Gesture Spotting Using Wrist Worn Microphone
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Abstract. We perform continuous activity recognition us-
ing only two wrist-worn sensors - a 3-axis accelerometer and
a microphone. We build on the intuitive notion that two very
different sensors are unlikely to agree in classification of a
false activity. By comparing imperfect, sliding window classi-
fications from each of these sensors, we are able discern ac-
tivities of interest from null or uninteresting activities. Where
one sensor alone is unable to perform such partitioning, using
comparison we are able to report good overall system perfor-
mance of up to 70% accuracy. In presenting these results, we
attempt to give a more-in depth visualization of the errors
than can be gathered from confusion matrices alone.

1 Introduction

Hand actions play a crucial role in most human activities.
As a consequences detecting and recognising such activities is
one of the most important aspects of context recognition. At
the same it is one of the most difficult. This is particularly
true for continuous recognition where a set of relevant hand
motions (gestures) need to be spotted in a data stream. The
difficulties of such recognition stem from two things. First, due
to a large number of degrees of freedom, hand motions tend
to be very diverse. The same activity might be performed
in many different ways even by a single person. Second, in
terms of motion, hands are the most active body parts. We
move our hands continuously, mostly in an unstructured way,
even when not doing anything particular with them. In fact in
most situations such unstructured motions by far outnumber
gestures that are relevant for context recognition. This means
that a continuous gesture spotting applications has to deal
with an zero class that is difficult to model while taking up
most of the signal.

1.1 Paper Contributions

Our group has invested a considerable amount of work into
hand gesture spotting. To date this work has focused on using
several sensors distributed over the user’s body to maximise
system performance. This included motion sensors (3 axis ac-
celerometer, 3 axis gyroscopes and 3 axis magnetic sensors)
on the upper and lower arm [3], microphone/accelerometer
combination on the upper and lower arm [5] as well as, more
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recently, a combination of several motion sensors and ultra-
sonic location devices.

This paper investigates the performance of a gesture spot-
ting system based on a single, wrist mounted device. The idea
behind the work is that wrist mounted accessories are broadly
accepted and worn by most people on daily basis. In contrast,
systems that require the user to put on several sensors at loca-
tions such as the upper arm would have much more problems
with user acceptance.

The downside of this approach is the reduced amount of
information available for the recognition. This for example
means that the method of analysing sound intensity differ-
ences between microphones on different parts of the body that
was the corner stone of our previous signal partitioning work
is not feasible. This problem is compounded by the fact that
for the approach to make sense that wrist mounted device can
neither contain too many sensors nor can it require computing
and/or communication power that would imply large, bulky
batteries.

The main contribution of the paper is to show that, for a
certain subset of activities, reasonable gesture spotting results
can be achieved with a combination of a microphone and 3
axis accelerometer mounted on the wrist. Our method relies
on simple jumping window sound processing algorithms that
we have shown [10] to require only minimal computational
and communication performance. For the acceleration we use
inference on Hidden Markov Models (HMM), again on jump-
ing windows across the data.

To our knowledge this is the first time that such a simple
system and a straight forward jumping window method has
been successfully used for hand gesture spotting in contin-
uous data stream with a dominant, unstructured zero class.
Previously such setups and algorithms have only been shown
to be successfull either for segmented recognition or for sce-
narios where the zero class was either easy to model or not
relevant (e.g. recognition of standing, sitting, walking, run-
ning [6, 9, 12]). Where these approaches use acceleration sen-
sors, in the work of [?, ?] sound was exploited for performing
situation analysis in the wearable computing domain. Also
[?] used sound information to improve the performance of
hearing aids. Complimentary information from sound and ac-
celeration has been used before to detect defects in material
surfaces, e.g. in [13], but no work that the authors are aware
uses these for recognition of complex activities.

In the paper we summarise the sound and acceleration al-
gorithms and then focus on the performance of different fu-
sion methods. It is shown that appropriate fusion is the key



to achieving good performance despite simple sensors and
algorithms. We verify our approach on data from a wood
workshop assembly experiment that have we have introduced
and used in previous work [5]. We present the results using
both traditional confusion matrices, plus a novel visualisation
method that provides a more in-depth understanding of the
error types.

2 Recognition Method

We apply sliding windows of lenght w;e, seconds across all
the data in increments of wjmp. At each step we apply an
LDA based classification on the sound data, and an HMM
classification on the sound. The ’soft’ results of each classifi-
cation - LDA distances for sound and HMM class likelihoods
for acceleration - are converted into class rankings, and these
are fused together using one of two methods: comparison of
top rank (COMP), and a method using Logistic Regression
(LR).

2.1 Frame by Frame Sound Classification
Using LDA

Frame-by-frame sound classification was carried out using
pattern matching of features extracted in the frequency do-
main. Each frame represents a window on 100ms of raw audio
data. These windows are then jumped over the entire dataset
in 25ms increments, producing a 40Hz output.

The audio stream was taken at a sample rate of 2kHz from
the wrist worn microphone. From this a Fast Fourier Trans-
form (FFT) was carried out on each 100ms window, generat-
ing a 100 bin output vector (1/2x fsx f ftwnd = 1/2%2x100 =
100bins).

Making use of the fact that our recognition problem re-
quires a small finite number of classes, we applied Linear Dis-
criminant Analysis (LDA)[1] to reduce the dimensionality of
these FFT vectors from 100 to #Classes — 1.

Classification of each frame can then be carried out using
a simple Euclidean minimum distance calculation. Whenever
we wish to make a decision, we simply calculate the incoming
point in LDA space and find its nearest class mean value from
the training dataset. This saving in computation complexity
by dimensionality reduction comes at the comparatively mi-
nor cost of requiring us to compute and store a set of LDA
class mean values from which the LDA distances might be
obtained.

Equally, a nearest neighbour approach might be used. For
the experiment described here however, Euclidean distance
was found to be sufficient.

A larger window, wien, was moved over the data in wjmp
second increments. This relatively large window was chosen
to reflect the fact that all of the activities we are interested in
occur at the timescale of at least several seconds. On each win-
dow we compute a sum of the constituent LDA distances for
each class. From these total distances, we then rank each class
according to minimum distance. Classification of the window
is then simply a matter of choosing the top ranking class.

2.2 HMM Acceleration Classification

In contrast to the approach used for sound recognition, we
employed model based classification, specifically the Hidden

Markov Model (HMM), for classifying accelerometer datal8,
11]. (The implementation of the HMM learning and inference
routines for this experiment was provided courtesy of Kevin
P. Murphy’s HMM Toolbox for matlab [7].)

The features used to feed the HMM models were calculated
from sliding 100ms windows on the x,y, and z axis of the 100Hz
sampled acceleration data. These windows were moved over
the data in 25ms increments, producing the following features,
output at 40Hz:

Mean of x-axis

Variance of x-axis

A count of the number of peaks (for x,y,z)
Mean amplitude of the peaks (for x,y,z)

Finally we globally standardised the features so as to avoid
numerical complications with the model learning algorithms
in matlab.

In previous work we employed single Gaussian observation
models, but this was found to be inadequate for some classes
unless a large number of states were used. Intuitively, the
descriptive power of a mixture of Gaussian is much closer
to ’reality’ than only one, and so for these classes a mixture
model was used. The specific number of mixtures and the
number of hidden states used were individually tailored by
hand for each class. The parameters themselves were trained
from the data.

A window of wien, In Wjmp increments, was run over the
acceleration features, and the corresponding log likelihood for
each HMM class model calculated.

Classification is carried out for each window by choosing
the class which produces the largest log likelihood given the
stream of feature data from the test set.

2.3 Fusion of classifiers

Comparison of top choices (COMP) The top rankings
from each of the sound and acceleration classifiers for a given
jumping window segment are taken, compared, and returned
as valid if they agree. Those where both classifiers disagree
are thrown out - classified as null.

Logistic regression (LR) The main problem with a di-
rect comparison of top classifier rankings is that it fails to
take into account cases where one classifier might be more
reliable than another at recognising particular classes. If one
classifier reliably detects a class, but the other classifier fails
to, perhaps relegating the class to second or third rank, then a
basic comparison would just assign null. For such cases, then
a ’softer’ method of classifier fusion is needed - one that takes
into account the different rankings of each classifier.

In the work of Ho et. al. [2], three methods for classifier
fusion based on class rankings are presented and evaluated:
Highest Rank, whereby each class is assigned a rank according
to the highest rank assigned to it by any of the classifiers;
Borda count, whereby each class is ranked according to the
total number of classes ranking below it by each classifier;
and Logistic Regression (LR), a method based on the Borda
count, but which estimates weights for each class combination
using regression.

Of the methods presented, only one of them, the Logistic
Regression (LR) makes sense to apply here, as it is the only



one which provides the scope to deal with assigning results to
null.

The basic motivation behind LR is to assign a score for
each class and every combination of classifier rankings. How-
ever, such a scoring would soon become computationally pro-
hibitive, even for a moderate number of classes and classifiers.
Instead, LR makes use of a linear function to estimate the
likelihood of whether a class is correct or not for a given set
of rankings. Such a regression function, estimating a binary
outcome with P(true|X,class) or P(false|X,class), would
be far simpler to compute. So for each class a function can be
computed: L(X) = a + 27;1 Biz; where X = [z1,%2,..Tm]
are the rankings of the class for each of the m classifiers, and
a, B3 the logistic regression coefficients. These coefficients can
be computed by applying a suitable regression fit using the
correctly classified ranking combinations from, for example,
training data.

So that unlikely combinations are assigned to null, we intro-
duce an empirically obtained threshold on L(x) for each class.
Of the classes which fall below this threshold, the most likely
L(x) value is taken and re-assigned to the 'null class’. This
means that if all classes fall below their threshold for a given
ranking combination, then the null will take top ranking.

Classification can then be carried out by estimating L(X)
for each class on the input rankings, comparing with the null
threshold, and then ranking the values obtained. The final
classification result can then be taken from the highest rank.

3 Experimental setup

Data was collected using a sony microphone and a 3-axis
accelerometer (from the ETH PadNET sensor network [4])
strapped to the wrist. Each subject was asked to follow a pre-
defined sequence of activities using tools in the wood work-
shop of our lab. The 9 activities which we set out to spot
were: hammering (h), sawing (s), filing (f), using a machine
drill (r), sanding (a), using a machine grinder (g), screwdriv-
ing (w), opening and closing a vise (v), opening and closing a
drawer (d). All other activities and movements were labelled
as null (¢).

Each subject performed the entire sequence in about 5 min-
utes. In all, twenty such sets of data were collected from five
different subjects.

4 Results

The system was initially evaluated across sweeps of the two
main parameters, window length w, and window jump
lenght w;mp. From these sweeps, setting both wie, and wjmyp
to 2 seconds was found to produce favourable results. All fur-
ther analysis was carried out with these parameters set.

Both the LDA and HMM methods require training of pa-
rameter using data. This was carried out in a user-dependent
leave-one-out fashion. That is for each set under test, the
training data was taken from the sets of the same user but
not including the set under test.

We applied HMM classification to the accelerometer data,
and LDA minimum distance to the audio. This was applied
to all 20 sets of data. Typical results from one of these sets is
plotted in Figures 1, with class predictions compared along-
side the hand-labelled ground truth.

With each of the 2 second segments, we then carried out
firstly the classification comparison fusion, and then the lo-
gistic regression using the rankings obtained from the HMM
likelihood and LDA distance information.

On first run, the LR method continued to produce a large
number of insertions - primarily from the class 'screwdriving’.
This was due to the fact that this is comparatively silent class,
and as the training data consisted mostly of noisy, positive
class examples (at no stage do we use null labelled data for
training), it winds up being a ’catch all’ class for non-activities
which should have been assigned null. Reducing the weights of
the ranking combinations for this class during training helps
to alleviate this problem.

The final predictions from each of these, compared along-
side the ground truth, are shown in 2.
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Figure 1. Plot of a typical output sequence - shown is the

ground truth, the Sound predictions and acceleration predictions.
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Figure 2. Plot of output sequence of sound and acceleration
predictions combined, versus ground truth.

Lacking any ability to distinguish valid activities from null,



the constituent classifiers, as expected, produce much noise.
With LDA tending to misclassify null as a quiet class, such as
screwdriving; and HMM generally giving random misclassifi-
cations. Both perform relatively well when set against known
system classes however, and this is reflected in the perfor-
mance of both the comparison and LR predictions.

Plotting predictions might allow us to gain a rough under-
standing of how well the system performs for a given set, but
for a measure across all the data we require a more quanti-
tative means. For this we perform a direct frame by frame
comparison of the predictions with the ground truth, and fill
out a confusion matrix of the results. We sum the matrices
across all test datasets and present the total matrix, for each
recognition method, in Tables 1. Class by class recognition
rates, stating how well the system returns true frames are
given to the right of these tables. Also shown is a summary
of the False Positive (FP), False negative (FN), Substitution,
Correct True Positive (cTP) and the overall Accuracy as per-
centages of the total experiment time.

By way of summary of these tables we also show the substi-
tution false negative, false positive and the correct negative,
correct positive times as a percentage of the entire dataset in
the barcharts of Figure 3.
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Figure 3. Breakdown of errors as a percentage of total

experiment time for acceleration, sound and combined: Correct
Positive, Correct Negative, False Positive, False Negative and
Substitution times, as taken directly from the confusion matrix

Continuous recognition systems which deal with human ac-
tivity are often characterised by the lack of fixed, well-defined
activity boundaries. In many cases, whether an activity was
recognised exactly within the labelled time frame, or slightly
off from it, is less important than the fact that the activity
was detected correctly in the first place. The confusion matrix
based evaluation as given does not account for such ’fuzzy’
boundaries, and makes a strict judgement on the predicted
frames according to the given ground truth.

If we lighten this restriction, we can create two additional
error classifications, which we call over fill and under fill, as
defined:

e Overfill time: when a continuous sequence of correct predic-
tion frames slips over the ground truth boundary to cover
null labelled frames (previously classed as insertion time)

e Underfill time: the time left when a continuous sequence
of correct prediction frames does not completely cover the
corresponding ground truth (previously classed as deletion
time)

Taking account of this, the total overfill and underfill, to-
gether with substitution, deletion, insertion, correct positive
and correct negatives times as a percentage of the overall ex-
periment, are shown in Figure 4. To mark the level of true
insertion, deletion and substitution errors, we introduce a ’se-
rious error’ measure, as shown on the charts.
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Figure 4. Breakdown of errors as a percentage of total
experiment time for acceleration, sound and combined: Correct
Positive, Correct Negative, Overfill, Underfill, Insertion, Deletion
and Substitution times; also given is the ’serious error’ level,
which ignores the minor errors of Overfill and Underfill

5 Discusion

As expected, the individual recognition performance for each
of the two sensor types performed quite poorly on their own,
but once combined the results improved dramatically.

As a percentage of the entire time, substitution of one pos-
itive class for another decreased from a maximum of 9.3% by
HMM on acceleration to as low as 0.6% in the comparison
fusion (and a respectable 2.3% for LR).

The amount of false positives as a percentage of total time
fell to 14.9% for comparison. LR, which although fairs less
well at 25.7% FP, is however the better choice for fewer false
negatives (6% compared to comparison’s 14.4%).

When underfill and overfill are considered, these results be-
gin to take on new meaning, as the more serious errors of
insertions and deletions prove to occur far less than the count
of FP and FN might suggest. As a percentage of the total
time, the sum of insertion, deletion and substitution errors is
only around 7% for COMP and 9% for LR.

5.1 Conclusion

Using only a single wrist worn unit containing two sensors
- a microphone and a 3-axis accelerometer - it is possible
to perform gesture spotting for a certain subset of activi-
ties. Recognition of activities is carried out for each sensor



Gnd(1) L s T B 2 = W v d & T Correct
h( 195.7) 183.6 25 3.6 0.6 2.4 3.0 03.84
s( 306.4) 3.7 209.9 69.7 3.9 4.0 15.2 0.1 68.50
£( 304.6) 0.6 40.3 248.3 1.9 8.0 0.3 4.9 0.2 81.52
r( 241.5) 0.9 184.0 50.6 2.0 4.0 76.20
a( 313.0) 0.7 3.3 40.5 6.3 228.2 2.7 29.6 1.8 72.91
g( 277.7) 15.1 260.6 2.0 93.85
w( 260.4) 19.3 2.0 2.0 229. 7.3 88.23
v( 678.1) 65.2 28.5 0.4 11.4 4.6 543.4 24.6 80.14
d( 658.8) 8.2 30.3 10.9 7.4 12.0 590.1 89.57
6 (2777.5) 185.9 12.5 13.5 471.5 1.8 304.9 77.2 296.3 1413.9 0
Accel. otal: 6013.7 FN: 0.0 FP: 2777.5 Subst.: 558.2 <TP: 2678.0 cTPTTN: 2678.0

|| 0.0% 46.2% 9.3% || 44.5% Accuracy: 44.5%
Gnd(1) L s T B a = W v d & T Correct
h( 195.7) 168.5 19.6 6.7 0.8 86.12
s( 306.4) 267.2 14.0 2.0 10.5 12.7 87.21
£( 304.6) 238.8 34.4 1 16.1 2.5 2.8 78.40
r( 241.5) 226.5 12.0 2.0 1.0 93.79
a( 313.0) 6.0 13.9 258.0 2.0 21.7 0.9 10.5 82.42
g( 277.7) 2.9 274.5 0.3 98.86
w( 260.4) 249.0 9.8 1.6 95.64
v( 678.1) 0.3 101.8 571.2 4.8 84.24
d( 658.8) 0.7 163.6 22.7 471.8 71.61
6 (2777.5) 5.5 8.8 7.3 111.5 18.0 67.5 1360.8 506.4 691.7 0
Sound Gtal: 6013.7 FN: 0.0 FP: 2777.5 ubst.: 510.6 cTP: 2725.6 cTP+TN: 27256

|| 0.0% 46.2% 8.5% || 45.3% Accuracy: 45.3%
Gud(T) I B T T a = W v d & T%Correct
h( 195.7) 168.5 0.6 1.3 0.8 245 86.12
s( 306.4) 200.3 12.0 5.0 89.1 65.38
f( 304.6) 203.3 2.0 0.3 99.1 66.73
r( 241.5) 169.0 72.5 69.99
a( 313.0 194.6 1.1 0.9 116.4 62.16
g( 27773 259.5 18.2 93.45
w( 260.4) 225.7 34.6 86.70
v( 678.1) 1.7 476.2 1.0 199.2 70.23
d( 658.8) 5.4 2.1 44 211.3 66.79
6 (2777.5) 3.5 1.7 2.7 83.0 1.4 50.5 67.2 126.1 562.2 1879.2 67.66
Tomp. Gtal: 6013.7 FN: 864.9 FP: 808.3 ubst.: 34.1 <TP: 2337.1 cTP+TN: 4216.4

| || 14.4% 14.9% 6% | 38.9% Accuracy: 70.1%
Gud(T) I B T T a = W v d & T%Correct
h( 195.7) 169.5 0.6 11 2.2 19.4 86.61
s( 306.4) 254.3 22.0 9.4 0.1 20.6 83.00
£( 304.6) 4.0 262.2 12.0 .3 3.1 0.2 22.9 86.07
r( 241.5) 232.3 4.2 5.0 96.19
a( 313.0) 8.0 22.8 237.6 1.1 8.8 1.1 33.7 75.89
g( 277.7) 275.6 2.1 99.26
w( 260.4) 225.7 2.8 31.8 86.70
v( 678.1) 0.3 1.7 566.7 17.7 91.7 83.58
d( 658.8) 5.4 8.1 508.5 136.8 77.19
6(2777.5) 10.5 9.7 7.1 121.7 2.4 76.2 67.2 282.8 969.4 1230.6 44.30
TR Total: 6013.7 FN: 363.8 FP: 1546.9 ubst.: 139.0 cTP: 2732.5 cTPF+TN: 3063.1
| || 6.0% 25.7% a || 45.4% | Accuracy: 65.9%

Table 1.

Confusion matrices for the acceleration, sound, comparison (Comp.) and logistic regression (LR) classifications with sliding

window of 2 seconds. The total % Correct is a summation of the class correct times over the total time. All times are given in seconds. ¢
denotes the 'Null’ class.

using standard sliding window based approaches. Alone, nei-
ther sensor can detect a null gesture, but when fused together,
this becomes possible. Achieving, in this experiment, overall
accuracies of around 70% for classifier result comparision and
66% for a method using logistic regression (LR). We also in-
troduce the terms underfill’ and ’overfill’ to describe those
common cases in continuous recognition where events fail to
completely match the ground truth - but which might actu-
ally be judged correct by a human observer - and show how
these can be applied in visualizing results.
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