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The red-world tradking applicaions med a number of difficulties caused by the presence of different kinds of
uncertainty - unkrnown or not predsely known system model and random processes statistics or due to abrupt
changes in the system modes of functioning. These problems are espedally complicaed in the marine navigation
pradice where the cmmmonly used simple models of redili nea or curvili near target motions do not match to the
highly non-linea dynamics of the manoeuvring ship motion. A solution of these problems is to derive more
adeguate descriptions of the red ship dynamics and to design adaptive estimation algorithms. After analysis of
basic hydrodynamic models, new ship models are derived in the paper. They are implemented in two versions of
the recently very popular Interading Multiple Model (IMM) algorithm. The first one is a standard IMM version
using preliminary defined fixed structure (FS) of models. They represent various modes of ship motion,
distinguished by their rate of turns. The same rate of turn is additionally adjusted in the proposed new augmented
versions of the IMM (AIMM) agorithm by using FS and variable structure (VS) of adaptive models estimating
the aurrent change of the system control parameters. The obtained Monte Carlo simulation results sow that the
VS AIMM algorithm outperforms the FS AIMM and FS IMM algorithms with resped to acaracgy and
adaptability.
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1. Introduction

Trading of manoeuvring targets is a problem of a gred pradicad and theoreticd interest. The red
applicaions med a number of difficulties caused by the presence of different kinds of uncertainty due
to the unknown o nat predsdy known system model and random processes' statistics as well as
because of their abrupt changes (Bar-Shalom, 1992 ,Bar-Shalom and Li, 1993, 1995Best and Norton,
1997,Lerro, Bar-Shalom, 1993. These problems are espedally complicated in the marine navigation
pradice where the gplied trivial models of redili nea or curvili nea target motions do nd match to
the highly norntlinea dynamics of the manoeuvring ship motion. A solution d these problems is to
derive more alequate descriptions of the red ship dynamics and to design adaptive estimation
algorithms. Such a solutionis propacsed in the paper. New ship models are derived in Sedion 2after a
brief analysis of the basic hydrodynamic models (Ermolaev, 1981,0gawa, et al. 1977,Pershitz, 1973,
Sobdev, 1976. These models are implemented in new versions of the Interading Multiple Model

(IMM) filter - one of the most cost-eff edive anong the multiple mode algorithms used for estimation
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of hybrid systems, i.e. systems with bah continuows and dscrete uncertainties (Bar-Shalom, 1992,
Blom and Bar-Shalom, 1988,Li, 1996,Mazor et al., 1998. A brief summary of the basic feaures of
the Bayesian estimation algorithms and espedally of the IMM filter is given in Sedion 3.Sedion 4
presents the propocsed new IMM algorithms. They are based on an appropriate state vedor
augmentation, which includes the difference between the unknown control parameters and their
values fixed in the IMM algorithm. Because of this model augmentation the resulting IMM algorithm
is cdled here augmented (AIMM). Two AIMM algorithm versions are developed and evaluated. The
first is a standard IMM version wsing a preliminary defined fixed set of models and is cdled a fixed-
structure (FS) agorithm (Li, 1999. The models represent various modes of ship motion dstinguished
by their control parameter - the ship’s rate of turn. The same rate of turn is additionally adjusted in
the propcosed new augmented versions of the IMM (AIMM) filter, respedively with fixed structure
and variable structure (VS) (variable set of models, estimating adaptively the aurrent change of the
system control parameters). The FSand VS AIMM algorithms are given in Sedion 4,the results from
comparative performance e/aluation d the ansidered algorithms - in Sedion 5. Finaly, inferences

and recommendations are summarized in Sedion 6.

2. Model |dentification

Results of the research study, described in (Semerdjiev and Bogdanova, 1995, Semerdjiev et al.,
1998, Semerdjiev and Mihaylova, 1999 are summarised in this ®dion. It shodd be nated that the
high complexity of the hydrodynamic processes caused by the ship motionin deep and confined water
and the wide variety of ship forms and sizes leal to various non-stochastic ship models. These models
could be divided in two groups. predse models, topicd for particular ship forms and sizes (the model
of Sobdev (1976, the aubic model of Abkowitz (1964), the quadratic model of Norrbin (1981 and
MMG model (Ogawa and Kayama (1977 ) and models with gredaer generality but lower acaracy
(Pershitz (1973 and Nomoto (1960 models). Here, the widely used continuows-time (CT) Pershitz
model is chaosen as basic model to asaure agood trade-off between model complexity and model

acaracy:
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where V,, is the uniform (redilinea) ship velocity. The state vedor of the cnsidered model is
X = [X,Y,L,U,w,B,V]'. It includes the ship coordinates, heading, rate of turn, drift angle and velocity;
0 isthe ontrol rudder angle deviation. The cnstant hydrodynamic coefficients 0,,, I,;, Sy, O,

O, I3; and S;; depend onthe ship geometry, most of all on the ship length L (Voitkourski, 1985.
Equations (3) and (6) illustrate the main feaure of the wnsidered dynamics - the nonlinear
dependence between the ship’s rate of turn and vdocity. This is the main dfference between the
above model and the other well-known simple models (Bar-Shalom, 1992,Best and Norton, 1997,
Lerro, Bar-Shalom, 1993.

Very often (Pershitz, 1973,Voitkunski, 1985 the CT mode (1)-(6) is smplified by substituting
the factor |B| with an dff-line wmputed fadtor:

g, = ZAFAA + A0S0

2h1r31

where: q=0,,l5; — Ol S=1,4S; —13:S,,. The system of two first-order differential equations

consisting of equation (4) and the modified equation (5), is further transformed in two independent

seandorder differential equations, omitti ng the negli gible second-order derivatives:
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where: p = 0-5(q2D1 + r31)1 q* = q2Dlr3l — Ol C12D1 =0, +hB,. Thefina CT model (1)-(3), (4) and
(6) isobtained by setting 3=0.

Therespedive discrete-time (DT) model is:

X = Xy + TV singy, )
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where k =1,2,---; T isthe sampling interval, and
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The full coincidence between the results ohbtained by the CT model (1)-(6), and these from the
derived DT model (7)-(11) is demonstrated in (Semerdjiev et al., 1998. That is why the DT model
(7)-(12) isused for true data generation in the further simulations.

Thefinal DT model, suitable for implementation in a Kalman filter, is recaved onthe basis of the
assumptions (Semerdjiev et al., 1998 Semerdjiev and Mihaylova, 1998:

* The observed ship manoeuvres with constant rate of turn:

Q1 =Qy (e T =0).

» The domain of unknown control parameters Q, may be “covered” by a set of three ontrol

parameters correspondng to the three basic kinds of ship motions: uniform motion (Q, ), left and

right turns (Q, and Qg):

Q=[Q,.Q:.Q,] =[ou U],



where U denates a preset constant rate of turn. The vedor Q coversall ship manoeuvres and system

noises in the band [—U ,U]. The particular choice of U is made by taking into acourt general

considerations from the marine pradice aad some important international navigation restrictions
(Voitkourski, 1983.

» The atempt to introduce avedor of possble ship lengths has been recognised in (Semerdjiev et
al., 1998 as unsuccessul because of the bad dstinction d the resulting models. The uncertainty,
concerning the ship geometry has been overcome by introducing a cmmon constant average ship
length | = const (Semerdjiev et al., 1998.

So, the final version of the requested ship model takes the foll owing form:

Xiwsr = Xy + TV g singy 12
Yikar = Yi + TV, g COSY; (13
Wigr Wi + TV Qi (14
Viks = Ky iVy - (15

The new state vedor is X =[X; .Y Wi Vo k] Ky; = (1+ 19§2i2I2)_1, and Q=[Q, ,Q¢.Q,]
=[ou U], i=123.
Another model version, kesed onthe augmented state vedor x? :[Xi,k’Yi,kvwi,k Mo ko DQ; s

suggested in (Semerdjiev and Mihaylova, 1998:

Xixn = Xig * TV g SINY; (16)
Y = Yk + TV aa COSY; 17)
Uik =i +TVi,k+1(Qi +AQi,k)1 (18
Viks = Ky iV i (19
AQ; 1 = DQ; (20)

where i =1,2,3. This model takesinto acourt posshle differences AQ; , between the unknown true
ship rate of turn Q, andits values Q; fixed in the IMM algorithm. The influence of AQ;, onthe

velocity is nat taken into acourt becaise of itsinsignificance



It shoud be noted also that the éove modes can be used to cover simultaneous healing and

velocity manoeuvres. It isonly necessary to introduce velocity noise in the redili nea motion model.

3. Standard IMM Algorithm

It isknown (Bar-Shalom and Li, 1993, 199bthat to estimate the system state within the framework
of the Bayesian approadh, the computational and storage requirements increase exporentially with
time which makes the estimator not implementable in red time. To circumvent this problem,
subopimal estimators with certain hypotheses management, such as pruning and merging, have been
used, leading to such algorithms as generalized pseudo-Bayesian (GPB) algorithms of first order
(GPB1), of second ader (GPB2), andin general, of order r (GPBr ). It has been shown in (Li, 1996,
Bar-Shalom and Li, 1993, 199%that the IMM algorithm is one of the most cost-eff edtive schemes for
estimation d hybrid systems. It yields the performance of GPB2 with the lower requirements of
GPB1.

The IMM agorithm is a reaursive one (Blom and Bar-Shalom, 1988, Bar-Shalom and Li, 1993,
1995, Li, 1996. Each cycle of the dgorithm consists of four major steps. interadion (mixing),
filtering, mode update and combination. In eadt cycle, the initial condtion for the filter matched to a
certain mode is oltained by interading (mixing) the state estimates of all filters at previous time under
the assumption that this particular mode is in effed at the aurrent time. This is followed by filtering
(prediction and updaite) step, performed in paralel for ead mode. Then the combination (weighted
sum) of the updeted state estimates from all filters yields the state estimate.

The standard IMM filter is used here to develop its versions, suitable for ship trading, taking into

acourt the ship models particularities.

4. Augmented IMM Algorithmsfor Tracking of Manoeuvring Ships

4.1. Fixed-Structure Augmented IMM Algorithm for Ship Tracking

In agenera state-spaceform the ship model and the measurement equation can be written as foll ows:
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X, = f(xk—liQk—l) + g(Qk—l)Vk—11 (21
Z, = Ne(%e) + W, (22

where the state vedor x, O00™ is estimated based on the measurement vedor z 0O0O™ in the
presence of unknown true cntrol parameter Q, O™ . The mutually independent additive system
and measurement noises v, OO™ and w, OO™ are white and Gaussan: v, ~ N(0,Q,),

W, ~ N(O,Rk). Functions f, g and h are known and remain urchanged duing the estimation
procedure.
To estimate the difference AQ; , between the aurrent true control parameter Q, anditsvalue Q;
fixed inthe i -th IMM model, the system state model is augmented by the next equation:
AQ =AQ; ., (23
where
AQ;, =Q, —Q;. (29
The state and system noise vedors of the i-th augmented model (i =1,N ) can be written in the
form:
X'k :[X;,k AQ ,k]‘ Do™™ vl :[Vil,k Va,, ] og™*e.
In general, the new augmented model isnonlinea:
x = f a(x;’i‘k_l,Qi +AQi,k—1)+ ga(Qi +AQi‘k_l)vﬁ‘k_l, (25
z, = he‘(xﬁk,Qi +AQi’k)+wk. (26)
Functions f2(.), g®(.) and h?(.) are known and remain urchanged duing the estimation procedure.
The euations of the mrrespondng Extended Kalman Filter (EKF) are derived by lineaization o
models (25) and (26). Functions 2 (x ,1,Q; +AQ;, ;) and g7 (x,1.Q; +AQ;, ;) are expanded in
Taylor series up to first-order terms around the filtered estimate X%y ._;; the function
h?(x x.Q; +AQ;, ) is expanded up to first-order terms around the predicted estimate %%, (Bar-

Shalom and Li, 1993. So, the i -th EKF equations take the form:
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P = Riak-1 ~ Kk Sk (Kia,k ) , (32

where K@ is the filter gain matrix, R%, and Qf, are the estimation error covariance and system

noise mvariancematrices, y;, and S, arethefilter innovation and its covariance matrix, the system
and the measurement Jacobian are f/, ;= afa( K -vk-1>Q +AQI KUk l)/dx,k vk-1 and hg, =
&na(ii"fk,k_l)/@?ﬁ‘k,k_l; g=1 is the EKF fudge fador. The  restrictions
Q; +8Q; gy T[Q in Qi ] @€ iMpOsed to provide minimal models separation.

After the expansion d the ship models (12)-(15) and (16)-(20) in Taylor time-series, three
IMM algorithm versions are derived. The IMM a gorithm based onmodel (12)-(15) is further denoted

as FSIMM, whil e the propased AIMM agorithm based onmodel (16)-(20) is dencted as FSAIMM.

4.2 Variable-Structure Augmented IMM Algorithm for Ship Tracking
The FS AIMM algorithm can be transformed into a new VS AIMM agorithm by substituting the
constant vedor of deterministic parameters Q; with the randam vedor of control parameters Q; , . At
the beginning of eadt EKF (before the state prediction step) in the IMM agorithm, the last filtered
displacament Af)i,k_m(_l corredsthe old vedor of control parameters Q, ,_;

Qi :Qi,k—l+Aéi,k—llk—l (Qi0=9Q), (33

The new control parameters must obey the restrictions



Qi D[Qimn,Qim],forau i

After the @ove operation, the model displacement Af)i,k_w_l is st to zero:
AQ; ks =0. (39
Otherwise, it will be taken into acourt twicein the EKF equations.
Finally, it shoud be nated, that the proposed here VS AIMM algorithm is general and dces not

depend onthe implemented system and measurement models. It is an adagive VS IMM algorithm

using minimal number of models, self-adjusting their locationin continuows parameter domain.

4.3. AIMM Algorithms | mplementation
Considering the AIMM algorithms implementation in sea tradk-while-scan radars, the particular
feaures of these sensors are taken into account by using the next measurement equation:
z, = Hx, +w,
where H isthe measurement matrix,

@ 0 0 OC

T 1o oF

and w, is awhite Gausdan measurement noise with covariance matrix R, . The polar measurements

“range-beaing’ z, = [rk ,Bk]', are transformed, for convenience, in Cartesian ores:

X =r.sinf, Y, =T, cosp, .
The measurement vedor aauires the new form z, = [Xk ,Yk]' . Respedively, the mvariance matrix of
the measurement errors becmes (Farina, 1986:

(5?2 sin® B, +1r707 cos’ B, (af - rkzofg)sinﬁk cospB, E

Ryx=U . .
’ E(af - rfoé)snﬁk cosf, o7 cos’ B, +riopsin® BeE

where g, and o, arerespedively the range and beaing standard deviations.

The Jaabi matrix computed based uponthe model (12)-(15) has the form:
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the respedive one based onmodel (16)-(20) is:

Qo TKv,i\iu Kk COSY; i TKy; Sng; 4k 0 C
%) 1 _TKV,i\7U ik SN, TKy; oS, 4k 0 E
Fx = %) 0 1 TKy; (Qi + Aéi,k/k) TKV,iVU KIK E
D 0 0 Ky, 0 €
0 0 0 0 1

A hard logic is introduwced in al IMM algorithms to avoid an undesired combination d the
estimates Vy i, Vi ad Vg, (Semerdjiev et al., 1999:

A

Vikik =\7u,k/k, (i=23);
Viok =Vugr if ty y >05,
where L, is the probability of the event: “the i -th model is topicd at time k”, V. is the overall

(final) estimate of the ship velocity.

5. Performance Evaluation

5.1 Measures of performance

The performance of the three IMM algorithms is compared by Monte Carlo simulations. The mean
error (ME) and the roat mean-square aror (RMSE) of ead state amporent have been chasen as
measures of performance (Bar-Shalom and Li, 1993. The ME and the RMSE of both estimated
coordinates have been respedively combined. Results from 100 independent runs, ead ore lasting
200scans (6005, T =3 s) are given.

The simulation parameters of the true model (7)-(11) are standard (Voitkourski, 1985,Semerdjiev

et al., 1999: q,,=0.331, ry, =-0.629, s,, =-0.104, h, =3.5,05; =-4.64, r;; =3.88, s;3, =-1.019,
L=99m, J,,=3", O, =30°. The chasen initial condtions are: X, = Y, =10000n, Yy, =45°,

V, =30ms,

10



It is assumed that initialy the ship moves redili nealy. The true ship trgjedory is presented in

Fig.1. The gplied puse-wise rudder angle control law is:

(B - k 0[5, 67]
Dk 0[51,67)

The ontrol parameters of FS IMM and FS AIMM agorithms are fixed as follows:
Q=[0,U-U], where U =0.0066rad/m (which corresponds to a 360°/min turn rate). The VS

AIMM uses the same ontrol parameters at its initialization. For the VS AIMM algorithm it is
asaumed that |Q; ;| = 0.0011, |Q; | = 0.0066.
The three IMM algorithms use a onstant ship length I=69 m. The EKF's fudge fadors are

also set constant for all IMM: ¢ =1.03.
In the considered bellow example the measurement error covariance matrix is computed for

o, =100m and g; =0.3°. The initial error covariance matrices P,,, the initial mode probability

vedors u andthe transition probability matrices Pr are cosen asfoll ows:

Pi;swm _ Pi;SAIMM =diag{a§ o2 Uj U\?}’ Pi\,gSAlMM =diag{a)2( 02 05 o2 O-KQ}!
CogsC 06 02 02C 09 005 005C
[FSIMM = | FSAMM _ | VSAMM — %_0255 PrFSIMM _ o FSAIMM _ %_5 05 0 E’ pyVSAIMM _ %)1 08 o1 E’
9025 M5 0 O5E B1 01 08E

oy =0y =0,, 0, =0.1°, g, =10m, g,, =0.01lrad/ m.

It is supposed that there is no system noise in the models, i.e. Q% =Q =0. The Monte Carlo

simulation results are shown in Figs. 2-12.

a
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Fig. 1 The true ship trajedory Fig. 2 ME of bath estimated coordinates, [m]
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Generally, the VS AIMM algorithm passesses the best accuracy, the lowest peak dynamic arors
andthe shortest resporse time. These inferences are wnfirmed by the mean error (ME) and the root-
mean-square errors (RMSE) plots presented in Figs.2-4 and Figs.5-7. The average mode probabiliti es
are given in Figs.8-10. The ship moves at the beginning and at the end o the observed period
uniformly, in the midde it makes a right turn that is refleded in the mode probabiliti es. The VS
AIMM algorithm also provides the best and fastest model recognition. It is obvious from Figs. 11and
12 that the dove excdlent VS AIMM agorithm performance is due to the self-adjustment
mechanism for appropriate and timely control parameter tuning.

The propaosed here technique for multi ple-model ship tradking with a variable set of models can

also be used in ather applicaions.
13



6. Conclusions

New models adequately describing the nontlinea dynamics of manoeuvring ship motion are derived
in the paper for the purposes of the manoeuvring ship tracking. A new variable-structure augmented
IMM tedchnique is a'so proposed. The designed ship models are implemented in a standard IMM and
in the proposed here two augmented IMM algorithm versions with fixed and variable model structure.
The proposed new AIMM algorithms use augmented state vedors and models to compensate the
difference between the cntrol parameters fixed in the IMM models and their current true values.
Very good self-adjusting abiliti es are provided to the designed augmented IMM algorithms due to the
estimated rate of turn. The acomplished extensive Monte Carlo simulation, shows that the VS AIMM
algorithm outperforms the FSAIMM and FSIMM algorithms with resped to estimation acaracy and

adaptability.
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