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Abstract - A new variable-structure (VS Augmented
Interacting Multiple Model (AIMM) technique is
developed in the paper. Fixed-structure (FS) and VS
AIMM algorithms using augmented constant velocity and
augmented coordinated turn (ACT) models, are proposed.
The ACT model includes the difference between the
unknown current turn rate and its value assumed in the
IMM models. Due to the estimated turn rate, significant
self-adjusting abilities are provided to the designed AIMM
algorithms, which give very good overall accuracy and
consistency. Both AIMM algorithms are compared to a
particular VS adaptive grid IMM algorithm. It is shown
that the VS IMM algorithms possess better mobility, while
the FS AIMM algorithm possesses better consistency. The
VS AIMM algorithm provides the best estimation of the
turnrate.

Keywords: IMM, adaptive estimation, target tradking,
coordinated turn model

1 Introduction

The Interading Multiple Model (IMM) algorithm is one of
the most effedive among the multiple model
algorithms used to overcome the wusualy arising
uncertainty about the states and parameters of dynamic
systems [1,6,7]. Discretizing the @ntinuous domain of the
unkrmown control parameters, the system behaviour is
considered as a seguence of system transitions among a
finite number of known discrete system modes, differing
by their particular control parameters. The discretizaion
step of the uncertainty domain predetermines the number
of IMM models, the estimation acairracy, and the required
computational load, which may turn out to be
unaccetably high in certain circumstances. That is why
the question “how to deaease the IMM models number
without significant loss of acaracy?’ is considered in a
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IMM tradking with the mordinated turn (CT) model
[1,2,4]

The CT model [1, 2, 4, 8, 9, 13] is widely applied in
IMM tracking applications design. It describes target
maneuvers performed with constant turn rate, at constant
height (the cee of civilian aircraft) [1, p.77-78]. For
military aircraft the asumption that the turn rate is known
is less natural and the domain of unkrmown turn rates is
significantly larger. Often, a single CV model and a
considerable number of CT models are usudly
implemented to design atradker with afixed structure (FS
IMM agorithm (IMM-CV/CT) [8, 9], cgpable to cover a
wide range of maneuvers. Asit is known the FS algorithm
uses a predetermined fixed set of models[7]. The required
computational load depends on the number of models.

A brief analysis of solutions deaeasing the number of
IMM-CV/CT models is presented in Sedion 2. FS IMM
algorithms using augmented CT models (ACT) and
variable structure (VS) IMM designs using standard or
ACT models are gplied for this purpose. Here, two new
IMM-CV/CT algorithms are proposed and evauated in
Sedions 3-5. The basic idea of the Augmented IMM
(AIMM) agorithm is considered and a new VS AIMM
algorithm is propcsed in Sedion 3. Two particular FS and
VS AIMM-ACV/ACT agorithms using singe augmented
CV (ACV) mode and two ACT models are developed in
Sedion 4. Applying Monte Carlo simulation in Sedion 5,
these dgorithms are wmpared to a VS IMM-CV/CT
algorithm similar to those described in [4], for a
particularly hard scenario. All investigated algorithms
demonstrate very good performance Finadly, inferences
and notes are given in Section 6.

2 IMM-CVI/CT algorithms

The CT model [1, 2, 8, 9] represents the exad kinematics
of a turn, performed in horizontal plane, with known

number of issues. This question is especially topical fgfnstant angular rate:
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X = FerXgq + Gy
Its date vedor X, =[Xk,Xk,Yk,Yk] includes aircraft

Cartesian coordinates and their derivatives; T is the
sampling interval; the scdar system noise is white and

Gaussan, V, ~ N(O,QCT). Matrices Fo; and G have

the form:
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and w > 0 for counterclockwise turns.

The CT model is usualy jointly implemented with the
constant velocity (CV) model [1, 2, 4, 7-9] describing the
uniform target motion:

Xe = Foy X + GV,

where
1T 0 oO
chzgyloog
0 1 TO
B o0 o0 1f

The @ove models are often augmented to cover a
large range of posdble target maneuvers using minimal
number of models. Wang, Kirubargjan and Bar-Shalom
investigate three ACT models in [13]. They are obtained
augmenting the standard CV and CT modd by the

unkrown turn rate @, , which is included in the state
vedor Xg =[Xk,)'(k,Yk,\'(k,a)k , and it is no more

considered as a ntrol parameter. Then, the nonlinea
ACT modd isonce panded in a Taylor seriesup to first-
order, and once more — up to sewnd-order terms, to
develop a respedive extended Kalman filter (EKF). The
third IMM-CV/CT algorithm uses the Kastella’'s CT model
version, which is implemented in a respedive EKF, too.
Each of the threedesigned standard IMM algorithms uses
asinge CV modd and a single ACT modedl. It is finally

the dove expeded turn rates, respedively. The standard
IMM agorithm configuration is modified with an
instantaneous feading of the expeded turn rate to the
maneuver model(s) after the ACV interadion step [8,
p.193. Both agorithms reduce the noise during the
uniform motion while maintaining the estimation acarracy
better than unfiltered raw measurements [8, p.186].

A VS IMM-CT/CV agorithm is propcsed by Munir
and Atherton in [9]. The CT model is decomposed along
eah axis in two independent models, and further
augmented by the rresponding linea accéerations

X and Y. Theturn rate @, is caculated at each step as

the magnitude of the accéeration divided by the target
spead. The proposed algorithm outperforms the standard
FSIMM-CV/CT agorithm, when the turn rate range is not
fully covered by the standard IMM models.

Another, higher quality performanceis reported in [4].
Attradive estimation acaracy and significant reduction of
the computational load is achieved due to the gplication
of the alvanced variable structure (VS) IMM approach [5-
7]. Introducing gids of turn rates it beames posshle to
develop switching gid IMM (SGIMM) and adaptive grid
IMM (AGIMM) algorithms using a singe standard CV
and two CT models. Their performance is compared to
those of a standard FS IMM using a complete set of CT
models, and the AGIMM algorithm performanceis proven
to be the best.

Summarizing the @ove survey, it may be stated that
the simple inclusion of control parameters in the state
model does not automaticdly provide improved IMM
algorithm performance As a rule, the @ntrol parameters
included in the new state vedor are initially set to values
placeal at the center of the former parameter domain [13)].
Each time, when the system jumps into a new mode, such
EKF starts its motion from this initially preset mode.
Evidently, some period d time is needed to read the new
system mode, and this period is larger than the respedive
time nealed to read the new mode if non-collocaing
models are used. Becaise of this performance de-
terioration, the @ove mentioned IMM algorithms have
yielded placeto the more dficient VS algorithms like the
recently proposed VS IMM ones [4]. However, due to the
“artificial” nature of the VS IMM algorithms, it is not easy
to design appropriate particular parameter grids and
switching rules for SGIMM or model management for
AGIMM. Also it is difficult to develop efficient VS IMM
algorithms in conditions far from the initially assumed.
That is why the ideato apply new approaches combining
the advantages of having the cntrol vedor estimated and
the mobhility of the VS IMM agorithms is topicd.

noted, that the three algorithms yield similar performanc@pplying the recetly proposed Augmented [IMM

Li and Bar-Shaom [8] have designed three other
adaptive FS IMM-CV/CT agorithms for industria
applicaion. The first one uses gandard CV and CT
models applying least squares turn rate estimation, but it
does not possss sifficient cgpabiliti es to tradk systems,
whose turn rate rapidly changes. Both versions of the
seoond propaosed algorithm use asingle ACV and two or
four ACT models. The turn rate is treaged as a random
variable with certain known expeded value ad variance
The maneuvering models correspond to dfferent levels of

approach [10-12], FS and VS AIMM agorithms are
proposed and investigated in the present paper.

Results concerning the IMM algorithm developed in
[13] are not presented here. Preliminary simulations
showed that the adieved estimation acarag is
significantly lower than those reported here. It is possble
that our results are not sufficiently representative, becaise
of the ladk of complete information in [13] about the
particular algorithm parameters design.



3 FS and VS AIMM algorithms

The dficiency of the AIMM approach has been validated
in [10-12]. It has been succesdully applied in such
important pradicd applicdions as maneuvering aircraft
and maneuvering ship tracking [10,11], as well as for fault
detedion and parameter drift estimation [12]. Maintaining
non-coll ocaling models, it estimates the unknown control
parameters. As a result it adequately follows the erupt
changes in the system behaviour using small number of
augmented models.

3.1 Fixed-Structure
Algorithm

Augmented |IMM

To describe the idea of the AIMM algorithm let us
consider the stochastic hybrid system:

X = f (Xk—l! pl?—l) + g(pl(()—l)vk—b

z, = hk(xk) + W,

1)
)

where x, O00™ is the system dtate vedor estimated
based on the measurement vedor z OO™ in the
presence of unkrnown vedor of the true wntrol parameters
p. OO™ . The alditive system and measurement noises
v, 0O% and w, 00" are mutudly independent,
white, Gaussan: v, ~ N(0,Q/) ad w, ~ N(O,R).
Furctions f, g and h are known and remain
unchanged during the estimation procedure.

To estimate the difference (displacement) Api’k
between the current true control parameters py and their

values P, fixed in the i -th IMM model, the system state

model is augmented by the following simple set of
equations:

Ap =8Py, (Apg=0) 3)
The difference

APy =P =R @)
for al | must obey the restrictions Ap,, +p, O

[pi”‘",pi'mx], providing gven minima and maximal

separation distances between the models. They prevent
possible models’ merge or displacements.
The augmented state and system noise vedors of the

i -th augmented modei €1, N ) is written as:

Xk :[Xil,k Aﬂl,k] oo™ v, =[Vil,k V.M] oo™,

In general, the new model is nonlinear:
Xy =1 a(xia,lk-ly Pt Api,k-l) + ga(pi + Api,k—l)via,lk—l’ ©)

Z =ha(xia,1k! b +Api,k)+Wk' (6)

Functions f?(.), g®(.) and h®(.) are known and remain
unchanged during the estimation procedure.

Further, the EKF eguations are derived by lineaization
of models (5) and (6). Functions fa(xi’k_l, p +Ap|'k_1)

and ga(xi’k_l,p +Ap’k_1) ae expanded in Taylor
series up to first-order terms around the filtered estimate
Xk_vk-1; the function ha(xi,k, o +Ap|,k) is expanded
up to first-order terms around the predicted estimate
Xk/k-1 [2, 3]. The euations of the i-th EKF take the
form:

Kohene = K+ KV (7
Kner = f a()A(ia,Ik—l/k—l' P +Aﬁ,k—llk—l)v (8)
Vik =%~ ha()A(ia,lk/k—ll P +Aﬁ,k/k—l)v 9)
k-1 = AF i?k—ﬂk—l(fx?,k—l)l +Q%1,  (20)
Sk =h « i?k/k—l(hz,k)l +R, (11)

K = i,i/k—l( ;k) s (12)

Pk = Rk~ Kia,lks,k(Ki?k) , (13)

a

where K7, isthe filter gain matrix, R, and Q° are

the estimation error covariance ad system noise
covariance matrices, y;, and §, ae the filter

innovation and its covariance matrix, the system and the
measurement Jacobian are

s k1= Of a()lzia,lk—llk—ll B "'Aﬁ,k—uk—l)/@sz—l/k—l
and
z,k = ma()?ia,k/k—l)/(%zia,k/k—l ;

@ =1 is the EKF fudge factor.

Obviously, such indired¢ incluson of control
parameters in the state vedor makes them “manageédble”.
As it is mentioned in [8], in this case the estimation
acaracy of these parameters is not very important, as far
as the other state vedor components estimates are of
major interest. What isimportant is the corred and timely
detedion of the system maneuver and the fast response of

the filter to this detedtion. For example, estimates Ap, |/

contain useful information about the maneuver starting and
final moments, and about the intensity of the aurrent
maneuver. Using these estimates, it also becmes posshble
to develop additiona fealbadk for EKF and IMM
parameters tuning [10-12]. The onsidered AIMM
agorithmisaFSIMM algorithm, using appropriate model
adaptation for covering system transitions in a given range
of system nmodes. Evidently, it reverts back to the standard
FS IMM algorithms forAp, , =0.



3.2 Variable-Structure Augmented |MM
Algorithm

The FS AIMM agorithm can be eay transformed into a
new VS AIMM agorithm by substitution of the constant

vedor of deterministic parameters p; with the random
vedor of control parameters [, ;. At the end of eadh
scan the last filtered model displacement AP, ., is
used to corred the old vedor of control parameters

B k-1
Pk =Pxa + OB ek (Po=R)

predicting in this way its new values. The new control
vector must obey the restrictions

(14)

Pik-1 AP k-yk-1 D[pi min» Pi max] forall i.
After the &ove operation, the model displacement
AR 11 should be set to zero:

AP -1 =0. (15)

Otherwise, it will be taken into acount twice in the EKF
equations. Because of the last corredion (15), the EKF
(7)-(13) starts at eadr scan with no initial model displace
ment. The new model displacament (in fad, the displace
ment’s increment) is generated by egn. (7), sO a new
control vedor should be predicted again at the end o the
scan.

The proposed new VS agorithm has better dynamics

than its FS predecessor verson. The vedor P,
acaimulates all estimated increments A, ., of the
i -th EKF, while the i -th EKF in the FSAIMM algorithm
is adjusted by the standard IMM’s mixture A ;5. in
which the estimated daminant displacement is reduced due
to the usual IMM models interaction.

Finally, it should be noted, that the proposed here new
VS AIMM approach is general — it does not depend on the
implemented system and measurement models. The new
VS AIMM algorithm is an adaptive VS IMM algorithm

using minimal number of models that self-adjust their
location in continuous parameter domain.

4 AIMM algorithms using CT model

The designed here AIMM algorithm versions use asinge
ACV modd and two ACT models for left-turn and right-
turn motions. They are obtained incorporating the
equation:
Aw y =A@ -y,

into the standard CV and CT models. The difference
between the airrent true turn rate wf and its value w,
fixed in the i-th model is denoted by Aw, , =w;, -
(i=123). The FS AIMM control parameters w, are

asuumed constant: w; = W, for left turns, w, =0 for

uniform motion, andw; = —@),,, for right turns.
The CV model has the form:

Xk = F&X 1 +G& Vi, 152 (16)
where
X =[ X X Yoo Yo B, ] @y = @ +Aa,,
1 T 0 0 0O %Tz 0 o0
9100 07 T 0 o
] O O
Fa=0 0 1 T od Gy =00 212 oC
0 0 2 0
0 0 1 0 0o T og
M 0 0 0 1f Ho o 1
Thei-th ACT model { =1,3) has the form:
; snw 4T . 1-cosw T
Xi,k = Xi,k—l + Xi,k—l¢ _Yi,k—l—“’
W k1 W k1
X K= Xi,k—l COSW, 4T = Yi,k—l SNw, 4T, (17)
Y = xi‘HM +Y +Y.i’k_1smw—"k"lT,
W k-1 Wi k-1
Yi,k =X, k-1SiN@ 4T +Y.i,k—1COS(“)|,k—1T '

Aw, =AW, +Vis.
The purpose of the scdar turn rate noise vﬁj‘i 1 isto take

into account possible system maneuvers.
The system Jacobi matrix has the form:

F(w) M O .
fx‘ak=DCT( ') kD, fori =13,
“ 0O Opa 10
where:
M,y = )7(”(”( wi,k/choswi,k/I;—lT —sinw, ., T
Wi k/k ,
W gy TSINW, ) T =1+ €S0, i) T
i ki k e
L K/

My = _T%Xi,k/k SN, i T+ Y Cosa}l,k/kT%’

w.,k/kTsmwu,k/kT_1+COS(‘)|,k/kT )2 +
2 ik/k
Wk

Mg, =

@, i/ 1C0SW, i/ T —SINW, /T 3

2 i kIK?
Wk

Moy = _T%Xi,k/k COS®, /i T = Y krk snwi,k/kT%'

It is aso supposed that only position measurements are
available, i.e.

z, = Hx, +w,,
where

@ 0 0 0 OO

"o 10 of
The measurement noise w, is white Gausdan, with
N(O,R).



Inthe VS AIMM algorithm the new control parameter
@, is predicted at the end of the previous k-1 scan

upon the base of its last value @, ,_; and the last filtered
estimate A, k-1/k-1 (which is later set to zero) :

W =Wy AWy g

5 Simulation results

Both AIMM algorithms are compared to a particular
implementation of the AGIMM algorithm, considered as
the best algorithm among all i nvestigated in [4]. For these
purposes the same AGIMM algorithm is realized.

5.1 The AGIMM algorithm [4]

The AGIMM algorithm uses a single CV and two CT
models adaptively moved along gids of discrete turn
rates. These models form a threemodel  set
M, = {a)kL,a)f,a)kR} for grid values @ < <.
The dgorithm is initially started with the arse grid
M, = {a)OL 0y ,w(f} = { Wy 0~ Wy } - Here, the tumn

rate is chosen pasitive for counterclockwise turns. At eah
cycle k — k+1the cetter model is determined by the
probabilistically weighted sum of the model turn rates:

W1 = He W+ HCWE + PR,
where {, Ue, Uy are the model probabilities at k. In

the cae where the center model is dominant (i.e. g is

the largest), its distance to the left model remains
unchanged if the left (or right) model is sgnificant in the
sense iy =t (or y =1t,), or otherwise it is reduced by
half:
Lokt A2, i e <ty

W =0 "¢ L P
[] W + A, Otherwise
o1~ A/ 2,if i <ty

R
+: = D . !
Wea 0 WS, — AR, otherwise

where Ar = —wS, AR =ad -wl ae mode

distances in the given interval [5(?” 5;‘"""] . If the left (or

right) model is dominant, then its distance to the center
model is doubled if py >t, (or S >t,); it remains
unchanged otherwise.

Evidently, the diff erence between the AGIMM and the
newly obtained AIMM agorithm versions is in the
mechanism for the turn rates computation. The AGIMM
algorithm control logic does not diredly relate to the
models and does not require their modification, while the
AIMM agorithm uses the EKF abiliti es for parameter
identification.

5.2 The scenario

The scenario simulated here is very similar to those
described in [4]. It includes few redili nea stages and few

CT maneuvers (Figs.l and 2). Four conseadtive 180°
turns with rates w=1.87, -2.8, 5.6, -4.68 [ %g], are
simulated, respedively for scans [56,150], [182 245,
[285, 314], [343,379].
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5
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35
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Figure 1: The test trajectory

Theinitia target position and velocitiesare X, = 60[km],
Y, =40kml, X,=-172[ms], Y, = 246 [m/g (i.e.
aircraft speed 300 [nVg]). It is assumed that the sensor
measures Cartesian coordinates X and Y instead the
target range, beaing and range rate. It is also asaumed that
oy =0, =85[m].

0 50 100 150 200 250 300 350 400

k
Figure 2: Turn rate changes)d]

5.3 Measures of performance

The Normalized estimation error squared (NEES), the
mean error (ME), and the root mean-square aror (RMSE)
of eat state @mponent have been chosen as measures of
performance The ME and the RMSE of both estimated
coordinates, as well as the ME and RMSE of both
velociti es have been respedively combined. The NEES of
the AIMM algorithms is computed on the basis of the first

four components from the aigmented vedor X?2.



5.4 Algorithms’ parameters

The dgorithms are implemented with the set of parameters

presented bellow:

e 4l agorithms use the next initial control parameter

W =56, [9];

e process noise standard deviations:
Algorithm UV,CV [m/sz] GV,CT [m/SZ] Ou [ OIS]
FS AIMM 0 0 10°
VS 0 0 10°
AIMM

AGIMM 1.8 2.5 -

¢ fortheFS AIMM and VS AIMM:
Q3 =02, Q% =diag{0 0 0 0 oZ};

Here, the AIMM agorithms maneuverability is
achieved by the gpropriately adjusted control parameter

@  , aswell as by appropriately chosen value G(i (given

in the &ove table). It provides minimal posshble position
and velocity RMSE .

«  forthe AGIMM: Qo =0(cy, Qor =02¢r -

» fudge factor of the EKF using ACT@ =1.

e other AGIMM parameters:
O =200, =3.74 [%18], O = Wy =5.6 [Is];
t, =0.05, t, =092;

e other VS AIMM parameters:
|w,, | O[187,56] [°/s], for i =13;

initial IMM mode probabilities:

u(l):SAIMM — uB/SAn\AM — HOAGIMM :[0.1 08 0.1]';
e transition probabilities:
06 03 010
Pr/SAY = 1 08 017,
1 03 06H
M8 01 010
- _ O
Prys# = prfem =1h1 08 015
M1 01 o08{H
« initial error covariance matrices
0 2 0
¥ % 0 o op
g, 2 0
Px 20% o oU
[ . d
pFSAIMM _ pVSAMM _ [] 2 ml
0 0 oo o o2 & oD
0 ) T2 0
g0 o % 2% o
0 T 0
0o 0 0 0 o

where the sensor measurement errors are ssimulated for
oy =0, =85[m], T=1[s] isthe sampling interval.

The respedive matrix P of the VS AGIMM can be

obtained from the @ove matrix by excluding the last row
and column from it.

5.5Results

The measures of performance ae computed upon the base
of 100 independent Monte Carlo simulation runs.
Respedive plots are given in Figs.3-14. Their analysis
leads to the next inferences:

1. All three investigated IMM algorithms dwow very
good and very close performance The established AIMM
turn rate feedbad provides sgnificant agorithm's if-
adjustment abilities and maneuverability.

2. The ME plots (Figs. 3, 4) and the plots of the average
turn rates (Figs. 11-13) confirm the better dynamics of
both VS IMM algorithms compared to the FSIMM. The
AGIMM algorithm is the most “mobile” agorithm due to
its “artificial” abilities for instantaneous turn rate
adjustment.
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3. Both VS agorithm versions possess $milar acairagy,
dightly better than those provided by the FS AIMM
algorithm (Figs.5).

4. Taking into acount Figs. 1,2 and Figs.11-13 it may be
stated that the continuous estimation in the VS AIMM
algorithm provides the best turn rate estimation for the
currently topical model.

5. The FS AIMM agorithm possesss the best overall

consistency (Fig.14) due to the gplied “natura” EKF
mechanism for control parameter estiia.

Figure 5: Position RMSE]
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6 Conclusions

A new variable structure Augmented IMM technique is
proposed in the paper. Fixed structure and variable
structure AIMM  algorithms using augmented constant
velocity and augmented coordinated turn models are
developed in the paper. The augmented coordinated turn
model includes the difference between the unkrown
current turn rate and its value fixed in the IMM algorithm.
As the simulation results dow, this inclusion provides
significant self-adjustment abilities to bah proposed
algorithms, resulting in very good overal acaracy and
consistency. Compared to a particular VS adaptive grid
IMM algorithm, both VS IMM agorithms dow higher

mobility, while the FS AIMM algorithm possesses better
consistency. The VS AIMM algorithm provides the best
estimation of the turn rate.
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