
Compressing MAC Headers on Shared Wireless
Media

Jesus Arango1, Matthew Faulkner2, and Stephen Pink2

1 Cisco Systems, USA
jearango@cicso.com,

2 Computing Department, Lancaster University, Lancaster, UK
faullknem,pink@comp.lancs.ac.uk

Abstract. This paper presents a header compression algorithm that
unlike previous protocols is capable of compressing MAC headers in a
multiple-access (shared) channel. Previous schemes could not compress
MAC headers because the address fields are needed to identify the in-
tended destination as well as the intended context space under which
compressed headers are to be interpreted.
We approach this problem by sharing a single context space among par-
ticipating nodes. The compression context for a new flow between two
nodes is initialized and synchronized by transmitting an uncompressed
frame with a context label that is randomly selected by the sender.
Frames with compressed MAC headers will have no address fields. A
receiving node that has a context which matches the label in a com-
pressed frame will be able to decompress the header by expanding the
label into the corresponding fields stored in the context. Mechanisms are
presented to address label conflicts where a node is receiving compressed
frames with the same label from multiple senders.
We evaluate our work by simulating an 802.11 network that implements
the header compression algorithm. The simulation results show that
when MAC headers are compressed there is throughput improvement
of up to 15% in the experiments we conducted. This is in addition to the
throughput improvement achieved by compressing IP, TCP, UDP and
higher level headers.

1.1 Introduction

Traffic studies [10, 2] have shown that approximately 50% of IP packets are 80
bytes long or less. The overwhelming majority of these packets have at least 40
bytes of headers, resulting in poor efficiency as a consequence of small payloads
and large header sizes.

Low efficiency is a major concern on low bandwidth channels, and in partic-
ular wireless networks where bandwidth is scarcely enough to meet application
demands. The maximum data rate for off-the-shelf technologies such as 802.11
has increased considerably. However, network deployments requiring a larger
transmission range or lower energy consumption must unavoidably fall back to
less complex modulation schemes that result in lower data rates.

2 Jesus Arango, Matthew Faulkner, and Stephen Pink

Multiple header compression protocols have been proposed to compress net-
work and transport-level headers [8, 5, 3, 1]. Unlike previous protocols, the al-
gorithm presented in this paper is capable of compressing MAC headers in a
multiple-access (shared) channel.

Line efficiency is the fraction of transmitted data that is not considered over-
head; in other words, the fraction of transmitted data that has some explicit,
useful purpose to the application. Line efficiency is formally defined as:

efficiency =
payload

headers+ payload
(1.1)

Header compression improves channel efficiency by exploiting redundancies
between header fields within the same packet or consecutive packets belonging
to the same packet stream. It works by sending static fields only initially and uti-
lizing dependencies and predictability for other fields. Compression performance
depends in part on the optimal classification of the aggregate packet stream at
the compressing entity into sub-streams of highly correlated packets. Correlation
within a packet stream implies a highly predictable pattern of changes between
consecutive packets, or that large sections of the header chain remain constant
across packets of the same stream, or both. In practice, the aggregate packet
stream is usually classified into network-level or transport-level flows, as packets
belonging to the same flow are highly correlated. For example, many fields such
as addresses, ports and protocol types remain constant across all packets of the
same flow, and changes in other fields are highly predictable.

Accordingly, each flow is compressed independently by first sending a packet
with full, uncompressed headers to establish a context that provides common
knowledge between sender and receiver about static field values as well as initial
values for dynamic fields. This stage is known as context initialization. Subse-
quent compressed headers are interpreted and decompressed according to a pre-
viously established context. Constant fields need not be sent with compressed
headers. Fields that change predictably, such as sequence numbers, are encoded
incrementally, requiring only a small number of bits. Fields with random, un-
predictable changes, for example checksums, must be sent in every header.

A context label must be transmitted explicitly or implicitly with every header.
For context initialization headers, the label determines the context being initial-
ized. For compressed headers, it determines the context used to interpret the
compressed data. The context label should be short enough to provide efficient
compression but long enough to support an adequate number of flows.

In some situations, the number of active flows will inevitably exceed the
number of contexts. A context replacement strategy such as Least Recently Used
(LRU) is necessary in such situations. Context thrashing occurs when headers
are seldom matched with an existing context and have to be sent uncompressed.
Techniques such as hysteresis ensure that packet streams with the highest com-
pression rates retain their context. Such techniques are more likely to be needed
in the middle of the network.

Encoding dynamic fields in fewer bits using incremental encoding techniques
requires periodic and synchronized context updates. Not all packets need to

1 Compressing MAC Headers on Shared Wireless Media 3

trigger a context update, but the more seldom the context is updated the more
bits that are usually needed for dynamic fields. Packets that trigger a context
update are referred to as context-updating packets. Failure to update receiver
context as a result of packet loss will lead to context inconsistencies and incor-
rect decompression of subsequent packets. This is known as loss propagation.
Incorrect updates of receiver context as a result of residual errors1 will similarly
lead to incorrect decompression of subsequent packets. This is known as error
propagation.

The number of packets discarded due to incorrect decompression as a result
of loss of synchronization depends on the channel’s error rate and round-trip
time. The higher the error rate the greater the probability of losing a context-
updating packet. The round-trip time determines the number of packets that
are discarded before feedback can be sent to re-synchronize the context.

Early work on header compression [8, 5] focused on slow serial links and wired
networks with low error rates. Their encoding and feedback mechanisms are not
robust enough to reduce, prevent and correct loss of synchronization. Therefore,
they do not perform well on channels with high error rates and long round-
trip times. More recent [1] work has addressed loss and error propagation issues
associated with high error rates and long round-trip times commonly found in
wireless links. The algorithm presented in this paper , unlike previous protocols,
is capable of compressing MAC headers on shared wireless media.

In classical header compression schemes, a context space is kept synchronized
between a compressor (sender) and a decompressor (receiver). Each context
space is thus associated with a logical channel represented by an ordered (sender,
receiver) pair. Header compression has traditionally been performed on point-to-
point links. By definition, point to point links consist of a single logical channel
in each direction. Interpreting context labels transmitted on point-to-point links
is a straightforward process because any transmitted label is unambiguously
associated with only one logical channel.

Traditional header compression protocols can be extended to support shared
media by maintaining multiple context spaces and relying on link-level address-
ing to correctly associate each packet with the correct logical channel. The desti-
nation address ensures delivery to the intended node. The source address ensures
decompression with the correct context table. Accordingly, MAC headers may not
be compressed when link-layer addressing is used to represent logical channels.

The alternative is to have a single logical channel, and the critical issue is
to consistently share a single context set among multiple network nodes. Under
strict consistency, each node wishing to initialize a header compression context
must select a label that is not currently in use by any other node2, and all nodes
must agree on this selection.

Strict consistency is equivalent to the consensus problem [4], where a set of
processes (nodes) must agree on a value after one or more of the processes have

1 Residual errors are errors that go undetected by error detecting codes
2 Under a finite label space, such selection must involve an arbitration mechanism if

no free labels are available

4 Jesus Arango, Matthew Faulkner, and Stephen Pink

proposed what the value should be. Achieving consensus is an expensive oper-
ation and, efficiency-wise, is considered a difficult problem. Known algorithms
require several rounds of processes exchanging values among themselves by using
group communication. Such solutions also rely on group communication primi-
tives that are more powerful than the broadcast services commonly available in
LAN technologies. An important result by Fischer et al. [6] also demonstrated
that no algorithm can guarantee to reach consensus in an asynchronous system3

where process failures are considered.
With the above considerations in mind, it is imperative to determine the

least degree of consistency required such that any two adjacent nodes can com-
press message headers through the use of synchronized contexts. A strict context
synchronization with global scope seems unnecessary since synchronized context
only need to be kept between adjacent nodes. We argue that any consistency
scheme is sufficient if the following invariant holds:

If any two nodes use the same context label to decompress messages, then
they should not receive messages bearing this label whose intended destination is
the other node.

Let R be the compression relation where (x, y, l) ∈ R if x compresses mes-
sages for y using label l. Let G = (V,E) be the graph representing the network
connectivity, where V is the set of nodes and E is the set of edges. As always, two
nodes are connected by an edge if they are within range. The previous invariant
can be formally expressed as follows.

∀m,n, p, q, l[R(m,n, l) ∧R(p, q, l)→ (m, q) /∈ G ∧ (p, n) /∈ G]

The algorithm presented in this paper shares a single context space among
participating nodes. The compression context for a new flow between two nodes
is initialized and synchronized by transmitting an uncompressed frame with a
context label that is randomly selected by the sender. Frames with compressed
MAC headers will have no address fields. A receiving node that has a context
which matches the label in a compressed frame will be able to decompress the
header by expanding the label into the corresponding fields stored in the context.
Mechanisms are presented to address label conflicts where a node is receiving
compressed frames with the same label from multiple senders.

We evaluate our work by simulating an 802.11 network that implements the
header compression algorithm. The simulation results show that when MAC
headers are compressed there is throughput improvement of up to 15% in the
experiments we conducted. This is in addition to the throughput improvement
achieved by compressing IP, TCP, UDP and higher level headers.

The rest of the paper is organized as follows. Section 1.2 presents the al-
gorithm for compressing MAC headers on shared wireless media. Section 1.3
discusses the implementation of the algorithm on 802.11 networks. Section 1.4
3 An asynchronous system is that which imposes an upper bound on processing and

communication delays. That is, processes are entitled to assume that another process
is faulty if it does not respond within a specified timeout period

1 Compressing MAC Headers on Shared Wireless Media 5

presents the experimental results and Section 1.5 provides some concluding re-
marks.

1.2 MAC Header Compression

This section presents a header compression algorithm capable of compressing
MAC headers on shared wireless media. The central concept behind the algo-
rithm is that a node compressing a flow with label l should be the only transmit-
ter using label l within range of the intended destination r. The algorithm aims
to avoid and correct situations where two or more transmitters within range of
r compress with label l.

The algorithm is presented by walking through the compression cycle and
making references to key parts of the pseudo-code. The compression routine is
shown in Algorithm 1 while Algorithm 2 illustrates the decompression routine.
There is an additional routine (Algorithm 3) that, as described later, is crucial
in resolving label conflicts.

1.2.1 Compression

The compression routine maintains a transmission context set (1.1) that contains
the transmission contexts currently used for compression. At a minimum, each
transmission context stores a label, a flow key that uniquely identifies a flow,
and a compression state that conveys whether the context is in the initialization
stage or some other stage. A transmission context may optionally contain other
media-dependent information to compress predictable fields such as sequence
numbers.

The compression routine also uses a set of unavailable labels (1.2). As de-
scribed later, this set contains the labels that have been previously observed on
the channel. As such, the set of unavailable labels is actually updated by the
decompressor.

To compress a frame, the transmission context set T must first be searched
for a corresponding context (1.4). This is usually done by forming a key based on
the flow-defining fields of the frame and searching for a context with a matching
key.

If a context exists (1.5), then that context is used to compress the frame. The
context’s state may also need to be updated and this is done differently depend-
ing on whether the MAC layer uses synchronous4 acknowledgements (i.e. 802.11).
The key observation here is that the context must remain in the initialization
(INIT) state until the compressor is fairly confident that the decompressor has
received the static information correctly. With synchronous acknowledgements,
all that needs to be done here is to store a reference to the last context used
(1.9). This reference will be used by the decompressor to update the context’s

4 Synchronous in this context means that the acknowledgement is expected to be
transmitted at a precise time slot.

6 Jesus Arango, Matthew Faulkner, and Stephen Pink

Algorithm 1 COMPRESSION
1: T : local context table
2: U : set of unavailable labels
3: procedure compress(frame f)
4: if T has a context for f ’s flow then
5: compress f using existing context
6: if unidirectional mode then
7: update the state of the context
8: else
9: lastCxt ← context reference

10: end if
11: else
12: Select a random label that is not in T nor U
13: create new context l with state set to INIT
14: insert context l into T
15: compress f ’s flow using label l
16: end if
17: end procedure

state when the next acknowledgement arrives. Otherwise, the state must be up-
dated here (1.7) based on a unidirectional mode that implements a state machine
where transitions are performed only on account of periodic timeouts or frame
counters associated with each state.

If a context is not found, a new context is created with a label that is ran-
domly generated such that it is not contained in T or the set U of unavailable
labels (1.12). The context is inserted into T and its state is set to INIT. Finally
a context initialization frame is sent after appending the label to the original
frame.

1.2.2 Decompression

The most interesting processing occurs in the decompressor. The precise pro-
cess depends on whether the received frame is a context initialization frame, a
compressed frame, or as described later, a conflict notification frame.

Context Initialization Frames The first thing to do with a context initial-
ization frame is to check for errors (2.6) and discard the frame if the redundancy
check fails (2.7). This is accomplished by transmitting some sort of redundancy
code that is application dependent. Our algorithm is generic in nature and does
not advocate a specific redundancy code. However, many MAC protocols use
Cyclical Redundancy Check (CRC) and the term CRC is used in this paper to
denote redundancy codes in general.

The next step is to compaper the frame’s destination address with the local
node’s address (2.8). A mismatch indicates the local node is not the intended re-
cipient. However, the frame’s label should be made locally unavailable by adding
it to set U (2.9), thus preventing the local compressor from creating a conflict

1 Compressing MAC Headers on Shared Wireless Media 7

at the intended recipient of this flow. Note that the reception of this message
only confirms that we are within range of the sender. However, the likelihood
of being within range of the intended receiver given that we are within range of
the sender is quite high.

Further processing at this point (2.11) is only performed for locally addressed,
error-free frames. The decompression context set R must now be searched for a
matching context (2.12). If no context is found a new one is created (2.19).

If a context is found, it must also be determined if the source address in
the frame matches the source address in the context (2.13). This comparison
is important because the existence of a local context alone does not necessar-
ily indicate a conflict. A match in the source addresses is an indication that
acknowledged transmitter has sent another context initialization frame. The ac-
knowledged transmitter refers to the node who sent the first context initialization
frame that triggered the creation of the local context. Multiple context initializa-
tion frames may be sent because the acknowledged transmitter either wants to
change the context or because it is operating in unidirectional mode and thereby
periodically refreshing the context. The decompressor must therefore update the
contents of the context (2.16).

If the source addresses do not match we clearly have a conflict in the mak-
ing and must therefore send (2.14) a collision notification frame CNF (l, addr),
where l is the conflicting label and addr is the address of the acknowledged
transmitter stored in the local context. A CNF (l, addr) alerts all nodes in the
local neighborhood except the acknowledged transmitter addr to cease and de-
sist from transmitting label l. CNF messages are sent asynchronously like any
other data message. A synchronous acknowledgement would likely cause a col-
lision at the offending transmitter because the offending frame is likely to be
acknowledged by a third party.

Compressed Frames The first thing to note about compressed frames is that
we cannot immediately perform a CRC verification, as the CRC is computed
prior to compression. Consequently, the receiver must perform the CRC valida-
tion after decompression. Moreover, special processing of CRC failures may be
required if CRC checks are used to detect label conflicts.

The first order of business is to determine if R contains a matching context
for the frame’s label (2.24). If no context is found we have no business with this
frame other than adding its label to set U to prevent the local compressor from
using this label. Finding a context, on the other hand, allows the decompression
of the frame (2.25) by expanding its label with the information stored in the
context. A CRC verification is conducted (2.26) once the frame is decompressed.
A successful CRC verification indicates that both the transmitter and receiver
are referring to the same context, resulting in a successful decompression of the
frame.

Note however that a CRC failure can be caused by either a transmission
error or a label conflict. When compressed frames are received bearing a label
for which a local context exists but sent by a node other than the one indicated

8 Jesus Arango, Matthew Faulkner, and Stephen Pink

Algorithm 2 DECOMPRESSION
1: R: local context table
2: U : set of unavailable labels
3: procedure decompress(frame f)
4: l← label(f)
5: if f is a context initialization frame then
6: if f fails CRC then
7: drop f
8: else if destination(f) != local address then
9: insert l into U

10: drop f
11: else
12: if R has a context ctx for l then
13: if source(ctx) != source(f) then
14: send CNF (l, source(ctx))
15: else
16: key(ctx)← key(f)
17: end if
18: else
19: insert new context l into R
20: end if
21: decompress f
22: end if
23: else if f is a compressed frame then
24: if R contains a context for l then
25: decompress using context l
26: verify CRC
27: update CRC verification history
28: if CRC verification failed then
29: drop f
30: if more than k out m frames fail CRC then
31: send CNF
32: end if
33: end if
34: else
35: add l to U
36: drop f . not the intended receiver
37: end if
38: else if f is a CNF then
39: ReceiveCNF (f)
40: end if
41: end procedure

1 Compressing MAC Headers on Shared Wireless Media 9

in the context, then decompressing the frame will expand the label with incorrect
information, resulting in a CRC failure.

Several mechanisms are possible to detect label conflicts and correct this
situation. For MAC protocols with synchronized acknowledgements, a conflict-
ing sender will receive no acknowledgements and will make several transmis-
sion attempts before giving up, removing the context and randomly selecting a
new label. If no acknowledgements are used, unidirectional mode forces all local
senders to periodically revert to a state where uncompressed frames are sent and
conflicts can be easily detected at the receiver.

Conflict resolution is also possible when synchronous acknowledgements are
not available and unidirectional mode is not desired. Asynchronous acknowl-
edgements are introduced for context initialization frames only to ensure that
the context is initialized at the receiver. This conflict resolution scheme is shown
in Algorithm 2. It is based on the observation that an abnormal number of CRC
failures is likely to be an indication of a label collision because the occurrence of
so many transmission errors would be rather unlikely. Statistical analysis can be
used to formally determine what exactly is an abnormal amount of CRC failures.

Each decompression context has a circular buffer that stores the history of
the CRC outcome for the last k frames, with each outcome being either a success
(S) or a failure (F). Assume that all failures are due to transmission errors and
let X be the number of failures in the last k frames. Let m < k be some bound
on the number of transmission errors such that

Pr[X > m] < ε (1.2)

where ε is an arbitrarily small probability bound. After updating the CRC
history (2.27) a new value of X will be observed. If the CRC fails, the frame is
dropped (2.29) and a label conflict is assumed if X > m (2.30).

Note that ε is a fixed parameter. The value of m can be determined with
Chernoff’s bound:

Pr[X > (1 + δ)µ] <

[
eδ

(1 + δ)(1+δ)

]µ
(1.3)

Where δ > 0 and µ = E[X]. By letting m = (1 + δ)µ the bound can be
rewritten as:

Pr[X > m] <

 e(
m
µ −1)(

m
µ

)(mµ)

µ

(1.4)

From the following inequality e(
m
µ −1)(

m
µ

)(mµ)

µ

≤ ε (1.5)

10 Jesus Arango, Matthew Faulkner, and Stephen Pink

we can ensure by transitivity that Pr[X > m] < ε. The only term in (1.5)
that has not yet been defined is µ:

µ = E[X] =
k∑
i=1

1− (1− p)ni (1.6)

where p is the bit error rate and ni is the size of the ith frame. To determine
m, one would first set k to a fixed value and minimize m subject to the constraint
in (1.5). For example, Figure 1.1 plots m as a function of k for ε = 0.02, a bit
error rate of 10−4 and an average frame size of 500 bytes.

10

12

14

16

18

20

10 15 20 25 30

k

m

Fig. 1.1. Parameter m as a function of parameter k, for ε = 0.02, p = 10−4, and ni =
500 for all i.

Conflict Notification Frames Nodes that receive a CNF should only process
it if the CRC verification succeeds (3.2). Receiving nodes must check whether
the address contained in the CNF matches their local address (3.3). A match
indicates that the local node is the acknowledged sender for the label and should
therefore ignore the CNF. A mismatch indicates that we are not the acknowl-
edged sender and should therefore search T to determine if we have an offending
context for the label. If a context is found it must be removed from T (3.5).
Whatever the outcome of the search, the label should be inserted into U to
avoid future conflicts.

1.3 Compressing 802.11 Headers

This section describes how 802.11 headers can be compressed using the algorithm
discussed in Section 1.2. The simulation experiments described in Section 1.4 are
based on the compression of 802.11 headers as described here. Only compres-
sion of data and ACK frames will be described. RTS frames can be compressed
similarly to data frames, using the algorithm of Section 1.2. CTS frames can
be compressed similarly to ACK frames, using a stateless scheme described in

1 Compressing MAC Headers on Shared Wireless Media 11

Algorithm 3 CONFLICT NOTIFICATION
1: procedure ReceiveCNF(frame f)
2: if CRC verification succeeds then
3: if addr(f) != local address then
4: if a context for label(f) is found in T then
5: remove context from T
6: end if
7: insert label(f) into U
8: end if
9: end if

10: drop f
11: end procedure

this section. The RTS/CTS mechanism has been shown to be generally inef-
fective in improving performance even in the presence of hidden terminals [7].
Furthermore, RTS/CTS is often disabled in practice.

1.3.1 Data Frames

Figure 1.2 illustrates how data frames are compressed. The field lengths of the
data frame are shown in octets and the subfield lengths in the Frame Control
field are shown in bits. The entire header is 28 octets long including the CRC
field. The RA and TA address fields store the receiver and transmitter addresses,
respectively.

OrderWEPMore
Data

Pwr
MgtRetryMore

Frag
From
DS

To
DS

Subtype
(DATA)

Type
(DATA)

Version
(0) OrderWEPMore

Data
Pwr
MgtRetryMore

Frag
From
DS

To
DS

Subtype
(DATA)

Type
(DATA)

Version
(0)

Bits: 2 2 4 1 1 1 1 1 1 1 1

Data CRCSeq
CntrlSRC / DSTTARADurationFrame

ControlData CRCSeq
Cntrl Address 3TARADurationFrame

Control

Octets: 2 2 6 6 6 2 Payload 4

Fig. 1.2. Compression of 802.11 data frames.

The shaded fields remain constant for a given (receiver, transmitter) pair,
thus they only need to be sent initially in a context initialization frame. The
dotted fields take a limited number of values. In fact, the dotted bit fields in
the Frame Control rarely change at all. Rather than having a complex frame
encoding where the dotted fields are sometimes transmitted and other times
omitted, we decided to make them part of the flow-defining fields, along with the
RA and TA address fields. The dotted fields are described below to give a better
idea of how many contexts to expect between a single (receiver, transmitter)
pair.

12 Jesus Arango, Matthew Faulkner, and Stephen Pink

The contents of the 3rd address field depends on the type of node sending the
frame as well as the mode of operation (infrastructure vs. ad-hoc). In infrastruc-
ture mode, if a station sends a frame to the access point, then the field stores the
address of the destination. If the access point sends a frame to a station, then
the field stores the address of the source. In ad-hoc mode, the field is fixed to the
BSSID of the ad-hoc network. In practice, the number of values that this field
is expected to take in infrastructure mode is just one (the default gateway)5,
as wireless clients do not usually connect to other wireless clients on the same
WLAN.

All the dotted bits in the Frame Control field except the Retry bit will most
likely always be set to a single value because they represent features that are
rarely used or always enabled once a station associates with the network. Ac-
cordingly, there will usually be two contexts for every pair of stations, one for
each value of the Retry bit.

The Sequence Control field can be partially compressed using delta or LSB
encoding. The 802.11 MAC implements a Stop-and-Wait, Automatic Repeat Re-
quest (ARQ) protocol where a transmitted frame must be immediately acknowl-
edged before proceeding to transmit the next frame. It also uses frame-level
sequencing, as opposed to byte-level sequencing like TCP. These two charac-
teristics allow the Sequence Control field to be compressed to as little as two
bits. In fact, 802.11 provides an ideal environment for delta/LSB encoding as
loss propagation can be fully eliminated due to the acknowledgement mechanism
already in place.

1.3.2 ACK Frames

The underlying concept behind maintaining state in the form of compression
contexts is that an unending stream of frames can be mapped into a relatively
small number of header values. Only the context’s label is needed to fill the
missing fields in a compressed frame. Without the label the values are totally
unpredictable.

For certain types of frames, however, the value of some fields is totally pre-
dictable even without maintaining state. Such is the case of ACK frames. Fig-
ure 1.3 shows the format of an ACK header. The designers were right not to
include the address of the ACK’s sender because for the receiver there is only
one possible value: the destination address of the previously transmitted data
frame. The Duration value can also be omitted in most circumstances as it is set
to zero if the More Fragment bit was set to 0 in the immediately previous data
frame. The Frame Control field can also be entirely omitted, with the exception
of the Power Management bit.

With some care, the RA address can also be omitted altogether. The sender
includes the RA field in the computation of the CRC but omits the field in
5 Recall that the third address does not necessarily have to be that of a station on

the same cell (Basic Service Set (BSS)). It can also be a station on another cell in
the same extended service set (ESS) or any wired station on the distribution system
(DS) that interconnects the cells.

1 Compressing MAC Headers on Shared Wireless Media 13

000Pwr
Mgt0000Subtype

(DATA)
Type

(DATA)
Version

(0) 000Pwr
Mgt0000Subtype

(DATA)
Type

(DATA)
Version

(0)

ACK CRCRADurationFrame
ControlACK CRCRADurationFrame
Control

Fig. 1.3. Compression of 802.11 ACK frames.

the transmitted frame. A station receiving an ACK frame will append its own
address before performing the CRC check. A CRC failure indicates that either
the ACK frame is corrupted or destined to someone else. There is no need to
differentiate between both as the node’s action is the same in both cases.

1.4 Experimental Results

The purpose of the experiments presented in this section is to evaluate the
improvement in performance and the occurrence of label conflicts when MAC
headers are compressed with the algorithm presented in this paper. The algo-
rithm has been implemented in ns-2 [9], a discrete event simulator with extensive
support for wireless networks.

The simulated network scenario consists of an 802.11 ad-hoc network com-
prised of 100 nodes with a transmission range of 250 m, moving in a network
space that measures 2500x750 m2. Nodes move according to the random way-
point model. The Ad-Hoc on Demand Distance Vector (AODV)[?] protocol is
used for multi-hop routing. The ad-hoc model was chosen over a WLAN (in-
frastructure) model because free interaction between any two moving nodes is
likely to put more stress on the algorithm and test its correctness. That being
said, the mode of operation is not a concern as the algorithm was implemented
to efficiently and seamlessly support both modes.

1.4.1 Label Conflicts

The first experiment is designed to evaluate the impact that mobility and label
size have on the frequency of label collisions. The 100 nodes in the network are
divided into a group of 50 senders and 50 receivers. A one-to-one mapping is
established where each sender is connected to a randomly selected receiver. This
scenario was chosen to guarantee that each node had at least one active role
as compressor or decompressor. However, every node is expected to be active
in multiple flows because we are dealing with a multi-hop network where each
node has on average 9.4 neighbors.

Each sender transmits four beacon messages per second to its corresponding
receiver for a duration of 5 minutes. Compression of MAC headers is performed
on each link of the path between the sender and receiver. The simulator keeps
track of number of conflicts and number of contexts created during the simula-
tion. Both are global counters that store network-wide aggregates. The number
of contexts is important to determine what percentage of the contexts result in

14 Jesus Arango, Matthew Faulkner, and Stephen Pink

label conflicts. Note that only unique conflicts are counted as opposed to count-
ing the number of conflicting frames. This distinction is important because the
number of unique context conflicts is independent of the frame rate.

Different label lengths and node speeds were simulated to observe the num-
ber of conflicts. Ten different runs were executed for each combination of label
size and speed and the results were averaged. Figure 1.4 shows the number of
conflicts as a function of network speed for several label lengths. Some of the
data points are labeled with a percentage value indicating that the number of
conflicts corresponds to that percentage of the total number of contexts.

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35

Speed (mph)

C
on

fli
ct

s

14
15
16
17
19

0.76%

0.37%

0.19%

0.1%

0.02%

0.63%

0.56%

0.46%

0.33%

0.25%

0.30%

0.26%

0.21% 0.15%

Fig. 1.4. Number of conflicts vs node speed for several label sizes.

The figure shows that label lengths as short as 14 bits result in a very small
percentage of conflicting flows, even for speeds that start being excessive for
a network range of just 250 m. A node traveling at 35 mph will encounter a
new neighbor on average every 2.3 seconds! Label lengths between 16 and 19 do
exceptionally well, with label length 16 showing longer-trend scalability.

1.4.2 Performance

Header compression increases channel efficiency by reclaiming bandwidth previ-
ously consumed by headers and using it for data that is useful to the application.
If the channel’s capacity is sufficiently large to handle the load of uncompressed
packets then there will obviously be no benefit in compressing headers.

Accordingly, an experiment was designed where flows are added one by one
to increasingly saturate the channel and allow the comparison of the overall net-
work throughput with and without header compression. Source and destination
nodes are randomly selected for each additional flow. No node is chosen for more
than one flow unless the number of flows exceeds half the number of nodes. Each
source transmits 20 packets per second for a period of 120 seconds. The simula-
tor returns the overall network throughput by reporting the number of packets
successfully delivered to the destination nodes.

Figure 1.5 shows the throughput as a function of the number of flows. The
throughput is shown for both compressed (enabled) and uncompressed (disabled)
headers. These results correspond to a channel rate of 2 Mbps, nodes moving at

1 Compressing MAC Headers on Shared Wireless Media 15

6 mph and an IP packet size of 60, which is typical for VoIP and sensor data.
The figure shows that compressing MAC headers improves throughput up to
15%.

2.5

12.5

22.5

32.5

42.5

52.5

62.5

72.5

0 20 40 60 80
Th

ou
sa

nd
s

flows
th

ro
ug

hp
ut

 (p
ac

ke
ts

)

disabled
enabled

Fig. 1.5. Throughput vs. flows for a channel rate of 2 Mbps, nodes moving at 6 mph
and a packet size of 60 bytes.

A more generic scenario is shown in Figure 1.6 where nodes are moving at
a speed of 6 mph and the IP packet size is randomly distributed according to a
packet size distribution provided by Sprint Labs. The distribution is based on
the analysis of the traces collected by the IPMON [10] systems on more than 30
bidirectional OC3/12/48 links. The Cumulative distribution function is shown
in Figure 1.7. The ns − 2 traffic generator was modified to generate packets
according to this distribution.

2.5

7.5

12.5

17.5

22.5

27.5

32.5

37.5

0 20 40 60 80 100 120 140

Th
ou

sa
nd

s

flows

th
ro

ug
hp

ut
 (p

ac
ke

ts
)

disabled
enabled

Fig. 1.6. Throughput vs. flows for a channel rate of 2 Mbps, nodes moving at 6 mph
and randomly distributed packet length.

1.5 Conclusions

The header compression algorithm that has been presented in this paper is ca-
pable of compressing MAC headers on shared wireless media. This is achieved
by sharing a single context space between participating nodes. Context labels
are randomly chosen and label conflicts are efficiently resolved with different
mechanisms depending on the capabilities of the MAC protocol. The simulation

16 Jesus Arango, Matthew Faulkner, and Stephen Pink

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 200 400 600 800 1000 1200 1400
packet size

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

Fig. 1.7. Packet length distribution.

results show that when MAC headers are compressed there is throughput im-
provement of up to 15% in the experiments we conducted. This is in addition
to the throughput improvement achieved by compressing IP, TCP, UDP and
higher level headers.

1.6 Acknowledgements

The authors would like to thank Ashwin Sridharan from Sprint Labs for provid-
ing data about packet size distributions.

References

1. C. Bormann, C. Burmeister, M. Degermark, H. Fukushima, H. Hannu, L-E. Jons-
son, R. Hakenberg, T. Koren, K. Le, Z. Liu, A. Martensson, A. Miyazaki, K. Svan-
bro, T. Wiebke, T. Yoshimura, and H. Zheng. RObust Header Compression
(ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed . RFC
3095 (Proposed Standard), July 2001.

2. CAIDA. Packet Length Distributions. http://www.caida.org/analysis/AIX/

plen_hist, August 2004.
3. S. Casner and V. Jacobson. Compressing IP/UDP/RTP Headers for Low-Speed

Serial Links. RFC 2508 (Proposed Standard), February 1999.
4. George F. Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems:

Concepts and Design. Addison-Wesley Longman Publishing Co., Inc., third edition,
2001.

5. M. Degermark, B. Nordgren, and S. Pink. IP Header Compression. RFC 2507
(Proposed Standard), February 1999.

6. M. Fischer, N. Lynch, and M. Paterson. Impossibility of Distributed Consensus
with One Faulty Process. Journal of the ACM, 32(2):374–382, April 1985.

7. IEEE. IEEE 802.11 Optimal Performances: RTS/CTS Mechanism vs. Basic Access.
in Proceedings of PIMRC 2002.

8. V. Jacobson. Compressing TCP/IP Headers for Low-Speed Serial Links. RFC
1144 (Proposed Standard), February 1990.

9. The VINT Project. The ns Manual. Available in html, postscript and PDF,
December 2003.

10. Sprint. IP Monitoring Project. http://ipmon.sprint.com/packstat/

packetoverview.php, February 2004.

