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Abstract - A new variable-structure (VS) Augmented
Interacting Multiple Model (AIMM) technique is
developed in the paper. Fixed-structure (FS) and VS
AIMM algorithms using augmented constant velocity and
augmented coordinated turn (ACT) models, are proposed.
The ACT model includes the difference between the
unknown current turn rate and its value assumed in the
IMM models. Due to the estimated turn rate, significant
self-adjusting abilities are provided to the designed AIMM
algorithms, which give very good overall accuracy and
consistency. Both AIMM algorithms are compared to a
particular VS adaptive grid IMM algorithm. It is shown
that the VS IMM algorithms possess better mobility, while
the FS AIMM algorithm possesses better consistency. The
VS AIMM algorithm provides the best estimation of the
turn rate.

Keywords: IMM, adaptive estimation, target tracking,
coordinated turn model

1  Introduction

The Interacting Multiple Model (IMM) algorithm is one of
the  most  effective  among  the  multiple model
algorithms used to overcome the usually arising
uncertainty about the states and parameters of dynamic
systems [1,6,7]. Discretizing the continuous domain of the
unknown control parameters, the system behaviour is
considered as a sequence of system transitions among a
finite number of known discrete system modes, differing
by their particular control parameters. The discretization
step of the uncertainty domain predetermines the number
of IMM models, the estimation accuracy, and the required
computational load, which may turn out to be
unacceptably high in certain circumstances. That is why
the question “how to decrease  the  IMM models’ number
without significant loss of accuracy?”  is considered in a
number  of issues. This question  is  especially  topical  for

 IMM tracking with the coordinated turn (CT) model
[1,2,4].

The CT model [1, 2, 4, 8, 9, 13] is widely applied in
IMM tracking applications design. It describes target
maneuvers performed with constant turn rate, at constant
height (the case of civili an aircraft) [1, p.77-78]. For
milit ary aircraft the assumption that the turn rate is known
is less natural and the domain of unknown turn rates is
significantly larger. Often, a single CV model and a
considerable number of CT models are usually
implemented to design a tracker with a fixed structure (FS)
IMM algorithm (IMM-CV/CT) [8, 9], capable to cover a
wide range of maneuvers. As it is known the FS algorithm
uses a predetermined fixed set of models [7]. The required
computational load depends on the number of models.

A brief analysis of solutions decreasing the number of
IMM-CV/CT models is presented in Section 2. FS IMM
algorithms using augmented CT models (ACT) and
variable structure (VS) IMM designs using standard or
ACT models are applied for this purpose. Here, two new
IMM-CV/CT algorithms are proposed and evaluated in
Sections 3-5. The basic idea of the Augmented IMM
(AIMM) algorithm is considered and a new VS AIMM
algorithm is proposed in Section 3. Two particular FS and
VS AIMM-ACV/ACT algorithms using single augmented
CV (ACV) model and two ACT models are developed in
Section 4. Applying Monte Carlo simulation in Section 5,
these algorithms are compared to a VS IMM-CV/CT
algorithm similar to those described in [4], for a
particularly hard scenario. All i nvestigated algorithms
demonstrate very good performance. Finally, inferences
and notes are given in Section 6.

2  IMM-CV/CT algorithms

The CT model [1, 2, 8, 9] represents the exact kinematics
of a turn, performed in horizontal plane, with known
constant angular rate ω :



x F x Gvk CT k k= +− −1 1 .

Its state vector [ ]x X X Y Yk k k k k= ,
�

, ,
� '

 includes aircraft

Cartesian coordinates and their derivatives; T  is the
sampling interval; the scalar system noise is white and

Gaussian, ( )ν k CTN Q~ ,0 . Matrices FCT  and G  have

the form:
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and ω > 0  for counterclockwise turns.
The CT model is usually jointly implemented with the

constant velocity (CV) model [1, 2, 4, 7-9] describing the
uniform target motion:

x F x Gvk CV k k= +− −1 1 ,

where
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The above models are often augmented to cover a
large range of possible target maneuvers using minimal
number of models. Wang, Kirubarajan and Bar-Shalom
investigate three ACT models in [13]. They are obtained
augmenting the standard CV and CT model by the
unknown turn rate ωk , which is included in the state

vector [ ]x X X Y Yk
a

k k k k k= ,
�

, ,
�

,
'

ω , and it is no more

considered as a control parameter. Then, the nonlinear
ACT model is once expanded in a Taylor series up to first-
order, and once more – up to second-order terms, to
develop a respective extended Kalman filter (EKF). The
third IMM-CV/CT algorithm uses the Kastella’s CT model
version, which is implemented in a respective EKF, too.
Each of the three designed standard IMM algorithms uses
a single CV model and a single ACT model. It is finally
noted, that the three algorithms yield similar performance.

Li and Bar-Shalom [8] have designed three other
adaptive FS IMM-CV/CT algorithms for industrial
application. The first one uses standard CV and CT
models applying least squares turn rate estimation, but it
does not possess suff icient capabiliti es to track systems,
whose turn rate rapidly changes. Both versions of the
second proposed algorithm use a single ACV and two or
four ACT models. The turn rate is treated as a random
variable with certain known expected value and variance.
The maneuvering models correspond to different levels of

 the above expected turn rates, respectively. The standard
IMM algorithm configuration is modified with an
instantaneous feeding of the expected turn rate to the
maneuver model(s) after the ACV interaction step [8,
p.193]. Both algorithms reduce the noise during the
uniform motion while maintaining the estimation accuracy
better than unfiltered raw measurements [8, p.186].

A VS IMM-CT/CV algorithm is proposed by Munir
and Atherton in [9]. The CT model is decomposed along
each axis in two independent models, and further
augmented by the corresponding linear accelerations� �
X and 

� �
Y . The turn rate ωk  is calculated at each step as

the magnitude of the acceleration divided by the target
speed. The proposed algorithm outperforms the standard
FS IMM-CV/CT algorithm, when the turn rate range is not
fully covered by the standard IMM models.

Another, higher quality performance is reported in [4].
Attractive estimation accuracy and significant reduction of
the computational load is achieved due to the application
of the advanced variable structure (VS) IMM approach [5-
7]. Introducing grids of turn rates it becomes possible to
develop switching grid IMM (SGIMM) and adaptive grid
IMM (AGIMM) algorithms using a single standard CV
and two CT models. Their performance is compared to
those of a standard FS IMM using a complete set of CT
models, and the AGIMM algorithm performance is proven
to be the best.

Summarizing the above survey, it may be stated that
the simple inclusion of control parameters in the state
model does not automatically provide improved IMM
algorithm performance. As a rule, the control parameters
included in the new state vector are initially set to values
placed at the center of the former parameter domain [13].
Each time, when the system jumps into a new mode, such
EKF starts its motion from this initially preset mode.
Evidently, some period of time is needed to reach the new
system mode, and this period is larger than the respective
time needed to reach the new mode if non-collocating
models are used. Because of this performance de-
terioration, the above mentioned IMM algorithms have
yielded place to the more eff icient VS algorithms like the
recently proposed VS IMM ones [4]. However, due to the
“artificial” nature of the VS IMM algorithms, it is not easy
to design appropriate particular parameter grids and
switching rules for SGIMM or model management for
AGIMM. Also it is diff icult to develop eff icient VS IMM
algorithms in conditions far from the initially assumed.
That is why the idea to apply new approaches combining
the advantages of having the control vector estimated and
the mobilit y of the VS IMM algorithms is topical.
Applying the recently proposed Augmented IMM
approach [10-12], FS and VS AIMM algorithms are
proposed and investigated in the present paper.
 Results concerning the IMM algorithm developed in
[13] are not presented here. Preliminary simulations
showed that the achieved estimation accuracy is
significantly lower than those reported here. It is possible
that our results are not suff iciently representative, because
of the lack of complete information in [13] about the
particular algorithm parameters design.



3  FS and VS AIMM algorithms

The eff iciency of the AIMM approach has been validated
in [10-12]. It has been successfully applied in such
important practical applications as maneuvering aircraft
and maneuvering ship tracking [10,11], as well as for fault
detection and parameter drift estimation [12]. Maintaining
non-collocating models, it estimates the unknown control
parameters. As a result it adequately follows the abrupt
changes in the system behaviour using small number of
augmented models.

3.1 Fixed-Structure Augmented IMM
Algorithm

To describe the idea of the AIMM algorithm let us
consider the stochastic hybrid system:

( ) ( )x f x p g p vk k k k k= +− − − −1 1
0

1
0

1, ,         (1)

( )z h x wk k k k= + ,                  (2)

where xk
nx∈ ℜ  is the system state vector estimated

based on the measurement vector zk
nz∈ ℜ  in the

presence of unknown vector of the true control parameters

pk
n p0 ∈ ℜ . The additive system and measurement noises

vk
nv∈ ℜ  and wk

nz∈ ℜ  are mutually independent,

white, Gaussian: ( )ν k kN Q~ ,0  and ( )w N Rk k~ ,0 .

Functions f , g  and h  are known and remain

unchanged during the estimation procedure.
To estimate the difference (displacement) ∆ pi k,

between the current true control parameters pk
0  and their

values pi   fixed in the i -th IMM model, the system state

model is augmented by the following simple set of
equations:

∆ ∆p pi k i k, ,= −1 , ( ∆ pi ,0 0= ).               (3)

The difference

∆ p p pi k k i, = −0 ,               (4)

for all i  must obey the restrictions ∆p pi k i, + ∈

[ ]p pi i
min max, , providing given minimal and maximal

separation distances between the models. They prevent
possible models’ merge or displacements.

The augmented state and system noise vectors of the

i -th augmented model (i N=1, ) is written as:
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,
= ∈ ℜ +

.

In general, the new model is nonlinear:

( ) ( )x f x p p g p p vi k
a a

i k
a

i i k
a

i i k i k
a

, , , , ,,= + + +− − − −1 1 1 1∆ ∆ ,  (5)

( )z h x p p wk
a

i k
a

i i k k= + +, ,, ∆ .                (6)

Functions f a (.) , ga (.)  and ha (.)  are known and remain

unchanged during the estimation procedure.

Further, the EKF equations are derived by linearization

of models (5) and (6). Functions ( )f x p pa
i k i i k, ,,− −+1 1∆

and ( )g x p pa
i k i i k, ,,− −+1 1∆  are expanded in Taylor

series up to first-order terms around the filtered estimate
�

, /xi k k
a

− −1 1 ; the function ( )h x p pa
i k i i k, ,, + ∆  is expanded

up to first-order terms around the predicted estimate
�

, /xi k k
a

−1  [2, 3]. The equations of the i -th EKF take the

form:
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where Ki k
a
,  is the filter gain matrix, Pi k k

a
, /  and Qi k

a
,  are

the estimation error covariance and system noise
covariance matrices, γ i k,  and Si k,  are the filter

innovation and its covariance matrix, the system and the
measurement Jacobian are

f x k
a
i , − =1 ( )∂ ∂f x p p xa

i k k
a

i i k k i k k
a�

,
� �

, / , / , /− − − − − −+1 1 1 1 1 1∆

and

hx k
a
i ,

= ( )∂ ∂h x xa
i k k
a

i k k
a� �

, / , /− −1 1 ;

φi ≥ 1 is the EKF fudge factor.

Obviously, such indirect inclusion of control
parameters in the state vector makes them “manageable”.
As it is mentioned in [8], in this case the estimation
accuracy of these parameters is not very important, as far
as the other state vector components estimates are of
major interest. What is important is the correct and timely
detection of the system maneuver and the fast response of
the filter to this detection. For example, estimates ∆

�
, /pi k k

contain useful information about the maneuver starting and
final moments, and about the intensity of the current
maneuver. Using these estimates, it also becomes possible
to develop additional feedback for EKF and IMM
parameters tuning [10-12]. The considered AIMM
algorithm is a FS IMM algorithm, using appropriate model
adaptation for covering system transitions in a given range
of system modes. Evidently, it reverts back to the standard
FS IMM algorithms for ∆ pi k, ≡ 0 .



3.2 Var iable-Structure Augmented IMM
Algorithm

The FS AIMM algorithm can be easy transformed into a
new VS AIMM algorithm by substitution of the constant
vector of deterministic parameters pi  with the random

vector of control parameters pi k, −1 . At the end of each

scan the last filtered model displacement ∆
�

, /pi k k− −1 1  is

used to correct the old vector of control parameters
pi k, −1 :

p p pi k i k i k k, , , /

�
= +− − −1 1 1∆   ( p pi i,0 = ),            (14)

predicting in this way its new values. The new control
vector must obey the restrictions

[ ]p p p pi k i k k i i, , / ,min ,max,− − −+ ∈1 1 1∆ , for all i .

After the above operation, the model displacement
∆

�
, /pi k k− −1 1  should be set to zero:

∆
�

, /pi k k− − =1 1 0 .                                                 (15)

Otherwise, it will be taken into account twice in the EKF
equations. Because of the last correction (15), the EKF
(7)-(13) starts at each scan with no initial model displace-
ment. The new model displacement (in fact, the displace-
ment’s increment) is generated by eqn. (7), so a new
control vector should be predicted again at the end of the
scan.

The proposed new VS algorithm has better dynamics
than its FS predecessor version. The vector pi k,

accumulates all estimated increments ∆
�

, /pi k k− −1 1  of the

i -th EKF, while the i -th EKF in the FS AIMM algorithm
is adjusted by the standard IMM’s mixture ∆

�
, /pi k k− −1 1 , in

which the estimated dominant displacement is reduced due
to the usual IMM models interaction.

Finally, it should be noted, that the proposed here new
VS AIMM approach is general – it does not depend on the
implemented system and measurement models. The new
VS AIMM algorithm is an adaptive VS IMM algorithm
using minimal number of models that self-adjust their
location in continuous parameter domain.

4  AIMM algorithms using CT model

The designed here AIMM algorithm versions use a single
ACV model and two ACT models for left-turn and right-
turn motions. They are obtained incorporating the
equation:

∆ ∆ω ωi k i k, ,= −1 ,

into the standard CV and CT models. The difference

between the current true turn rate ωk
0  and its value ωi

fixed in the i-th model is denoted by ∆ω ω ωi k k i, = −0

( i =12 3, , ). The FS AIMM control parameters ωi  are

assumed constant: ω ω1 = max  for left turns, ω2 0=  for

uniform motion, and ω ω3 = − max  for right turns.

The CV model has the form:
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The i-th ACT model (i = 13, ) has the form:
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The purpose of the scalar turn rate noise vi k, −1
∆ω  is to take

into account possible system maneuvers.
The system Jacobi matrix has the form:
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It is also supposed that only position measurements are
available, i.e.

z Hx wk k k= + ,

where

H = 
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0 0 1 0 0
.

The measurement noise wk  is white Gaussian, with

( )N R0, .



In the VS AIMM algorithm the new control parameter
ωi k,  is predicted at the end of the previous k −1 scan

upon the base of its last value ωi k, −1  and the last filtered

estimate ∆



, /ωi k k− −1 1  (which is later set to zero) :

ω ω ωi k i k i k k, , , /



= +− − −1 1 1∆ .

5  Simulation results

Both AIMM algorithms are compared to a particular
implementation of the AGIMM algorithm, considered as
the best algorithm among all i nvestigated in [4]. For these
purposes the same AGIMM algorithm is realized.

5.1 The AGIMM algorithm [4]

The AGIMM algorithm uses a single CV and two CT
models adaptively moved along grids of discrete turn
rates. These models form a three-model set

M k = { }ω ω ωk
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k
C

k
R, ,  for grid values ω ω ωk

L
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R< < .

The algorithm is initially started with the coarse grid

M0 = { }ω ω ω0 0 0
L C R, , = { }ω ωmax max, ,0 − . Here, the turn

rate is chosen positive for counterclockwise turns. At each
cycle k k→ +1 the center model is determined by the
probabilistically weighted sum of the model turn rates:
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the case where the center model is dominant (i.e. µk
C  is

the largest), its distance to the left model remains
unchanged if the left (or right) model is significant in the
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distances in the given interval [ ]δ δω ω
min max, . If the left (or

right) model is dominant, then its distance to the center

model is doubled if 2t
L
k >µ  (or 2t

R
k >µ ); it remains

unchanged otherwise.
Evidently, the difference between the AGIMM and the

newly obtained AIMM algorithm versions is in the
mechanism for the turn rates computation. The AGIMM
algorithm control logic does not directly relate to the
models and does not require their modification, while the
AIMM algorithm uses the EKF abiliti es for parameter
identification.

5.2 The scenario

The scenario simulated here is very similar to those
described in [4]. It includes few rectili near stages and few

CT maneuvers (Figs.1 and 2). Four consecutive 180
�

turns with rates ω = 1.87, -2.8, 5.6, -4.68 [  o/s], are
simulated, respectively for scans [56,150], [182, 245],
[285, 314], [343,379].
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Figure 1: The test trajectory

The initial target position and velocities are X 0 = 60[km],

Y0 = 40[km], 
�

X 0 172= − [m/s], 
�

Y0 =  246 [m/s] (i.e.

aircraft speed 300 [m/s]). It is assumed that the sensor
measures Cartesian coordinates X  and Y  instead the
target range, bearing and range rate. It is also assumed that
σ σX Y= = 85[m].
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Figure 2: Turn rate changes, [ o/s]

5.3 Measures of performance

The Normalized estimation error squared (NEES),  the
mean error (ME), and the root mean-square error (RMSE)
of each state component have been chosen as measures of
performance. The ME and the RMSE of both estimated
coordinates, as well as the ME and RMSE of both
velocities have been respectively combined. The NEES of
the AIMM algorithms is computed on the basis of the first

four components from the augmented vector 
�
x a .



5.4 Algorithms’ parameters

The algorithms are implemented with the set of parameters
presented bellow:
• all algorithms use the next initial control parameter

ωmax .= 56 ,   [o/s];

• process noise standard deviations:

 Algorithm  σ v CV, [m/s2]  σ v CT, [m/s2]  σω [  o/s]

 FS AIMM  0  0  10-2

 VS
AIMM

 0  0  10-2

 AGIMM  1.8  2.5  -

• for the FS AIMM and VS AIMM:

 QCV
a

v CV= σ ,
2 , { }Q diagCT

a = 0 0 0 0 2σω ;

 Here, the AIMM algorithms maneuverabilit y is
achieved by the appropriately adjusted control parameter

ωi k, , as well as by appropriately chosen value σω
2  (given

in the above table). It provides minimal possible position
and velocity RMSE .

• for the AGIMM: QCV v CV= σ ,
2 , QCT v CT= σ ,

2 .

• fudge factor of the EKF using ACT:  φi = 1.

• other AGIMM parameters:

 δω
min  = 2

3 ωmax  � � � � � [o/s], δ ωω
max

max= =5.6 [o/s];

 05.01 =t , t2 092= . ;

• other VS AIMM parameters:

 [ ]ωi ,k . , .∈ 187 56  [o/s], for i = 13, ;

• initial IMM mode probabilities:

 [ ]µ µ µ0 0 0 01 08 01FS AIMM VS AIMM AGIMM= = = . . . ' ;

• transition probabilities:

Pr

. . .

. . .

. . .
tr
FS AIMM =

















06 03 01

01 08 01

01 03 06

,

Pr Pr

. . .

. . .

. . .
tr
VS AIMM

tr
AGIMM= =

















08 01 01

01 08 01

01 01 08

;

• initial error covariance matrices

P P

T

T T

T

T T

FS AIMM VS AIMM

X
X

X X

Y
Y

Y Y

0 0

2
2

2 2

2

2
2

2 2

2

2

0 0 0

2
0 0 0

0 0 0

0 0
2

0

0 0 0 0

= =































σ σ

σ σ

σ σ

σ σ

σω

,

where the sensor measurement errors are simulated for
σ σX Y= = 85[ m ], T =1 [ s ] is the  sampling interval.

The respective matrix P AGIMM
0  of the VS AGIMM can be

obtained from the above matrix by excluding the last row
and column from it.

5.5Results

The measures of performance are computed upon the base
of 100 independent Monte Carlo simulation runs.
Respective plots are given in Figs.3-14. Their analysis
leads to the next inferences:

1. All three investigated IMM algorithms show very
good and very close performance. The established AIMM
turn rate feedback provides significant algorithm’s self-
adjustment abilities and maneuverability.

2. The ME plots (Figs. 3, 4) and the plots of the average
turn rates (Figs. 11-13) confirm the better dynamics of
both VS IMM algorithms compared to the FS IMM. The
AGIMM algorithm is the most “mobile” algorithm due to
its “artificial” abiliti es for instantaneous turn rate
adjustment.
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Figure 3: Position ME [m]

0 50 100 150 200 250 300 350 400
-50

-40

-30

-20

-10

0

10

20

AGIMM

FS  AIMM

VS  AIMM

k

Figure 4: Velocity ME, [m/s]



3. Both VS algorithm versions possess similar accuracy,
slightly better than those provided by the FS AIMM
algorithm (Figs.5,6).

4. Taking into account Figs. 1,2 and Figs.11-13 it may be
stated that the continuous estimation in the VS AIMM
algorithm provides the best turn rate estimation for the
currently topical model.

5. The FS AIMM algorithm possesses the best overall
consistency (Fig.14) due to the applied “natural” EKF
mechanism for control parameter estimation.
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Figure 5: Position RMSE [m]
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Figure 6: Velocity RMSE [m/s]
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Figure 7: RMSE of the overall estimate ∆
�
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Fig. 8 FS AIMM average mode probabilities
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Figure 9: VS AIMM average mode probabilities
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Figure 10: AGIMM average mode probabilities
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Figure 11: Average FS AIMM turn rates
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Figure 12: Average VS AIMM turn rates ωi k, , [o/s]
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Figure 13: Average AGIMM turn rates, [o/s]
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Figure 14:  Normalized Estimation Error Squared

6  Conclusions

A new variable structure Augmented IMM technique is
proposed in the paper. Fixed structure and variable
structure AIMM algorithms using augmented constant
velocity and augmented coordinated turn models are
developed in the paper. The augmented coordinated turn
model includes the difference between the unknown
current turn rate and its value fixed in the IMM algorithm.
As the simulation results show, this inclusion provides
significant self-adjustment abiliti es to both proposed
algorithms, resulting in very good overall accuracy and
consistency. Compared to a particular VS adaptive grid
IMM algorithm, both VS IMM algorithms show higher

mobilit y, while the FS AIMM algorithm possesses better
consistency. The VS AIMM algorithm provides the best
estimation of the turn rate.
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