
PARTICLE FILTERING WITH ALPHA-STABLE DISTRIBUTIONS

Lyudmila Mihaylova, Paul Brasnett, Alin Achim, David Bull and Nishan Canagarajah

Department of Electrical and Electronic Engineering, University of Bristol
mila.mihaylova@bristol.ac.uk, paul.brasnett@bristol.ac.uk, alin.achim@bristol.ac.uk

ABSTRACT

In this paper we introduce a novel sequential Monte Carlo
technique, which is based on the family of symmetricα-
stable (SαS) distributions. Sequential Bayesian estimation
generally involves recursive estimation offiltering andpre-
dictive distributionsof unobserved signals from their noisy
measurements. In our proposed algorithm, the relevant den-
sity functions are approximated by particles drawn from sta-
ble distributions. We call this novel techniqueSαS par-
ticle filtering (SαSPF). We assess the performance of the
SαSPF in comparison with the Gaussian Sum particle filter
(GSPF) [1] and a standard (non-parametric) particle filter
(PF). Results obtained using highly nonlinear models with
simulated data show that theSαSPF outperforms the GSPF
and compares very favorably with the PF.

1. INTRODUCTION

Recently, there has been considerable interest in solving the
problem of sequentially estimating the state of a dynamic
system based on sensor measurements [2]. Among the dif-
ferent solutions, the Kalman filter [3] remains probably the
most well known together with its variants - the extended
Kalman filter (EKF) [2] and the unscented Kalman filter
(UKF) [4]. However, Kalman filters are generally limited
by the ubiquitous nonlinearity and non-Gaussianity of the
physical world. Particle filtering methods (sometimes also
refered to as Monte Carlo techniques) have been thus pro-
posed as powerful tools, able to handle multivariate data and
nonlinear / non-Gaussian processes [5, 6]. Particle filtering
relies on a sample-based reconstruction of probability den-
sity functions. Multiple particles (samples) of the variables
of interest are generated, each one associated with a weight
that characterises the quality of a specific particle. An esti-
mate of the variable of interest is obtained by the weighted
sum of particles. The different particle filters differ from
each other in the way they propagate the probability density
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functions. Most sequential Monte Carlo algorithms are non-
parametric techniques, directly propagating a sample based
representation of the probability density function. However,
some recently developed algorithms, such as the Gaussian
particle filter (GPF) [7] offer a parameterised solution, i.e.
they use a Gaussian assumption and propagate the first two
moments (mean and covariance). They approximate poste-
rior densities by single Gaussians like the EKF and its vari-
ants. The GPF has also been used as a building block for
more complex filters, called the Gaussian sum particle fil-
ter (GSPF) [1] that approximate the posterior densities by
mixtures of Gaussian components.

A more general distribution that includes the Gaussian
density as a limiting case is theα-stable distribution. It has
been used to model many phenomena where the Gaussian
distribution is not a reasonable choice, for instance, noises
with an impulsive nature. Signals and noises of such class
contain sharp spikes or occasional bursts [8]. Impulsive
noises, which can be modelled withα-stable distributions
include atmospheric noise in radio links, ambient acoustic
noise in underwater sonar and submarine communications,
as well as lightening, switching transients and accidental
hits in telephone lines. Different phenomena have also been
modelled successfully withα-stable distributions in eco-
nomics [9], physics, biology, and electrical engineering [8],
including communications and image processing [10, 11].

So far alpha-stable distributions have not been used
within the Monte Carlo framework, apart from in [12, 13,
14, 15]. In [14] they have been applied to solve parameter
estimation problems in time-series. A Rao-Blackwellised
implementation was reported without a direct evaluation of
theα-stable probability density function, which in general
is unavailable in closed form. In [12, 13] a batch-based
Markov chain Monte Carlo (MCMC) method is proposed,
whilst [14] develops a sequential Monte Carlo framework
for on-line estimation with measurements corrupted withα-
stable noise. Finally, in [15] Monte Carlo techniques were
employed in order to derive a maximum likelihood estima-
tor for the parameters of anSαS distributed signal mixed
with additive Gaussian noise.

In this paper we develop a parameterised particle filter,
calledSαS particle filter. It propagates the filtering density



through sequential evaluation of the parameters of the stable
density. Sinceα-stable distributions incorporate the Gaus-
sian distribution as a particular case, theSαS particle filter
can be regarded as a natural generalisation of the GPF [7]
and of the GSPF [1].

The structure of the paper is as follows. Section 2 re-
calls the main properties of theα-stable distribution. Sec-
tion 3 develops anα-stable particle filter. Section 4 presents
results with synthetic data examples and assesses the per-
formance of theSαS particle filter in comparison with the
standard PF and the GSPF. Finally, conclusions and open
issues for future research are highlighted in Section 5.

2. BASIC PROPERTIES OF SαS DISTRIBUTIONS

The appeal ofSαS distributions as a statistical model for
signals derives from some important theoretical and empiri-
cal reasons. First, stable random variables satisfy the stabil-
ity property which states that linear combinations of jointly
stable variables are indeed stable. Second, stable processes
arise as limiting processes of sums of independent identi-
cally distributed (i.i.d.) random variables via the generalised
central limit theorem. Actually, theonlypossible non-trivial
limit of normalised sums of i.i.d. terms is stable. On the
other hand, strong empirical evidence suggests that many
data sets in several physical and economic systems exhibit
heavy tail features that justify the use of stable models [8].

Generally, there is no closed-form expression for the
probability density function ofSαS distributions. Conse-
quently, the most convenient way to define them is by means
of their characteristic function

ϕ(ω) = exp(jδω − γ|ω|α) (1)

where

• α is the characteristic exponent, with values0 <
α ≤ 2. It is arguably the most important parameter as
it determines the shape of the distribution. It controls
the heavinessof the tails of the density function. A
small positive value ofα indicates severe impulsive-
ness, and thus tails areheavier, while a value ofα
close to 2 indicates more Gaussian type behaviour. A
value ofα = 1 corresponds to Cauchy distribution.

• γ is thedispersionparameter (γ > 0), which deter-
mines the spread of the density around the location
parameter. It behaves in a similar way to the variance
of the Gaussian density, and it is, in fact, equal to half
the variance whenα = 2, for the Gaussian case.

• δ is thelocation parameter(−∞ < δ < ∞). It corre-
sponds to themeanfor 1 < α ≤ 2, and to themedian
for 0 < α ≤ 1.

A SαS distribution characterised by the above three param-
eters is denoted asS(α, γ, δ). The caseα = 2 corresponds
to theGaussian distribution, while α = 1 corresponds to
theCauchy distribution. Thedensity functionsin these two
cases are given by

fα=2(γ, δ;x) =
1√
4πγ

exp

{
− (x− δ)2

4γ

}
, (2)

fα=1(γ, δ; x) =
γ

π[γ2 + (x− δ)2]
. (3)

Generalα-stable density members do not possess finite
second or higher moments [16]. In particular, the variance
of a stable distribution withα < 2 does not exist, making
the use of variance as a measure of dispersion meaningless.
However, thedispersionof a stable random variable plays
an analogous role to the variance. The larger the dispersion
of an α-stable variable is, the more spread it is around its
location parameter [8].

3. AN ALPHA-STABLE PARTICLE FILTER

Consider a dynamic system described by the following
discrete-time state-space model

xk+1 = f(xk,vk), (4)

yk+1 = h(xk+1, wk+1), (5)

wherexk ∈ Rnx is the unobserved system state vector,
vk ∈ Rnv is the system noise assumed to belong to the class
of α-stable symmetric processes;yk ∈ Rnz is the measure-
ment vector,wk ∈ Rnw is a white Gaussian noise, andk is
the discrete time. Functionsf(.) andh(.) are nonlinear in
general.

In many statistical signal processing problems the pri-
mary objective is the reconstruction of the filtering probabil-
ity density functionp(xk|y1:k), with y0:k = {y1, . . . , yk}
being the set of all measurements available up to the mo-
mentk. Denote withN the number of particles.

The standard particle filtering technique is anon- para-
metricinference technique, whilst theα-stable particle filter
that we develop is aparametrictechnique, since it reduces
the uncertainty to the calculation of the parameters of the
α-stable distribution. Theα-stable particle filter represents
an extension to the GPF and of the GSPF. The GPF is based
on the particle filtering concept, and it approximates the fil-
tering and predictive state distributions by single Gaussians.
The algorithm achieves this by the propagation of the first
two moments of the Gaussian distribution, namely the mean
and covariance through particles.

In a similar way, theSαSPF approximates the filtering
and predictive state densities byα-stable densities using the
Monte Carlo methodology. It propagates the parameters of
theSαS distribution,α, γ andδ through particles.



TheSαSPF algorithm is described inTable 1.

Table 1 The symmetricα-stable particle filter

Initialisation

For k = 0 draw samples fromS(α0, γ0, δ0) and denote them
{x(j)

0 }N
j=1, for each state vector componenti = 1, . . . , nx. In

order to sample from a stable distribution we use the method pro-
posed by Chambers et. al [17]. Set initial weightsW

(j)
0 = 1/N .

Time update

Fork = 0, 1, 2, . . .,

1. For j = 1, . . . , N , samplex(j)
k+1 ∼ p(xk+1|x(j)

k ), from
the motion model (4).

Measurement update

2. Forj = 1, . . . , N , compute the weights

W
(j)
k+1 =

p(yk+1|x(j)
k )S(αk, δk, γk)

q(x
(j)
k |y0:k+1)

(6)

Under the assumption that the importance function
q(x

(j)
k |y0:k+1) = S(αk, δk, γk), then the weights are equal

to:

W
(j)
k+1 = p(yk+1|x(j)

k+1).

3. Normalise the weightsW (j)
k+1 = W

(j)
k+1/

∑N
j=1 W

(j)
k+1.

4. Update the characteristic exponentαk+1, and the other
parametersγk+1 andδk+1 from the shifted particles

W
(j)
k+1x

(j)
k+1 using thelog |SαS| method proposed in [18].

Output

5. Estimate the overall state

x̂k+1 =

N∑
j=1

W
(j)
k+1x

(j)
k+1, (7)

6. Setk = k + 1 and return to step 2.

An advantage of theSαSPF compared to the PF and
the GSPF is that theSαSPF does not require a resampling
procedure. Note that the resampling step in the PF is with
respect to the particles, whilst in the GSPF it is applied to
the mixing components. TheSαSPF relies on a parametric
representation of the filtering and predictive state densities,
whilst the PF representations of the state densities is non-
parametric, and in this sense the PF is more general than the
SαSPF. On the other hand, theSαSPF represents a gener-
alisation of the GPF and GSPF.

4. PERFORMANCE EVALUATION AND RESULTS

The developedSαSPF is compared to a standard PF and a
GSPF.

Example 1.Consider the system model given in [7, 1]

xk+1 = 0.5xk + 25
xk

1 + x2
k

+ 8cos(1.2k) + vk, (8)

with a measurement equation

yk+1 = xk+1 + wk+1, (9)

wherevk ∼ N (0, Q), wk ∼ N (0, R), with Q = 1, R =
2.5. TheSαSPF and the PF are run withN = 1000 parti-
cles, whilst the GSPF withN = 1000 and 10 mixing com-
ponents which means that the last has 10000 particles. The
actual state and the state estimates for a single realisation for
all filters are given in Figure 1, the mean errors are shown
in Figure 2 over 100 Monte Carlo runs.
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Fig. 1. State estimate from a single realisation: 1 - actual
state, 2 - standard PF, 3 -SαSPF, 4 - GSPF

Example 2. This example considers a scalar system
model with an additiveα-stable noise,

xk+1 = −2xk + 1.5x2
k + vk, (10)

and measurement equation

yk+1 = xk+1 + wk+1, (11)

wherevk ∼ S(αnoise, δnoise, γnoise). The measurement
noise is Gaussianwk ∼ N (0, R), with the following pa-
rameters:αnoise = 1.5, γnoise = 0.5, δnoise = 0, R = 1.
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Fig. 2. Mean error from 100 independent Monte Carlo runs:
1 - standard PF, 2 -SαSPF, 3 - GSPF

As in Example 1, theSαSPF and the PF are run with
N = 1000 particles, whilst the GSPF withN = 1000 and
10 mixing components which means that it has 10000 par-
ticles. Since the model noise isα-stable, we draw samples
from thevk ∼ S(αnoise, δnoise, γnoise) and samples from
xk ∼ S(αx, δx, γx).

The state estimate from a single realisation is presented
in Figure 3, the corresponding mean error from 100 inde-
pendent Monte Carlo runs is shown in Figure 4. As it can
be seen from the figures, the standard PF and theSαSPF
offer comparable results, while clearly outperforming the
GSPF.
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Fig. 3. State estimate from a single realisation: 1 - actual
state, 2 - standard PF, 3 -SαSPF, 4 - GSPF

The reason for this is that a Gaussian mixture distribu-
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Fig. 4. Mean error from 100 independent Monte Carlo runs:
1 - standard PF, 2 -SαSPF, 3 - GSPF

tion with a small number of components can not accurately
model heavy-tail distributions whilstSαS distributions can
more accurately model these heavy tail signals. Regarding
the computational complexity theSαSPF is more efficient
because it estimates only the two parameters of theα-stable
distribution, whilst the GSPF approximates two moments
per mixing component.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed an alpha-stable particle filter
framework and investigated its performance. It is more gen-
eral than the Gaussian sum particle filter and propagates the
filtering and predictive state distributions through an update
of the parameters of theα-stable distribution. Results over
synthetic data examples are presented.

So far the iterative calculation of the parameters of the
α-stable distribution were performed only for first-order sys-
tems. Since the multivariateα-stable distribution has no co-
variance, methods to estimate itsspectral measureshould
be devised. This is an open issue for future research, as well
as the validation of theSαSPF framework over applications
with real data. The developedSαSPF can be applied to dif-
ferent signal processing problems such as in queueing net-
works and systems with impulsive noises.
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