multiple models for the unknown target acceleration

The measurement vectar = (D, 3)’ contains the dis- The hybrid particlex = {x,m,c} contains then all the
tance to the targeD and bearing3, measured by the Ne€cessary information about the target state, mode and
radar. The parameters of the measurement error vect§Ss:

v~ NO,R), R = diag(a%,a%) are as follows:op =

100.0 [m]; o5 = 0.15 [deg]. The scheme of each particle filter incorporates the steps:
1. Initialization &k =1.

3.3 Speed constraints Forclass ¢ =1,2,...,M set P(c)= Pi(c)

Acceleration constraints are imposed on the filter operation *For j=1,...,N., sample

by the use of an appropriate control input in the target xgi) ~ p1(z1,c0), mgﬁ) ~ {plc(m)}ifbcz)l ) - C}
model. The speed constraints are enforced through the

oo ! and setk = 2.
speed likelihood functions. They are constructed based on End forc
the speed envelope information (3.1). If we assume that
_ 2. For ¢=1,...,M (possiblyin parallel) execute
o 82 o 100 '; VEZ)OS 1091 [<mgso]0 * Prediction step
g1 (V') = 8= R (v —100) (Cl < Vi < 300) For j=1,...,N. generate samples
0.1 if vit > 300 [m/s] ) s(c) ) .
my |~ w309 for 1 =my”, andcl) = ¢
and ) _ ) () G
Ty xp ) + Gui—1(mg_’,,c) + Gui_1,
0.1 ifviz <150 [m/s] )
g2 (Vi2) = ¢ 0.1+ ko (Vi2 —150) if (150 < v}* < 650) Wit N0, Q(my_y 0)),
0.95 ifve > 650 [m/s] Measurement processing step
on receipt of a new measuremen :
for k1 = 0.7/200 and k2 = 0.85/500, then the class- ] P | h e{ k’_yﬁ}
conditioned speed likelihood functions will have the form, For,g =1 N‘{ evaluate the weights
depicted in Fig. 1. W,iJ) = f(zk | xg))gc (i)
- where(zi | ¢i)) = N(zi; b)), R)
Pra andge (y5) = ge (Vi—1);
> ] calculate N 4
odf class 1 !," ] p ({Zkayk} ‘ ¢, {Zkila Ykil}) = Zj:cl WIEJ)
o 1 setL(c) = Y0, W
. class 2 | * Selection step
' normalize the weightsW,") = W)/ s-Ne w9
ettt Speed interval resample with replacemen¥ particles
ooroo e me e (;cfj ), j=1,...,N.) from the set
F|g 1 Speed likelihood functions (.Tg),l — ]_, . 7Nc) according to the We|ghts

* Compute updated state estimate and posterior
mode probabilities

According to the problem formulation, presented in Sec-
tion 2, two class-dependent filters work in parallel with _
N. number of particles for each class. At time step Ly = Ni Zj-vz“l :E,(CJ)
each filter gives a state estimgte$, ¢ = 1,2}. Let us as- Y mP=ljel Ny
sume, that the estimated speed from the previous time step, P(my =1) = > Ne,m{) I=1...,5(c)
{V_,, c= 1,2}, is akind of “feature measurement’. End forc ‘




3. Output: Compute posterior class probabilities and
combined output estimate

vkl L@P(c{zF YRl
P(e{Z8YM) = sw Tasrem ey

i =00 P (c| {ZF YFY}) i,

4. Setk «— k+ 1 and go to step 2.

Actually, there is fusion at two levelgi) of state estimates
and their pdfs with respect to the classes; @degarding
the acceleration grid within each patrticle filter.

4 The mixture Kalman filter algorithm

The mixture Kalman filter (MKF) [14, 15] is another se-
guential Monte Carlo estimation technique which has been
successfully applied to different problems in target tracking
and digital communications (See e.g. [16]). The MKF is
essentially a bank of Kalman filters (KFs) or extended KFs
run with Monte Carlo sampling approach. The MKF is de-
rived for state-space models in special form, nancelydi-
tional dynamic linear modelconditional linear Gaussian
mode] or partially linear Gaussian model
{l’k =Fy_,%p—1+ Ga,_, (Up—1 + wi_1), 21)

2 = Hy, o + Vi, vk,

wherew,, ~ N (0,%,,), vy ~ N (0,%,) are Gaussian dis-
tributed processes. The temonditionaljustifies the char-
acteristic of these models: they are linear and their formu-
lation depends on extra random variables, cdi¢ent de-
noted as\. Then, the Monte Carlo sampling is working in
the space ofatent variablesinstead of in the space of the
state variables. The matricds, and H, are known, as-
suming that) is known. For simplicity, in the sequel we
are omitting the subscripf, from the matrices of (21).

Given the indicator variable, the KF provides a sufficient
statistical characterization of the system dynamics. The
MKF relies on the conditional Gaussian property and uses a
marginalization operation in order to improve the efficiency
of the sequential Monte Carlo estimation technique.

In our JTC problem the indicator variablgcorrespond-
ing to m from the previous sections) takes values from a
finite discrete se§ = {1, 2, ..., s(c)} and evolves ac-
cording to a Markov chain with transition probabilities (3).

Let KFY = {1, (\2)), £(AY))} denote the sufficient
statistics that characterize the posterior mean and covari-
ance matrix of the state;,, conditional on the observations
21k accumulated up to the time instaht and indicator
variableA)

The MKF algorithm [15] which we developed for JTC
has the following form:

2. Forclass =1,2,.

andset KFY = {u,(0\7), (A7)},

where i, A\Y) = i, ands (AP = 5,
are the mean and covariance of the initial state

T ~ N([Ll, 21) Setk = 2.
End forc

.., M execute

Forj=1,..., N, ,
*For\i 4, i=1,...,8(c) (Ni_; 2 M1 =1)
e run a KF time update step

(Mgifﬂi = FM](Q”;C,I + Gukfl()\i,il, c),
(S = Fu? FT+GS, (A, 0GT,
() = Pl )",

(Slgj))i, _ (Héj))i(z(j)

klk_l)Y',(Hlij))iT + Vzva.

e ON receipt of a measurement calqulate
oo = fl N KEDpOGIN, ), where
PN KE)) = N(as (2,5 (S9)9),
and
o( 2|)\,(j_)1) is the prior transition probability of
the indicator.

e endfor)i

* Sample)\,gj ) from a setS with probability, propor-
tional tovv i =1,... . s(c).

Let KF,Ej) be the one With\g) =1

* complete the KF iteration
Ky = (i)' TS
pide = i)' + Kok = (2
S = ) - KRS KR

* update the importance weights

W =Wl ge (V1) T wo

end forj

* Resamplingin the same way as in the particle
filter: generate a new set of samples with associated
weights

* Compute the updated state estimate and posterior
class probabilitiegas in the particle filter)

End forc
Setk «— k + 1 and go to step 2.

A reasonable choice of the proposal distribution
q()\fjllp\(lf,)c,KF,gj)) for the indicator variable is its pre-
dictive distributiong(AY), [AY), KFY, 2;.11) [14].

The designed here MKF is based on Extended KFs, ob-
tained after linearizing the measurement equation (2).

1. Initialization k = 1
Forclasss=1,2,...,.M set P(c) = Pi(c)
*For j=1,...,N,,

samplex{”) ~ {Pr(\)}59



5 Simulation results

The performance of the implemented filters for JTC is eval-
uated by simulations over a representative test trajectory
given in Figure 2, together with the radar location, indicated
by a triangle. The target motion is generated without pro-
cess noise. The MM particle filter and the MKF accounting
for speed and acceleration constraints are compared to fil-
ters without speed constraints, i.e. which likelihood is com-
puted not such as in (20), butis equaNg., .} = fa, (2x)-

Measures of performance. Root-Mean Squared Errors
(RMSESs) [17]: on position (both coordinates combined)
and speed (magnitude of the velocity vectas)erage prob-
ability of correct class identificatioandaverage time per
updateare used to evaluate the filters performance. The
results presented below are based on 100 Monte Carlo
runs. The cloud of the particles for each class is with
size N, = 3000 for the MM particle filter (PF) and
N. = 300 for the MKF, whereas the sampling period is
T = 5 [s]. The prior class probabilities are chosen as
follows: P;(1) = Py(2) = 0.5. The parameters of the
base state vector initial distribution ~ N (z1;mq, P1)in
the particle filter algorithm are selected as follow®; =
diag{150% [m], 20.0% [m/s], 150% [m], 20.0% [m/s]};
mq contains the exact initial target parameters. The MKF
initial parameters are:fi; the mean and the covariance
¥, of the initial statex; ~ N(f;,%;) are obtained by
a two-point differencing technique [12] (p 253). Notice
that the noise covariance matrices of the MKF coincide
with those of the particle filter, nameby, = R, V = I,
Yy = diag{c?,,, 00, } With 0, = 04y, givenin Sec. 3.1
Test trajectory.The target performs four turn maneuvers
with intensitylg, 2g, 59, 2g. The speed is constant, equal
to 260 [m/s]. After the5g maneuver, the MM particle filter
without speed constraints correctly identifies the real sec-
ond class, but after the last maneuveRgf a tendency for
misclassification is present (Figure 5). The MM particle
filter with speed constraints correctly determines the class
(Figure 6). According to the results from the RMSEs (Fig-
ures 3, 4) the developed MM particle filter with accelera-
tion and speed constraints can reliably track maneuvering
targets.

Nevertheless, as evident from Figures 7 and 12, the filters
clearly distinguish different motion segments and provide
good estimates of the model probabilities.

It should be mentioned that the selected target model (15)
in combination with the patrticle filtering technique or MKF
provides an easy way of imposing acceleration constraints
on the target dynamics. Air targets usually perform turn
maneuvers with varying accelerations alangndy coor-
dinates. These varying accelerations consecutively make
active different models from the designed multiple model
configuration, since the models have fixedand y- ac-

celeration inputs. During maneuvering different modelsrig. 5: PF class probabilities (without speed constraints)

may have similar probabilities which makes difficult to in-
fer which is the most probable between them.

501

y [km]

40
30
START

201

10r

x [km]

o A RADAR
. .

L L L L
0 10 20 30 40 50 60

Fig. 2: Test scenario

— output estimate u
= =+ class 1 estimate n
== class 2 estimate n

1000

900

800

700

600

Position RMSE [m]

500

400

300

200

T
é
’
f .

t [scans]
. I
60 70

o
"
S
n
S
@
8
a
8
@
&
o
&8

Fig. 3: PF position RMSE [m]

220

T T T
— output estimate
200 = =+ class 1 estimate .
- = class 2 estimate "

180

160

140

120

Speed RMSE [m/s]

100+

t [scans]
.

L L L L L L
0 10 20 30 40 50 60 70 80

Fig. 4: PF speed RMSE [m/s]

class # 1
== class #2

t [scans]

L L " L L
0 10 20 30 40 50 60 70 80



— class#1
== class#2

‘‘‘‘‘‘‘‘‘

TSN

0.8}

06

04t

02f

t [scans]
, .

L L L L L
0 10 20 30 40 50 60 70 80

Fig. 6: PF class probabilities (speed constraints)
‘ _— ciass # 1‘

1ee T -
0.8 o Y v
v

06

04

Posterior probability

02f

t [scans]
o |

L L L L
0 10 20 30 40 50 60 70 80

Fig. 7: PF posterior mode (m=1) probabilities

important advantage of the MKF compared to the MM par-
ticle filter is the smaller peak-dynamic errors during inten-

sive maneuvers (with an acceleratiop in the test).
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Figures 8-11 illustrate the performance for the MKF. An
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Fig. 11: MKF class probabilities calculated using both
speed and acceleration constraints

We have to notice that the MM particle filter and MKF com-
putational complexity allow for an on-line implementation.
An advantage of the MKF is its reduced complexity com-
pared to the MM particle filter. The computational time of
the PF (withN,. = 3000 samples) versus the respective one
obtained by the MM particle filter and MKF are quiteof the MKF (with N. = 300) is 1.73. We obtained very
similar. For these reasons we present only the estimatgabd results for the MKF withV, = 200 as well. In this

by the MKF functions in Figure 13. The target speed afase the ratio PF computation time/ MKF computation time
260[m/s] provides a slight superiority of the probability,becomes 2.7. All experiments were performed on PC com-
that the target belongs to class 2, according to the spgrder with AMD Athlon processor 2 GHz. Both algorithms
constraints. The estimated speed probabilities assist in glegmit parallelization at least of some parts: the MM filters
proper class identification, as we can seen in Figure 11. corresponding to each class can be definitely run in parallel.
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