
Preserving Dynamic Reconfiguration Consistency in

Aspect Oriented Middleware

Bholanathsingh Surajbali, Paul Grace and Geoff Coulson

Computing Department
Lancaster University

Lancaster, UK

{b.surajbali, p.grace, geoff} @comp.lancs.ac.uk

Abstract

Aspect-oriented middleware is a promising technology for the
realisation of dynamic reconfiguration in heterogeneous distri-
buted systems. However, like other dynamic reconfiguration ap-
proaches, AO-middleware-based reconfiguration requires that the
consistency of the system is maintained across reconfigurations.
AO-middleware-based reconfiguration is an ongoing research
topic and several consistency approaches have been proposed.
However, most of these approaches tend to be targeted at specific
contexts, whereas for distributed systems it is crucial to cover a
wide range of operating conditions. In this paper we propose an
approach that offers distributed, dynamic reconfiguration in a
consistent manner, and features a flexible framework-based con-
sistency management approach to cover a wide range of operating
conditions. We evaluate our approach by investigating the confi-
gurability and transparency of our approach and also quantify the
performance overheads of the associated consistency mechanisms.

Categories and Subject Descriptors D.2.7 11 [Software Engi-
neering]: Distribution, Maintenance, and Enhancement.

General Terms: Algorithms, Design, Management.

Keywords: middleware; reflection; aspects; dynamic reconfigura-
tion; consistency.

1. Introduction

A key and growing challenge for distributed systems is their need

to support dynamic reconfiguration in order to maintain optimal

levels of service in diverse and changing environments. In re-

sponse to this challenge, aspect-oriented middleware [10, 12, 13,

14, 16, 19] has recently emerged as a promising basis on which to

build reconfigurable distributed systems. The core concept of AO

middleware is that of an aspect: a module that deals with one

specific concern and can be changed independently of other mod-

ules. Aspects are made up of individual code elements that im-

plement the concern (advices). Advices are deployed at multiple

positions in a system (join points) which are expressed by point-

cuts—a particular form of composition language.

Dynamic reconfiguration of distributed systems requires as-

surances that the reconfiguration does not leave the system in an

inconsistent state that can potentially lead to incorrect execution

or even complete system failure. In AO middleware environments

reconfiguration inconsistencies arise from a range of characteristic

sources which we classify under two broad headings: system envi-

ronment related sources and composition related sources. System

environment related inconsistencies occur due to the runtime sys-

tem environment (e.g. message loss or node crash); whereas com-

position related inconsistencies refer to application-specific

semantic relationships between modules or aspects (e.g. if one

aspect is dependent on another than removing the first will result

in inconsistency; or if two aspects are mutually exclusive then

deploying both simultaneously will result in inconsistency).

In general, avoiding these sources of inconsistency is a diffi-

cult task due to the diversity of distributed applications (e.g. cen-

tralised/decentralised, static/mobile, small scale/large scale etc)

and also because of diverse application-specific factors (e.g. vary-

ing dependability requirements, or varying trade-offs between

consistency and scalability). Relying on the application developer

to ensure the consistency of the system is not feasible under such

heterogeneous conditions. Moreover, a one-size-fits-all approach

to consistency management is not feasible either. Instead, multiple

consistency strategies should be supported within a framework-

based approach so that appropriate strategies can be applied to

each set of arising circumstances.

Supporting multiple consistency strategies entails meeting the

following key requirements:

• Configurability. It must be possible to configure and even

reconfigure the consistency-related functionality of the sys-

tem.

• Transparency. Managing reconfiguration across each node is

a complex and error prone task for the application program-

mer. Achieving consistency must therefore involve minimum

programmer effort.

To address the above issues and requirements we propose in this

paper a distributed consistency framework that ensures consistent

AO-based dynamic reconfiguration while being tailorable to spe-

cific conditions and environments.

The rest of the paper is organised as follows. Section 2 pro-

vides a detailed discussion of the various threats to consistency to

which distributed applications are prone. In Section 3 we present

necessary background on the AO composition technology on

which we base our proposal (i.e. our AO-OpenCom platform).

Section 4 then presents our distributed consistency framework,

which is then evaluated in Section 5. Finally, Section 6 discusses

related work, and we offer our conclusions in Section 7.

2. Threats to Consistency

To illustrate threats to consistency under dynamic reconfiguration

in distributed systems we now present a simple case-study (see

figure 1) which comprises a multimedia peer to peer network in

which heterogeneous peers share data files and interact among

themselves. The peers (laptops, PCs, and PDAs) can also operate

in different network domains (Internet, Wi-Fi, ad-hoc wireless

networks, etc.). Given this environment a wide range of dynamic

reconfiguration scenario are feasible. For example:

(i) when a new video codec become available we may want to

encapsulate it as encoder and decoder aspects and dynami-

cally deploy it on all nodes with video capabilities;

(ii) when nodes move from a fixed to a wireless network envi-

ronment we may want to deploy fragmentation and reassem-

bly of the video and audio media frames;

(iii) when application performance degrades at a given node we

want to deploy a cache aspect while ensuring that cache con-

sistency is maintained across nodes.

We now present important threats to the consistency of such re-

configuration scenarios. While we do not claim this to be an ex-

haustive list, we believe it to be strongly indicative of the

challenges that must be addressed.

Figure 1. Multimedia application case study scenario

2.1 System environment threats

These relate to reconfiguration inconsistencies that occur due to
the instability of the underlying distributed environment in which
the reconfiguration takes place. The inherently unstable characte-
ristics of the networks and nodes employed in the scenario in-
crease the chances that a reconfiguration will be compromised.
These threat include:

Protocol message disruptions. If reconfiguration-related messag-

es are lost, re-ordered, duplicated or delayed, the consistency of

the reconfiguration is clearly compromised. For example, as mes-

sages get lost, the initiating node (referred as the coordinator) of

the reconfiguration can be mislead into waiting for the reconfigu-

ration to complete.

Local node disruptions. The reconfiguration requests (i) to (iii)

sent by the initiator of the reconfiguration may not reach some of

the peer nodes. Even if the messaging is unproblematic, individual

nodes may still fail to apply a requested reconfiguration. For ex-

ample:

• the node may be overloaded or may crash;

• a aspect composition request may fail because of resource

scarcity on the target node or because the node’s local policy

forbids it to make the requested change;

• modules or aspects may still be performing computations

when an attempt is made to remove or recompose them.

Again, such factors can lead to parts of the intended reconfigura-

tion not being carried out, and consequent inconsistency.

Infrastructure service failures. Aspects to be reconfigured into

the system are typically stored in repositories which may get con-

gested with requests, or crash, meaning that aspects may not be

available to be deployed (or may perhaps be only deployable in

parts of the system). Additionally, different repository instances

may have different versions of the aspects: e.g. different versions

of the encryption aspects may be produced over time, so that dif-

ferent nodes configure different codec versions and be inconsis-

tent with one another.

Simultaneous reconfigurations. Different reconfiguration re-

quests may arise simultaneously so that reconfiguration-related

messages relating to distinct requests may be interleaved and po-

tentially be received in different orders at different nodes. For

example, one request might ask for a fragmentation aspect to be

replaced, while another asks for it to be removed. There will

clearly be different outcomes depending on the execution order of

these two requests—and furthermore the outcomes might be dif-

ferent at different nodes.

Unauthorised nodes initiating reconfiguration. Reconfiguration

messages may be spoofed by malicious nodes in an attempt to

directly and deliberately compromise consistency.

2.2 Compositional threats

These relate to faulty interactions, following reconfiguration,
between the newly-reconfigured entities and prior non-
reconfigured entities. The associated threats typically involve
conflicts and dependencies: conflicts are threats causing negative
interactions between system entities; while a dependency threat
relates to a ‘required’ relationship that needs to be associated with
the reconfiguration for the system to operate correctly. The differ-
ent compositional threats are:

Unsynchronised weaving of dependent aspects. Some aspects are
inherently dependent on each other; for example, decryption is
dependent on encryption, and a cache may be dependent on a
remote cache manager. Therefore the order in which aspects are
woven is crucial: e.g., we must ensure that an assembler aspect is
put in place before its associated fragmenter, otherwise frag-
mented messages may be received which cannot be handled.

Unsynchronised binding of distributed aspects. Some distributed
aspect systems employ ‘remote aspects’ which are used by several
distributed client nodes. If such an aspect, e.g. a cache manager is
removed without the consent or even the awareness of its client
nodes, errors can arise when clients attempt to communicate with
the aspect.

Mutual exclusion of aspects. Behavioural conflicts can occur as
new aspects are woven. For example adding a logging aspect into
our scenario at the same join points as an encryption aspect can
result in behavioural conflicts, because the system is open to read
the logged, decrypted messages.

3. The AO-OpenCom Framework

Before discussing our proposed distributed consistency frame-
work, we briefly introduce the software composition technology
that underlies our work. AO-OpenCom is an extension of the
OpenCom component model [5] and provides a distributed AO
composition service while allowing aspectual compositions to be
dynamically reconfigured. An earlier version of AO-OpenCom
was the subject of a prior workshop paper [16]. We revisit it here
because the current version differs significantly from the earlier
one in key areas.

3.1 Aspects and Aspect Composition.

Aspect composition in AO-OpenCom employs components to
play the role of aspects—i.e. an aspect is simply an OpenCom
component (hereafter we use the term aspect-component when
referring to an OpenCom component that is playing the role of an
aspect). Aspects are composed using so-called AO-connectors.
These are specialised connectors that support the run-time inser-
tion of aspect-components.
 Internally, an instance of AO-OpenCom is structured as a set
of per-node local instances, as illustrated in figure 2, which are
combined into a multi-node AO-OpenCom distributed system.
The Distribution Framework is a plug-in for the AO-OpenCom
communication service that sends reconfiguration and manage-
ment messages to every node in the system; the ISend interface
provides a send() operation, while its INotify interface delivers
received messages to the AO-OpenCom Configurator.

Turning now to the constituent components, the Configurator
is responsible for accepting and handling reconfiguration requests
from applications. It interacts with the Pointcut Evaluator and
Advice Handler components on either the local node or other
nodes to actually carry out the requested reconfiguration in terms
of AO (re)compositions. The Aspect Repository holds a set of
instantiable aspect-components. This is composed of a front-end
proxy gateway component and a back-end database component.
Finally, the Pointcut Evaluator evaluates pointcuts and returns a
list of matching join points within the framework; and the Aspect
Handler weaves advices at these join points in the framework.

Figure 2. An AO-OpenCom per node instance

3.2 Reconfiguration in AO-OpenCom

The main API provided by an AO-OpenCom for dynamic recon-

figuration takes the form of a single operation on the Configurator

component:

Configurator.reconfigure(target_dcf, pc, command, aspect, scope,
locus).

The target_dcf argument specifies which distributed system the

reconfiguration should be applied to. The pc argument specifies a

pointcut that picks out the join points at which the desired recon-

figuration should occur. The command argument offers options—

either ‘add’, ‘remove’, or ‘replace’ an aspect—for the action to be

taken at the indentified join points. The aspect argument can be a

direct reference to a local aspect-component, or an indirect refer-

ence to an aspect stored in an Aspect Repository, or a reference to

an already-instantiated remotely-accessible singleton aspect. The

scope argument can be either per-instance or per-distributed sys-

tem. The former weaves a distinct aspect-component instance at

each specified join point; the latter instantiates a single per-system

instance that is connected, potentially remotely, with each speci-

fied join point. Finally, the locus argument describes how advices

should be applied at a selected join point in terms of either before,

after or around.

Furthermore, the Configurator is also responsible for the man-

agement of quiescence (i.e. it ensures that the weaving/unweaving

of aspects is not carried out while affected component/aspect-

components/connectors are actively processing calls). To support

this, the Configurator ensures that the weaving of aspects is not

carried out while the relevant connectors or other components are

actively passing or processing messages or calls. To do this, it

requires that all connectors and components support a basic

‘quiescence’ interface as follows:

status = quiesce(timeout);

status = resume();

Because of the strictly stylised composition supported by AO
composition, achieving quiescence is a relatively straightforward
task compared to non-AO composition (e.g. [8]). The quiesce()
operation simply freezes the start of the chain of aspects attached
to the AO Connector (i.e. the AO-Connectors that correspond to
the advices of the woven aspects) to prevent new threads entering,
and then waits for any currently executing threads to drain from
the aspect chain.

To execute Configurator.reconfigure() the following distri-
buted protocol is performed:

1. Configurator.reconfigure() is called on one of the AO-
OpenCom nodes; we will refer to this node as the ‘initiator’.

2. The initiator determines how the aspect is to be applied. In the
case of a per-distributed system scope, it instantiates the as-
pect at a suitable node and sends a remote reference to this to
the nodes where it is to be woven. Otherwise, the initiator de-
cides if it has the specified aspect available locally (or can get
it from an Aspect Repository) and wants to send it ‘by value’
to the nodes where it is to be woven, or if it wants to send the
aspect ‘by name’ and implicitly instruct the other members to
obtain the aspect from an Aspect Repository.

3. The initiator sends a ‘reconfigure’ message to all the other
AO-OpenCom nodes. This contains the parameters originally
passed to Configurator.reconfigure().

4. Upon receiving a ‘reconfigure’ message, each node’s Pointcut
Evaluator locates the target join points within its scope.

5. Each node’s Aspect Handler then actions the ‘add’, ‘remove’
or ‘replace’ command as appropriate. For ‘add’ or ‘replace’,
this may involve obtaining the aspect from an Aspect Reposi-
tory. It will also involve weaving the aspect according to the
specified scope and locus.

6. Each node replies to the initiator that it has completed the
reconfiguration locally.

7. When all nodes have reported completion the initiator node
returns control to the caller of reconfigure().

An example of the use of Configurator.reconfigure() is given in

Section 5.2.

4. The Consistency Framework

In this section we discuss our approach to the support of consis-
tent dynamic reconfiguration. This is independent of the basic
AO-OpenCom reconfiguration architecture discussed in the above
section which handles only the basic mechanics of dynamic aspect
(un)deployment. The Consistency Framework (COF) illustrated in
Figure 3 consists of: a System Consistency Framework, a Compo-
sitional Consistency Framework and a set of ‘threat aspects’
which are responsible for guarding against consistency threats
such as those identified in Section 2; these threat aspects are wo-
ven into the lower-level frameworks using the usual AO-
OpenCom facilities.

The fundamental strategy of the COF is to guard against con-
sistency threats by deploying ‘threat aspects’ at appropriate join

points within AO-OpenCom itself. The benefit of this strategy is
that threats can be handled in an incremental, selective and ex-
tensible manner where specific threat aspects can be deployed to
guard against specific consistency threats. Crucially, we are using
the same approach to guard against consistency as we are for ‘or-
dinary’ application-level dynamic reconfiguration: i.e. using as-
pect composition.

Turning now to the detail, the Consistency Configurator is re-
sponsible for managing these threat aspects and for deploying
them at appropriate join points within the AO-OpenCom-based
distributed system (see below).

Figure 3. Applying Consistency Framework to AO-OpenCom

We now turn to a discussion of how the Consistency Configurator
resolves each of the threats discussed in Section 2 by deploying
appropriate threat aspects. When discussing the weaving of threat
aspects, the following paragraphs refer to the numbered join
points, 1-7, within the AO-OpenCom framework that are illu-
strated in Figure 3.

4.1 Addressing System Environment Threats

The Consistency Configurator uses the System Consistency
Framework to instantiate the appropriate system environment
threat aspects based on the reconfiguration needs as described in
this section.

Protocol Message Disruption. To ensure that reconfiguration
messages are not lost, the System Consistency Framework uses a
reliability threat aspect and this aspect is woven at join points 4
and 5. The reliability threat aspect implements a reliability proto-
col atop the Distribution Framework to ensure that all messages
are reliably received by each member. Because it is implemented
as an aspect, this behaviour can be realised using various underly-
ing mechanisms and can therefore be made straightforwardly
applicable to a variety of implementation environments. This
point is an important one and also applies to all the other threat
resolution aspects to be discussed below.

In more detail, our currently-implemented reliability threat
aspect is composed of an aspect with two advices and a ‘message
store’. The first advice is woven ‘before’ join point 5, and has the
task of piggybacking reliability information to the message before
it is sent via the ISend interface. The second advice is woven as a
‘before’ advice at join point 4 (i.e. before the message is delivered
to the Configurator via INotify); this monitors incoming messages
(and caches them in the message store), detects any losses within
the transmission sequence, and requests retransmission of lost
messages.

To weave the reliability threat aspect in a consistent manner
(this again applies also to all the other threat resolution aspects to
be discussed below) the quiesce() operation is first called on the
connectors at join points 4 and 5 by the Consistency Configurator.
Upon successfully achieving quiescence, the reliability threat
aspect is woven at the front of the advice chain list (for brevity,
we discuss this weaving process only for join point 5; see Figure
4); hence, it is invoked before method calls go to the Distribution
Framework. Once the reliability threat aspect have been success-
fully woven at both join points, the resume() operation is called by
the Consistency Configurator.

Figure 4. Weaving the reliability threat aspect at join point 5

Local Node Disruption Threat. To guard against this threat, the
System Consistency Framework instantiates a consensus threat
aspect and this aspect is woven at join points 4 and 5 to ensure
that local node failures or disruptions do not compromise the con-
sistency of the system. This aspect is ‘flexible’ in that it can im-
plement any one of a range transaction protocols [7] depending on
the specific requirements and deployment environment. To illus-
trate the operation of the advices we briefly describe our two-
phase commit implementation. In this implementation, a ‘before’
advice woven at join point 5 takes messages before they are sent
and converts them into the required sequence of messages for
two-phase commit. Correspondingly, the ‘around’ advice at join

point 4 receives these transaction protocol messages and sends
phase acknowledgements; it also communicates with the AO-
OpenCom Configurator to enact or undo the local reconfiguration
as appropriate.

Infrastructure Service Failures Threat. To guarantee the liveness
of the infrastructure services (e.g. the Aspect Repository), the
System Consistency Framework uses a replication aspect. This
aspect is woven at join point 6 as an ‘around’ advice. Based on
application requirements, a number of replication algorithms
could be used to ensure maximum aspect availability and consis-
tency during updates—e.g. the Coda [15] or Bayou [6] algorithms.
More advanced algorithms which consider specific application
and context requirements could also be used: e.g. Beloued [2].

Further, the System Consistency Framework uses a load ba-

lancer aspect to manage the load across the infrastructure services
and this aspect is woven at join point 6 as a ‘before’ advice. Our
current load balancer algorithm implements both the push and pull
migration approaches [11]. The detailed functionality of the load
balancing algorithm is beyond the scope of the paper; but, in brief,
with push migration, periodic checks are made on the load of
particular replicated repository loads, and as imbalances are found
the load is evenly distributed from overloaded to less busy reposi-
tories. And the pull technique arranges that an idle replicated re-
pository can transparently take tasks from a busy repository.

To prevent version conflicts in the Aspect Repository, the
System Consistency Framework uses a concurrency management

aspect. This aspect is woven as a ‘before’ advice at join point 7.
The concurrency mechanism uses an optimistic read/write locking
mechanism with priority for readers. Calls to update an aspect
instance/version in the repository access the lock as a writer such
that a writer can access the lock when there are no readers, while
calls to retrieve aspect instances access the lock as a reader.

Simultaneous Reconfiguration Threat. To ensure that simultane-
ous reconfiguration requests do not interfere with one another, the
System Consistency Framework uses a distributed read/write

concurrency aspect and is woven at join point 1. This is an
‘around’ advice, the ‘before’ part being activated before the Con-
figurator.reconfigure() is called. The advice then attempts to
access the framework’s lock set by the concurrency aspect, and
blocks the call until this is obtained, at which point the reconfigu-
ration can proceed. At this point, any reconfiguration attempts by
other nodes are blocked until the present reconfiguration is com-
plete, at which point the Configurator returns the reconfigure()
call, and the ‘after’ part of the ‘around’ advice releases the lock.

Unauthorised Reconfiguration Threat. To prevent unauthorised
nodes initiating reconfiguration, the System Consistency frame-
work uses a series of security aspects, which are subsequently
woven at join points 4 and 5. These comprise aspects that each
addresses a different flavour of security threat: e.g. access control,
integrity or confidentiality. The weaving order of these aspects is
crucial: of the three mentioned the order would be authentication,
confidentiality and then integrity.

Currently, an authentication aspect is woven as a ‘before’ ad-
vice at join point 5 such that it is called before the Distribution
Framework and performs access control before allowing continua-
tion. Then a confidentiality aspect encrypts the arguments of
method calls as they are passed through the Distribution Frame-
work. This is achieved by weaving an encryption advice as a ‘be-
fore’ advice at join point 5 and a decryption advice at join point 4,
also as a ‘before’ advice. Finally the System Consistency Frame-
work implements an integrity aspect in terms of an SSL layer
between reconfigured nodes.

4.2 Addressing Compositional Threat

The Consistency Configurator uses the Compositional Consisten-
cy Framework to instantiate the appropriate compositional threat
aspects based on the reconfiguration needs as described below.

Unsynchronised Weaving of dependent aspect Threat. The
Compositional Consistency Framework uses a transaction man-
agement concurrency protocol or coordination protocol to pre-
serve compositional dependencies. Each of the protocols is
encapsulated as an aspect and is woven as a ‘before’ advice at join
points 4 and 5. This process is equivalent to that used for threat 2.
Here, the Saga transaction model [7] allows dependent aspects to
be divided into a sequence of sub-transactional aspects, each of
which manages an associated compensating sub-transaction that
can be triggered to undo the effects of the committed sub-
transaction aspect in case one fails.

With respect to the coordination protocol, protocol the Com-
positional Consistency Framework uses the NeCoMan [9] proto-
col which is encapsulated as an aspect and woven to provide
synchronisation between the reconfigured entities.

Unsynchronised binding of distributed remote aspects. To pre-
vent race conditions in which remote connectors attempt to com-
municate with remote aspects that have previously been removed,
a ‘before’ advice is woven at join point 3. This detects when a
‘remove’ command is passed to the Aspect Handler, and in re-
sponse weaves a proxy caretaker aspect this is woven in front of
proxies for the removed application aspect. Then, when a remote
client (connector) attempts to invoke this removed aspect, the
proxy caretaker aspect is invoked instead which redirects and
informs the remote connector that the referenced aspect has been
removed. To avoid the connector from invoking the aspect in the
future, it removes the remote aspect reference from its aspect
chain when it receives the ‘remove reference’ message.

Mutual exclusion of Aspect(s) Threat. To ensure that conflicting
aspects are not composed, the Compositional Consistency
Framework uses a semantic reasoning and resolution aspect (e.g.
[17]) and is applied at join points 1 and 4. This aspect holds appli-
cation-specific rules about which mutual exclusive behaviours are
allowed and not allowed when reconfiguration (both addition and
removal of aspects) is performed. Using reflection, it identifies
aspect(s) woven at the join point and determines if adding or re-
moving the aspect will cause any inconsistencies. For detected
conflicts an exception is raised and the reconfiguration is aborted.

4.3 Ordering of Threat Aspects

Although the threats discussed above are essentially orthogonal to
one another, the order in which the corresponding aspects are
composed is still important. For example, when the consensus
aspect is woven at join points 4 and 5, the reconfiguration can
proceed in either of the following ways: (i) if no threat aspects are
deployed then the consensus aspect is then woven as a ‘before’
advice; or (ii) in the case where the threat 1 aspect has already
been woven, the consensus aspect is woven as a ‘before’ advice
with position 2. The decision is determined from priority ordering
information attached as attributes to the individual aspects. Weav-
ing the reliability aspect first ensures that a reliable consensus
protocol is selected.

The order in which aspects woven at the same join point are
invoked affects the reconfiguration semantics. This is particularly
true for join points 4 and 5 at which numerous aspects are woven.
Aspects being executed in the wrong order could lead to situations
in which a message needing to be processed by a particular aspect
has already been consumed by another.

To guard against such eventualities, the COF mandates a par-
ticular order for the weaving of the threat aspects. These are illu-
strated in Figures 6(a) and 6(b) which respectively illustrate the
required ordering at join points 4 and 5.

Figure 6(a). List of threat aspects woven at join point 4

Figure 6(b). List of threat aspects woven at join point 5

5. Evaluation

We focus on two dimensions of evaluation: (i) the extent to which
AO-OpenCom/COF achieves our stated goals of configurability
and transparency; and (ii) the overhead of AO-OpenCom/COF in
‘typical’ usage scenarios.

5.1 Configurability
In Section 4.1 we have already demonstrated the configurability
of AO-OpenCom/COF in addressing a wide range of consistency
threats. Our general approach to dealing with such threats—i.e. by
selectively applying threat aspects to join points in AO-OpenCom
itself—is inherently highly configurable and can be changed or
extended simply by applying different threat aspects. However,
two potential vulnerabilities of our approach might become evi-
dent if new threat aspects are added to the set we have already
identified: (i) it could become harder to keep track of the threat
aspect ordering constraints discussed in Section 4.2; and (ii) there
could be an increased possibility of undesirable interactions be-
tween the behaviour of the different threat aspects. The extent to
which these vulnerabilities become problematic will become
clearer with experience. However, we believe that the set of threat
aspects we have identified is already quite comprehensive, and
that many cases can be covered with the current set alone. Under-
lying this belief is our experience that most threats seem to reduce
to a tractable number of common underlying patterns.

5.2 Transparency
Turning now to the issue of transparency, AO-OpenCom/COF
naturally supports a selectively transparent approach. At one ex-
treme, an appropriate set of threat aspects can be pre-configured at
application start-up time so that the application programmer who
wishes to initiate a run-time reconfiguration needs only to make
the appropriate call to Configurator.reconfigure(). This achieves
complete transparency of consistency-related mechanisms. At the
other extreme, the programmer can be explicit about which threat

aspects should be put in place for each reconfiguration. In this
case, COF will apply the requested threat aspects on-the-fly (if
they are not already present) before proceeding to perform the
requested reconfiguration. Note that this extreme is still partially
transparent as the programmer is protected by the Consistency
Configurator from the low level details of actually weaving the
threat aspects.

To illustrate the partially transparent case consider a reconfi-
guration scenario relating to the case study in Section 2. Assume
that the application programmer wants to add an MPEG4 video
codec aspect to all nodes in domains 1 and 2 which already have
video-codec components with an IMPEG interface. Further as-
sume that domains 1 and 2 offer reliable TCP-based communica-
tions. The programmer would specify the reconfiguration request
by writing code along the lines of Figure 7 (the code is simplified
for presentational purposes).

Note that the required threat aspects are specified as part of
the aspect specification. In this case no compositional threats are
applicable, and the protocol message disruptions threat (T1) is not
applicable either because of the availability of TCP. This leaves
only the remainder of the ‘system environment’ threats: i.e.
threats T2-T5. The Configurator.reconfigure() call takes the given
pointcut and aspect specifications and also specifies that the speci-
fied aspect should be added, that the scope of the reconfiguration
should be the entire DCF and that the weaving locus should be
before.

Pointcut pc = new Pointcut(“domain1* && domain2*”, “video-

codec*”, “IMPEG”, “video-player*”);

Aspect aspectVideo = new Aspect(MPEG4VideoCodec, “T2 T3

T4 T5”);

Configurator.reconfigure(multimedia_app, pc, add, aspectVideo,

perDCF, before);

Figure 7. Reconfiguration specification

5.3 COF Overhead
The following experiment was performed on two Core Duo 2, 1.8
GHZ PCs’ with 2GB RAM running Windows, and using the Java-
based version of AO-OpenCom. Each measurement was repeated
ten times and mean values taken to discount anomalous results.
The purpose of the experiment was to evaluate the performance
overhead of dynamic reconfiguration operations using AO-
OpenCom and COF, We approached this by instrumenting an
implementation of the application scenario described in Section
5.2, while using different threat aspect configurations from the
consistency framework.

The results are shown in Figure 8 which shows the measured
overhead of the following 4 cases: (i) reconfiguration without
COF; (ii) reconfiguration using COF with the system consistency
framework threat aspects only; (iii) COF with the compositional
consistency framework threat aspects only; and (iv) COF with
both the system and compositional consistency framework threat
aspects.
We can see a linear increase in overhead when applying COF for
compositional threat aspect while a non-linear increase of over-
head for System Consistency Threat aspect used as the number of
reconfigured nodes is increased. This is explained by:
• the fact that the initiator node is a bottleneck (this could in

principle be alleviated by configuring AO-OpenCom with
slave Configurators to increase parallelism);

• weaving of dependent aspects are treated as sub-transactions
over a mixed set of nodes. The set of affected nodes having
dependent causes affected nodes to dependent on each other,
causing the overhead to be higher.

Overall, based on our experiments, we can conclude that the run-
time overhead of COF is acceptable; with each threat aspect capa-
ble of being independently woven each threat aspect can be
individually deployed based on the required reconfiguration con-
text, thus significantly reducing the overhead compared to all
threat aspects being deployed.

Figure 8. Overhead of reconfiguration using COF in AO-

OpenCom

6. Related Work

Few AO middleware platforms have addressed the challenges of
performing consistent dynamic reconfiguration. DyMac [10], and
CAM/DAOP [14] are prominent examples of distributed AOP
platforms that have no support for dynamic reconfiguration. Other
prominent platforms such as Spring AOP [1] and FAC [13] do
support reconfiguration, but do not support distribution; these
systems have not needed to consider strong consistency mechan-
isms as reconfiguration is considerably simpler when confined to
a single node.

JAC [12] is an early example of a distributed platform that
supports dynamic reconfiguration. However, this support involves
only the reconfiguration of advices at individual join points and
provides no support for distributed consistency management.

AWED [3] supports dynamic weaving of aspects using the
DJAsCo [20] distributed AOP architecture. It supports the weav-
ing of stateful distributed aspects, and through the use of a consis-
tency protocol ensures that whenever an aspect is woven at a
specific host, mirrors are also woven at other involved hosts.
However, AWED do not consider any other consistency threats as
discussed in the our proposed solution.

ReflexD [18] also supports dynamic weaving/unweaving of
mirrored aspects, and uses a framework to provide system-wide
consistency. However, as in AWED ReflexD aspects exist only as
mirrored aspects although unlike AWED, ReflexD ensures that
whenever an aspect is changed the corresponding remote copies
are synchronised. But again, the consistency mechanisms pro-
vided do not generalise to the extent of our proposal.

Finally, DyReS [19] is an AO middleware framework devel-
oped on top of JBOSS dynamic AOP [4] and Spring AOP [1] that
provides consistent dynamic reconfiguration in a more sophisti-
cated manner than the systems reviewed above. More specifically,
DyReS uses a coordination protocol that allows aspects to be dy-
namically added and removed in a consistent manner by achieving

quiescence. The protocol is based on two synchronisation primi-
tives: wait blocks the ongoing reconfiguration process until it gets
a notify message from a specified node; and notify sends a syn-
chronisation message to a specified node. Although this approach
supports a degree of generality (i.e. it is portable over multiple
underlying platforms), it again does not generalise to a wider set
of consistency threats. For example, when deployed in a wireless
network environment there is no way to address the possibility of
lost or reordered synchronisation messages or other system envi-
roment threats as in our approach. Furthermore, compositional
threats are not addressed in DyReS. Our approach is more flexi-
ble, allowing different consensus and consistency protocols to be
chosen based on the required reconfiguration, the current envi-
ronment, and the wide range of threats that are posed.

7. Conclusion and Future Work

In this paper we have identified a number of important threats to
maintaining the consistency of distributed reconfiguration opera-
tions in AO middleware environments. We believe these threats to
be representative of the type of threats that should be considered
by all dynamic AOP platforms. More specifically, we have pre-
sented the AO-OpenCom platform which supports the composi-
tion and reconfiguration of distributed aspects, and an associated
distributed consistency framework called COF that ensures that all
of the identified threats are handled in a transparent manner. COF
has the following important benefits. First, it is simple and elegant
in that it uses aspect composition to deploy these consistency
mechanisms. Second, it is flexible and configurable in that appro-
priate threat aspects can be dynamically woven and unwoven
according to the types of threat and environmental conditions
currently pertaining. Third, it is inherently extensible in that new
threat aspects can be developed and woven into the system at
appropriate join points as and when new threats are identified.
Fourth, it achieves the maintenance of consistency with a reason-

able overhead compared to unsafe reconfiguration.
There are several research directions that we would like to in-

vestigate in the future. First, we are currently working on perfor-
mance optimisations to reduce reconfiguration overheads through
the use of multiple (slave) Configurators in cases where a reconfi-
guration needs to be carried out on a large number of nodes. This
should reduce the overheads identified in Section 5 to something
closer to constant time. Second, we will investigate the potential
for embedding our approach in a self-managing, autonomic envi-
ronment. Finally, we plan to integrate our framework with appro-
priate modelling tools which can support the developer in
designing, evaluating and validating complex aspect reconfigura-
tions before they are deployed into a distributed system.

References

[1] Spring website. http://www.springframework.org/.

[2] Beloued, A., Gilliot, J.M., Segarra, M.T., Andre, F. “Dynamic data
replication and consistency in mobile environments”, In Proceeding
of the 2nd doctoral symposium on Middleware, ACM, NY, 2005.

[3] Benavides, L., Sudholt, M., Vanderperren, W., et al., “Explicitly
distributed AOP using AWED”, In Proceeding 5th International Pro-
ceeding Conference on Aspect Oriented Software Development,
Bonn, Germany, March 2006.

[4] Burke, B., “JBoss AOP Tutorial”, 3rd Conference on Aspect Ori-
ented Software Development, Lancaster UK, 2004.

[5] Coulson, G. Blair, G., Grace, P, Taiani, F., Joolia, A., Lee, L.,
Ueyama, J., Sivaharan, T., “A Generic Component Model for Build-
ing Systems Software”, ACM Transactions on Computer Systems,
TOCS, 2008.

[6] Demers, A., Petersen, K., Spreitzer, M., Terry, D., Theimer, M.,
Welch, B., “The bayou architecture: Support for data sharing among
mobile users.” In Proceedings IEEE Workshop on Mobile Comput-
ing, pages 2-7, 1994.

[7] Garcia, H., Salem, K., “Sagas”, ACM Conference on Management
of Data, 1987.

[8] Grace, P., Coulson, G., Blair, G., Porter, B., “A Distributed Archi-
tecture Meta Model for Self-Managed Middleware”, In Proceeding
5th Workshop on Adaptive & Reflective Middleware, 2006.

[9] Janssens, N., Joosen, W., Verbaeten, P., “NeCoMan: middleware for
safe distributed-service adaptation in programmable networks”, In
IEEE Distributed Systems Online, 2005.

[10] Lagaisse, B., Joosen W., “True and Transparent Distributed Compo-
sition of Aspect-Components”, In Proceeding Middleware Confer-
ence, LNCS 4290, Melbourne, 2006.

[11] Minson, R., Theodoropoulos, G., “Adaptive Support of Range Que-
ries via Push-Pull Algorithms”, 21st Workshop on Principles of Ad-
vanced and Distributed Simulation, 2007.

[12] Pawlak, R., Senturier, L., Duchien, L., Florin G., “JAC: A Flexible
Solution for AOP in Java”. In Proceeding 3rd International Confer-
ence on Metalevel Architectures and Seperation of Crosscutting
Concerns, 2001.

[13] Pessemier, N., Seinturier, L., Duchien L., Coupaye, T., “A compo-
nent-based and aspect-oriented model for software evolution”, Inter-
national Journal of Computer Applications in Technology, Volume
31, Number 1-2, 2008.

[14] Pinto, M., Fuentes, L., Troya, J.M., “A Component And Aspect
based Dynamic Platform”. The Computer Journal, 2005.

[15] Satyanarayanan, M., “Coda: A highly available system for a distrib-
uted workstation environment.” IEEE Trans. Computing, 39(4) pg.
447-459, 1990.

[16] Surajbali, B., Coulson, C., Greenwood, P., and Grace, P. “Augment-
ing reflective middleware with an aspect orientation support layer.
In Proceeding 6th Workshop Adaptive and Reflective Middleware,
2007.

[17] Surajbali, B., Grace, P. and Coulson, G. 2009. A Semantic Composi-
tion Model to Preserve (Re)Configuration Consistency in Aspect
Oriented Middleware. In Proc. 8th Workshop on Adaptive and Ref-
lective Middleware. 2009.

[18] Tanter, E., Toledo, R., “A Versatile Kernel for Distributed AOP”. In
Proceeding International Conference on Distributed Applications and
Interoperable Systems, June 2006.

[19] Truyen, E., Janssens N., Sanen, F., Joosen, W., “Support for distrib-
uted adaptations in aspect-oriented middleware”. In Proceeding of
the 7th International Conference on Aspect Oriented Software De-
velopment, April 2008.

[20] Vanderperren, W., Suvee, D, Wydaeghe, B., Jonckers, V., “Paco-
Suite and JAsCo: A visual component composition environment with
advanced aspect separation features”, Conference on Fundamental
Approaches to Software Engineering Poland, 2003.

