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Abstract 
 
Smart objects research explores embedding sensing and computing into everyday 

objects - augmenting objects to be a source of information on their identity, state, and 
context in the physical world. A major challenge for the design of smart objects is to 
preserve their original appearance, purpose and function. Consequently, many research 
projects have focussed on adding input capabilities to objects, while neglecting the 
requirement for an output capability which would provide a balanced interface.  

This thesis presents a new approach to add output capability by smart objects 
cooperating with projector-camera systems. The concept of Cooperative Augmentation 
enables the knowledge required for visual detection, tracking and projection on smart 
objects to be embedded within the object itself. This allows projector-camera systems to 
provide generic display services, enabling spontaneous use by any smart object to 
achieve non-invasive and interactive projected displays on their surfaces. Smart objects 
cooperate to achieve this by describing their appearance directly to the projector-camera 
systems and use embedded sensing to constrain the visual detection process.  

We investigate natural appearance vision-based detection methods and perform an 
experimental study specifically analysing the increase in detection performance 
achieved with movement sensing in the target object. We find that detection 
performance significantly increases with sensing, indicating the combination of 
different sensing modalities is important, and that different objects require different 
appearance representations and detection methods.  

These studies inform the design and implementation of a system architecture which 
serves as the basis for three applications demonstrating the aspects of visual detection, 
integration of sensing, projection, interaction with displays and knowledge updating. 

The displays achieved with Cooperative Augmentation allow any smart object to 
deliver visual feedback to users from implicit and explicit interaction with information 
represented or sensed by the physical object, supporting objects as both input and output 
medium simultaneously. This contributes to the central vision of Ubiquitous Computing 
by enabling users to address tasks in physical space with direct manipulation and have 
feedback on the objects themselves, where it belongs in the real world.  
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Chapter 1 Introduction 

One of the central visions of Ubiquitous Computing is that the environment itself 
becomes the user interface [Ishii and Ullmer 1997]. Interaction will be significantly 
different than with traditional computing – physical objects, surfaces and spaces 
themselves will allow us to perform our tasks, while the technology itself becomes 
transparent, disappearing into the background [DisappearingComputer 2002]. 
Interaction will no longer be device centric, but information centric, allowing both 
implicit and explicit interaction with the information represented and sensed by physical 
objects [Schmidt, Kranz et al. 2005].  

Smart objects research explores embedding sensing and computing into everyday 
objects - augmenting objects to be a source of information on their identity, state, and 
context in the physical world. While many research projects have focussed on adding 
input capabilities to objects, less attention has been paid to adding output, creating an 
imbalance in the interface. Giving an object output capability allows users to address 
tasks in physical space with direct feedback on the objects themselves. This thesis 
investigates how we can support physical objects simultaneously as input and output 
medium, redressing the imbalance in the interface. 

The first chapter presents a short motivation for the work, a section on the specific 
problems we identified, describes our approach and the contributions we make. 

1.1 Smart Object Output 

As the interest in creating smart objects grows they are expected to bridge the gap 
between the physical and digital world, becoming part of out lives in economically 
important areas such as retail, supply chain or asset management [Lampe and Strassner 
2003; Siegemund and Flörkemeier 2003; Decker, Beigl et al. 2004] and health and 
safety monitoring in work places [Strohbach, Gellersen et al. 2004; Kortuem, Alford et 
al. 2007]. A major challenge for the design of smart objects is to preserve their original 
appearance, purpose and function, thus exploiting natural interaction and a user’s 
familiarity with the object [Schmidt, Strohbach et al. 2002].  

In many cases we do want to augment an object with digital information, for 
example, to reveal otherwise hidden information stored inside the object or give direct 
visual feedback to a user from object manipulation. An ability for objects to function as 
both input and output medium simultaneously enables scenarios such as objects that 
monitor their physical condition and visually display warnings if these are critical 
[Strohbach, Gellersen et al. 2004]. However, delivering this visual information to the 
user by adding output capability to objects is a challenge. 
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One approach is to routinely embed displays in objects. For example, thin, flexible 
displays such as e-paper are expected to become common in a few years time. However, 
this approach is expensive, especially if the object is disposable, and inflexible, as the 
product designer must choose at design-time which surfaces are to be augmented. An 
additional problem is that embedded displays change an object’s appearance and can 
change the way an object is used. For example, consider that adding a display to a smart 
cup would prevent it being put in the dishwasher unless the display was removable. 
Either way, we have changed the object’s natural appearance and function. 

Another way we could visualise this information is by using Augmented Reality 
display devices, such as head mounted displays (HMD), tablet PCs, PDAs or mobile 
phones.  However, carrying special purpose devices is encumbering for a user and limits 
interaction to a single person, whereas there are many times when it would be beneficial 
for a group of users to see the same display simultaneously. 

In contrast, the recent availability of small, cheap and bright video projectors makes 
them practical for augmenting objects with non-invasive projected displays. By adding 
a camera and using computer vision techniques, a projector-camera system can also 
dynamically detect and track objects [Borkowski, Riff et al. 2003; Ehnes, Hirota et al. 
2004], correct for object surface geometry  [Pinhanez 2001; Borkowski, Riff et al. 2003; 
Ehnes, Hirota et al. 2004; Bimber and Raskar 2005], varying surface colour and texture 
[Fujii, Grossberg et al. 2005] and allow the user to interact directly with the projected 
image [Kjeldsen, Pinhanez et al. 2002]. The use of a projector-camera system does not 
rely on adding to or modifying the hardware of the object itself, instead creating 
temporary displays on objects in the environment without permanently changing their 
appearance or function. 

The traditional way of augmenting objects with projector-camera systems (such as 
that taken by Pinhanez  [Pinhanez 2001] and Raskar et al. [Bandyopadhyay, Raskar et 
al. 2001; Raskar, Beardsley et al. 2006]) is to store all information about the object in 
the projector system itself. Usually such systems are installed as infrastructure in the 
environment, creating a smart environment. This approach reduces flexibility, as it 
requires a-priori knowledge about all possible objects which can enter the environment. 
This results in large databases of objects and consequently higher possibility of inter-
object confusion during detection. 

1.2 Cooperative Augmentation 

The core contribution of this thesis is the development of a new approach called 
Cooperative Augmentation to support physical objects simultaneously as input and 
output medium, as illustrated in Figure 1.1. 

Instead of storing knowledge about objects in a smart environment, the Cooperative 
Augmentation concept distributes knowledge into smart objects. Hence, the intelligence 
becomes embodied in the smart objects inhabiting a space, not the space itself. 

By moving the knowledge and intelligence from the environment to the smart object 
a projector-camera system no longer needs a-priori knowledge of all objects. This 
allows us to make projector-camera systems ubiquitous, as they merely offer a generic 
display service to all smart objects. 

In the Cooperative Augmentation approach cooperation between smart object and 
projector-camera system plays a central role in detection, tracking and projection. The 
objects themselves become pro-active clients of the environment, allowing spontaneous 
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use of projection for output capability by requesting use of the projector-camera display 
service. Continued cooperation allows smart objects to describe information to the 
projector-camera system vital to the visual-detection and projection process, such as 
knowledge of their appearance. This knowledge is used to dynamically tailor the 
projector-camera services to each object. 

Many objects possess embedded sensors designed for specific purposes. In the 
Cooperative Augmentation approach sensor information from the object can be 
serendipitously integrated in the detection and tracking process. The additional 
information from sensing allows projector-camera systems to dynamically constrain the 
detection process and increase visual detection performance. 

After detection the smart object controls the interaction with projector-camera 
systems. The smart object issues projection requests to the projector-camera system, 
controlling how the projected output on its surfaces changes and allowing direct visual 
feedback to interaction. 

Smart Object

Projector Camera

Sensors

Wireless Link

 
 

Figure 1.1 Cooperative Augmentation of smart objects with Projector-Camera Systems 

1.3 Challenges 

The key concepts of Cooperative Augmentation discussed above raise questions 
which we address in this thesis. 

The initial question is how we can model the object and projector-camera system so 
that objects can cooperate by describing relevant aspects of their knowledge. This 
modelling must allow applications using the Cooperative Augmentation approach to be 
written independent of a particular system, but adapt themselves to it.  

A central problem to achieving displays on everyday objects (smart or not) is also 
their detection and tracking. Only when an object is detected can the projector-camera 
system align its projection so the image is registered with the object’s surfaces.  In this 
thesis we use vision-based detection as it does not require adding dedicated location 
system hardware to every object to enable detection.  

In experimental prototypes, vision-based detection is commonly achieved with 
fiducial markers [Ehnes, Hirota et al. 2004]. However, with a view to ubiquitous 
augmentation of objects using the Cooperative Augmentation approach, it is more 
realistic to base detection on the natural appearance of objects. This detection is a 
significant challenge in real-world environments, as objects naturally vary in their 
appearance. For example, one book could have a red cover, while a second book has a 
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blue cover. Similarly, one book could be open and one closed. Here the book objects are 
fundamentally identical in concept and use, but vary in both appearance and form. 

Another challenge is that objects can appear at any distance and orientation with 
respect to a tracking camera. For example, we can see detail on a book cover when it is 
close to the camera, but this detail disappears when it is far away. Similarly, when we 
change our viewpoint from looking at the cover of the book to looking at its side we 
now see white pages instead of a colourful cover. To understand how best to detect and 
track smart objects using natural appearance detection methods we must therefore study 
the impact of scale and rotation.  

One of the limitations of vision-based detection is that it has many failure modes. 
Some common reasons for detection failure include changes in object appearance, 
changing illumination, occlusion of the object, distractions in the image and fast 
movement of the camera or object. The Cooperative Augmentation approach enables 
integration of sensor information in the detection process, but to best understand how to 
integrate this information we must study how this sensing can be best exploited to 
increase detection performance. 

1.4 Contributions 

Giving an object output capability is valuable as it allows users to address tasks in 
physical space and receive direct feedback on the objects themselves, where it belongs 
in the real world. However, adding output capability to smart objects while preserving 
their original appearance and functions is challenging.  

To address this challenge we present the Cooperative Augmentation approach, 
contributing the following to the area of ubiquitous computing: 

1. The novel concept of Cooperative Augmentation, which enables: 
a. Generic projection services in the environment. 
b. Spontaneous use of projection capability by smart objects. 
c. Detection and tracking of mobile objects in the environment. 
d. Non-invasive output capability on smart objects. 
e. Use of smart object as input and output interface simultaneously. 

2. Validation of the Cooperative Augmentation concept through: 
a. A system architecture specifying the different cooperating components. 
b. Implementation of the system architecture. 
c. Three demonstration applications. 

3. An investigation of natural appearance vision based detection, providing: 
a. A study to understand the impact of object scale and rotation on different 

natural appearance detection methods. 
b. Insight into training requirements of different detection approaches. 

4. An investigation of the integration of embedded sensing in the detection process, 
providing: 

a. A study to analyse the increase in detection performance achieved with 
movement sensing in the target object. 

b. Insight into the requirement for multiple detection approaches. 
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1.5 Thesis Structure 

This thesis explores the cooperative augmentation of smart objects with displays 
using projector-camera systems: 

Chapter 2 provides an overview of related work relevant for understanding the thesis 
in the four areas of Ubiquitous Computing, Augmented Reality, Computer Vision and 
Tangible User Interfaces. Here we aim to place our work relative to other research and 
explain some of the reasoning behind our approach. 

Chapter 3 presents the Cooperative Augmentation conceptual framework in more 
detail, specifically the Object Model, the projector-camera system model and the 
cooperation process to achieve interactive displays on smart object surfaces.  

Chapter 4 investigates four natural appearance computer vision object detection 
approaches and presents an experimental study exploring the issues of scale and rotation 
to enable detection of objects at any distance from the camera and in any pose. We also 
create an object appearance library for use in our studies. 

Chapter 5 presents an experimental study exploring cooperative detection between 
the vision detection system and smart object, specifically analyzing the increase in 
detection performance achieved with basic movement sensing in the target object. We 
also create a video test library for use in our studies. 

Chapter 6 presents the architectural design and implementation of the conceptual 
framework developed in Chapter 3, and evaluates the implementation as a whole. 

Chapter 7 presents three demonstration applications created using the architecture. 
These applications are developed to demonstrate three different areas of the 
architecture, specifically scenarios presenting the whole system from an object entry to 
exit; interaction methods and a scenario with multiple-projectors and multiple-objects. 

Finally, Chapter 8 presents a summary of the thesis, the limitations of our approach 
and implementation, our conclusions and our future work plans. 

Appendix A additionally describes the design and assembly of two steerable 
projector-camera systems, constructed for our experimental studies and demonstration 
applications. We identify characteristics of typical systems and present 
recommendations for building similar equipment. We characterise our system and 
compare the performance with other related research projects. 

Appendix B provides additional examples of programming smart object state models 
for use with the Cooperative Augmentation framework. 
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Chapter 2 Related Work 

This chapter does not provide an exhaustive list of related research projects; instead it 
aims to cover the most relevant related work for understanding the thesis and to outline 
this thesis’ contribution in terms of other projects and similar research. 

2.1 Introduction 

As shown in Figure 2.1, this work draws on four areas of computing: Ubiquitous 
Computing, Augmented Reality, Computer Vision and Tangible User Interfaces (TUI). 
The main area is Ubiquitous Computing, as seen on the far left in Figure 2.2, which was 
defined by Mark Weiser as the third wave of computing after monolithic and personal 
computing. This third wave involves the technology receding into the background and 
many computing devices being unobtrusively embedded in the environment to enrich 
our lives [Weiser 1996].  

 
Figure 2.1 This work draws from 4 main areas of computing: Ubiquitous Computing, Augmented Reality, Computer 

Vision and Tangible User Interfaces (TUI) 

 
Figure 2.2 The "Weiser Continuum" of ubiquitous computing [Weiser 1996] to monolithic computing, taken from 

[Newman, Bornik et al. 2007] 
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The second area is augmented reality, which is a type of the Mixed-Reality (MR) 
visual display. Milgram and Kishino describe MR as a general set of technologies 
which involve the merging of real and virtual worlds [Milgram and Kishino 1994]. 
These technologies can be decomposed with respect to the amount of reality present in 
the interface to create the “virtuality” continuum, as shown in Figure 2.3. The 
continuum ranges from a zero virtuality interface in the real world (such as a pen and 
paper interface) to fully virtual environments where a user is immersed in surrounding 
virtual world (such as CAVEs). 

In contrast, Augmented Reality (AR) refers to cases where either a display of the real 
environment, or objects in the real world themselves are augmented by means of virtual 
objects, using computer graphics [Milgram and Kishino 1994]. This allows a shift in 
focus for human-computer interaction from a static interaction with a user sat at a 
desktop display, to one where the surrounding environment and physical objects in this 
environment become the interface. Typical applications for AR include navigation, 
visualisation and annotation for medical, assembly, maintenance and repair tasks, 
entertainment, education, mediated reality, collaboration of distributed users and 
simulation.  In this thesis we concentrate on projector-based AR, however, a good 
general introduction to all aspects of AR can be found in [Azuma 1997; Azuma, Baillot 
et al. 2001]. 

 
Figure 2.3 The Milgram and Kishino “Virtuality” Continuum of Reality to Virtual Reality [Milgram and Kishino 1994], 

taken from [Newman, Bornik et al. 2007] 

To achieve an AR display so it appears correct for a user requires that the registration 
between the real and virtual world is exact. Consequently, for mobile users or dynamic 
environments the relative positions of the real and virtual must be continuously 
determined. This can be accomplished either by detecting and tracking objects, users, or 
both, depending on the scenario. Different approaches to tracking are possible, 
including using dedicated hardware such as mechanical, electro-magnetic and optical 
tracking systems [Rolland, Baillot et al. 2001]. In contrast, vision-based tracking using 
cameras allows a relatively low-cost and non-invasive approach, either using fiducial 
markers or markerless computer vision techniques [Lepetit and Fua 2005]. 

Traditionally, head mounted displays (HMD) have been used to view augmented 
reality displays [Kato and Billinghurst 1999]. However, HMD typically suffer from a 
number of drawbacks, such as limited Field Of View (FOV) due to their optics, low 
resolution due to the miniature displays and heavy weight. More recently, PDAs, tablet 
PCs and mobile phones have been used [Wagner and Schmalstieg 2006; Schmalstieg 
and Wagner 2007]. In addition to the encumbrance of the physical devices, these 
technologies share the problem of accommodation, as the augmentation appears at a 
different location and depth than the objects in real world. These technological and 
ergonomic drawbacks prevent them from being used effectively for many applications 
[Bimber and Raskar 2005]. In contrast, projector-camera systems and projector based 
AR offers a possible solution, enabling displays directly on the surfaces of objects in the 
real world. 
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Figure 2.4 The Milgram-Weiser Continuum [Newman, Bornik et al. 2007] 

Although Weiser believed ubiquitous computing to be the opposite of Virtual Reality 
(VR), Newman et al. point out that VR is merely at one extreme of the Milgram 
continuum, and propose merging the two continuums to create the Milgram-Weiser 
Continuum (as shown in Figure 2.4). 

 
In this thesis we use projection to augment objects with interactive interfaces. The 

objects themselves are smart and cooperate with projector-camera systems to help with 
their detection and projection task. This places the work firmly in the Ubiquitous AR 
category of the Milgram-Weiser Continuum. 

To achieve the augmentation of the smart objects we use markerless computer vision 
techniques to detect and track the objects in the environment. Through our cooperative 
augmentation framework the objects themselves can become Tangible User-Interfaces 
(TUI), where location, orientation, object geometry, projected interfaces and sensors 
become methods for interacting directly with the projected displays, and hence, 
otherwise hidden knowledge in the object and environment.  

The following sections of this chapter investigate these areas in more detail. 

2.2 Ubiquitous Computing 

This section describes the closely related fields of ubiquitous computing (responsible 
for the drive to make everyday objects smarter) and tangible user interfaces. In recent 
years the ubiquitous computing field has become broader; however, in this thesis we 
concentrate on augmenting physical-tangible smart objects with projected displays. 
Here we examine what smart objects are, investigate some typical uses and concentrate 
on understanding how the potential for output capability can benefit objects and users. 

 
Recent technological advances have allowed computing devices to be miniaturised 

enough to be embedded into everyday objects.  The Smart-Its project envisioned these 
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could be attached to objects to augment them with a "digital self" [Holmquist, Gellersen 
et al. 2004]. So called “smart objects” would have the ability to perceive their 
environment through sensors and provide resources to nearby users and objects via 
peer-to-peer communication and customisable behaviour. However, the computing 
itself is secondary to the object, with the computer placed in the background of a users’ 
interaction with the physical and social environment [Beigl and Gellersen 2003].  

Mark Weiser proposed that “the real power of the concept comes not from any one of 
these devices: it emerges from the interaction of all of them. The hundreds of processors 
and displays are not a ‘user interface’ like a mouse and windows, just a pleasant and 
effective ‘place’ to get things done” [Weiser 1991], hence, collections of smart objects 
become a collaborative interactive experience. Sensors providing objects with 
awareness of physical context and communication allows objects to promote a digital 
presence and to become part of networked applications. 

2.2.1 Sensor Nodes 

There are many experimental sensor node platforms in use for augmenting everyday 
objects with sensing and computation, however here we concentrate on two typical 
devices – Smart-Its and Motes. 

The Smart-Its platform for embedded computing has developed over the years, with 
early DIY versions [Strohbach 2004] and more-recent versions such as the Particle 
computer [Decker, Krohn et al. 2005]. A basic objective of Smart-its platform is to be 
generic, to enable operation in mobile settings and have ad-hoc peer-to-peer 
interoperation, while allowing customisation of sensors, perception and context-
awareness methods. This is achieved using a flexible system with hardware consisting 
of main-boards with a PIC18F6720 microcontroller for processing, a TR1001 
transceiver for communication on 868MHz and extendable pluggable sensor boards, as 
shown in Figure 2.5. Powered is provided by a 1.2V AAA rechargeable battery. 

 

   
Figure 2.5 (left) Smart-Its design (centre) Particle Smart-Its Device main board, (right) Add-on sensor boards [Decker, 

Krohn et al. 2005] 

The Particle device has a ball switch on the main board, which can be used for 
applications such as movement detection or power saving. Based on an analysis of 
typical sensor nodes applications the Smart-Its design developed two sensor boards. 
Sensor board (a) in Figure 2.5 (right) and Sensor board (b) which adds on-board 
processing with a PIC18F452 microcontroller, enabling applications that require more 
processing power. Both boards have a range of sensors available, including 
accelerometer sensors (2D or 3D), temperature sensor, light sensor (visible and IR), 
microphone, and force sensor. For actuation, the main board carries 2 controllable LEDs 
and a speaker for audio notification. More information on Smart-Its can be found in 
related publications [Beigl and Gellersen 2003; Holmquist, Gellersen et al. 2004; 
Decker, Krohn et al. 2005]. 
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Figure 2.6 (left) Crossbow Technology Motes (right) Motive Corporation (now Sentilla Corporation) Telos Mote  [Inc 2007] 

Motes were initially developed in a collaboration between the University of 
California, Berkley and Intel Research [Nachman, Kling et al. 2005]. Motes are small, 
self-contained battery-powered devices with embedded processing and communication, 
enabling them to exchange data with one another and self-organize into ad hoc 
networks. Hence, similar to Smart-Its, the Motes form the building blocks of wireless 
sensor networks. The Motes typically run a free, open source component-based 
operating system called TinyOS. Motes are manufactured by Crossbow Technology, 
Berkley and Sentilla Corporation. The Motes family have a large number of designs, 
with an equally large number of pluggable daughter-boards. They support many of the 
same sensors as Smart-Its devices such as the integrated temperature, light and humidity 
sensors shown in Figure 2.6 (right). More information can be found on the related 
company and university websites. 

2.2.2 Smart Objects 

The Mediacup was one of the first projects to demonstrate sensing and computation 
embedded unobtrusively in an everyday object, as shown in Figure 2.7 (left). Here a 
coffee-cup was made smart by means of an attachable rubber foot containing computing 
to sense context with movement and temperature sensors, for example, sensing if the 
user drinks, or plays with the cup [Gellersen, Beigl et al. 1999]. It had the ability to 
communicate with other devices, such as smart watches and smart door plates to share 
its context. In this case, if a smart door-plate detected several Mediacups inside the 
room it displayed a “Meeting” sign, warning others.  

Through this embedded computing the system gave an added value in the backend, 
allowing applications such as a coffee cup that provided the location of the user and a 
map which visualised building activities. This was accomplished without changing the 
appearance or function of the cup itself or the behaviour of the user. For example, rather 
than adding a display to the cup (which would change its appearance and prevent it 
being put in the dishwasher), a smart watch displayed the cup temperature on its LCD.  
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Figure 2.7 (left) Mediacup Object [Gellersen, Beigl et al. 1999], (centre) Cooperative Chemical Containers, (right) 

Hazard warning display using 3 LEDs [Strohbach, Gellersen et al. 2004] 

Strohbach et al. present a scenario for embedded computing in industrial 
environments [Strohbach, Gellersen et al. 2004]. In this scenario large industrial storage 
facilities potentially contain thousands of chemical containers with different contents.  
Health and Safety rules apply to where and for how long these containers can be stored. 
Instead of augmenting the environment to track all the objects, Strohbach et al. propose 
embedding the rules directly into the containers and using embedded sensing to detect 
their state and their location relative to nearby containers. The containers can now 
cooperate, sharing their context to determine whether they comply with the rules, and 
detect hazard conditions, such as potentially reactive chemicals stored together, critical 
mass of containers stored together and when containers are stored outside of approved 
areas [Strohbach, Gellersen et al. 2004]. Such potentially risky situations require action 
from the facility employees to avert any danger, but the employees are faced with 
potential problems – such as how to find one container that has been placed in the 
wrong place out of thousands, and where to return this particular container to. Strohbach 
et al. provided visual feedback to employees as three LEDs on the top of the container 
barrel – green for no hazard, yellow for a warning (e.g. container stored outside the 
approved area) and red for critical hazards (e.g. reactive chemicals in proximity), as 
shown in Figure 2.7 (right). 

 

   

Figure 2.8 (left) Proactive Furniture Assembly [Antifakos, Michahelles et al. 2004], (centre) Display Cube Object 

[Terrenghi, Kranz et al. 2006], (right) Tuister Object [Butz, Groß et al. 2004] 

The Smart Furniture project developed furniture with embedded computing, sensing 
and actuation to proactively guide the purchaser with the task of assembly. By attaching 
computing devices and sensors onto each individual piece of the furniture, the system 
can both recognise a user’s actions and determine the current state of the assembly 
[Antifakos, Michahelles et al. 2002; Antifakos, Michahelles et al. 2004; Holmquist, 
Gellersen et al. 2004]. The task of furniture assembly is inherently complex for an 
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embedded system, both as the task itself can be accomplished in different ways, and as 
it must cater for different user experience. For example, beginners may need a full 
walk-through, while experts may only need to be rescued if they assemble a piece 
incorrectly.  

The system augments both tools and different pieces of the furniture with different 
sensors, for example, a screwdriver with a gyroscope to sense rotation, a horizontal 
board with an accelerometer for orientation sensing, and a side board equipped with a 
force sensing resistor (FSR) to measure when the two boards are joined. Hence, the 
system monitors its state and suggests the next most appropriate action using strips of 
LEDs for visual feedback, as shown in Figure 2.8 (left). 

This feedback was a green pattern on both edges of the boards when correctly 
assembled, a red pattern when a mistake is made, or a flashing green when there are 
multiple alternatives. After alignment, individual green LED direct the user to tighten 
screws with the screwdriver. From their user study it was determined that augmented 
furniture with even simple LED notification allowed both a measureable decrease in 
assembly time and reduction in assembly errors [Antifakos, Michahelles et al. 2004]. 

2.2.3 Tangible User Interfaces 

While differing from ubiquitous computing, Tangible User Interfaces (TUI) research 
holds a common concern for physically contextualised interaction. In contrast to 
ubiquitous computing, TUI research is rarely interested in augmenting everyday objects, 
but instead producing new artificial objects that fuse together input and output within a 
single device. TUI propose using these devices to provide an explicit mapping between 
the physical and virtual worlds, enabling tactile sense exploration and spatial reasoning 
which exploits the human senses of touch and kinaesthesia, and allows familiar physical 
actions to be used as input [Ishii and Ullmer 1997]. 

Central to TUI is the concept of embodying information in tangible objects, where 
objects serve as tokens or containers for digital information (as demonstrated by 
Underkoffler et al. in the Luminous Room project, described in section 2.3). Similarly, 
physical objects can serve as input primitives or tools to manipulate digital information, 
creating the possibility of representing abstract entities and concepts with physical ones, 
potentially enabling more efficient cognition of the relationships involved [Valli 2005].  

Physical objects can also be used to gather and infer information about the context of 
the user and their intentions – for example, if a user picks up a tennis racket, they may 
also be interested in the location of their tennis balls. Lamming and Bohm propose such 
a system using embedded computing to detect relative proximity between objects and  
warn a user if they forget items from their bag [Lamming and Bohm 2003]. Such 
context information can be useful even when not being grasped by a user, for example, 
as objects may be placed in a particular spatial arrangement for an activity. Here, adding 
more objects allows more degrees of freedom, and hence gives the user more control 
over the representation of complex spatial relationships. 

The physical object properties and affordances (which Norman define as the qualities 
of an object that allows an individual to perform an action [Norman 1988]) themselves 
can also be used as part of the user interface – for example, a graspable object such as a 
cube can provide more than a six degree of freedom input by sensing interactions such 
as squeezing or twisting in addition to movement and rotation [Sheridan, Short et al. 
2003]. The use of such affordances were demonstrated in the Cubicle project, where a 
tangible cube was augmented with embedded computing and sensors [VanLaerhoven, 
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Villar et al. 2003; Block, Schmidt et al. 2004]. 3D accelerometers detected orientation 
and allows detection gestures such as shaking or placing the object down on a surface to 
control a home entertainment centre, as shown in Figure 2.9.  

 

 
Figure 2.9  Using a sensor enabled Cubicle for interaction [Block, Schmidt et al. 2004] 

The Display cube, shown in Figure 2.8 (centre), was designed by Terrenghi et al. as a 
child’s learning appliance that exploited the familiar physical affordances of a cube, 
while augmenting it with embedded sensing, computing and displays [Terrenghi, Kranz 
et al. 2006]. The internal cube hardware uses a Smart-Its platform, 3D accelerometers to 
sense orientation, an LCD display on each face and a speaker for audio feedback. 

 The user interface was designed for games and quizzes, for example, a matching task 
where a letter was shown on the top face and children had to select the matching 
character from the other faces. Applications had to be specially designed to cope with 
the low resolution display and the lack of electronic compass sensors, which prevented 
sensing of the rotation around the gravity vector. However, in the study Terrenghi et al. 
found that users could still easily read letters and numbers in any orientation, suggesting 
that lack of orientation sensing is not a major issue for very simple text and graphics. 

The user study also illustrated additional benefits of a tangible cube, with children 
quickly engaging with the games due to the shaking and turning, and cooperative play 
with children demonstrating to each other the solutions to the tasks.  

 

 
Figure 2.10 (left) Prototype mock-up display cube using static front-projection, (centre) The current LED-matrix display Z-

agon interactive cube, (right) The envisioned fully interactive cube with colour displays [Matsumoto, Horiguchi et al. 2006] 

Matsumoto et al. envision a device similar to the Display cube, but with seamless 
displays covering each side of their Z-agon cube. They believe that users will be able to 
interact more easily with digital information when presented with an intuitive tangible 
interface [Matsumoto, Horiguchi et al. 2006]. For their initial prototype they front 
projected onto a large-scale mock-up, as shown in Figure 2.10 (left). Their current 
prototype is a 2.5 inch cube using low-resolution LED-matrix displays and 3D 
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accelerometers; however, they envision a fully interactive high-resolution video-player 
and communication device with colour displays, as shown in Figure 2.10 (right).  

The Tuister was designed as one-dimensional input and output device based on 
discussions with cognitive psychologists which indicated that cubes may have too many 
degrees of freedom for users to locate and remember a display position (Sheridan et al. 
identified 17 non-verbal input affordances [Sheridan, Short et al. 2003]). Instead, the 
psychologists believe people were likely to loose track of their movements in a complex 
series of motions [Butz, Groß et al. 2004]. Consequently, Butz et al. designed the 
Tuister for browsing hierarchical nested menu structures with hardware consisting of 
two parts – a handle and display part which rotates to scroll through the menus, as 
shown in Figure 2.8 (right). Embedded in the display part are 6 organic LED displays 
each with 64x16 pixel resolution to display small symbols or short text. Sensors in a 
Smart-Its device detect the rotation of the display part with respect to the handle. Butz 
et al. envision Tuister as a personal multi purpose device, carried to interact directly 
with pervasive environments and serving as a universal remote control. 

2.2.4 Input-Output Imbalance 

The increasing amount of technology embedded into the environment enables new 
interaction metaphors beyond the traditional GUI paradigm. In the ubiquitous 
computing field there has been much research on input to smart objects, for example, on 
embedding sensing, location systems and methods for accumulating and distributing 
knowledge. However, there is little research on output methods to allow the user to 
visualise this knowledge and interact with it. Similarly, tangible user interfaces work 
allow physical manipulation and spatial arrangement of objects, but visual feedback to 
the user is mostly still provided by displays in the environment instead of the device 
itself [Butz, Groß et al. 2004]. This leads to an indirection in the interaction and an 
input-output imbalance.  

As we have seen from sections 2.2.2 and 2.2.3, there is a real potential for objects and 
users to benefit from the delivery of complex and variable visual information on the 
object itself. This potential can be seen in diverse situations such as hazard monitoring 
in safety-critical workplaces, for assembly instruction, or for visual feedback to object 
manipulation in tangible user interfaces. The objects we examined attempted to redress 
the input-output imbalance either by using other displays in the environment or 
embedding displays in the physical objects themselves. These embedded displays took 
different forms, such as simple LEDs (e.g. the Chemical Containers and Smart 
Furniture) or multiple graphical displays (e.g. the Display cube, Z-agon and Tuister).   

However, the display technology currently used has many limitations. For example, 
LED displays can only convey a small amount of information to users (such as flashing 
to indicate an error condition), while graphical displays are expensive, have high power 
requirements (so are difficult to integrate in low-power mobile objects) and change the 
appearance and function of an object. Hence, this motivates our approach in this thesis 
using non-invasive projected displays. 

2.3 Projector-based Augmented Reality 

The approach we investigate in this thesis uses projector-based augmented reality 
techniques to dynamically annotate physical and tangible smart objects with interactive 
projected information, solving their output problem. In this section we aim to 
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understand how we can create interactive, undistorted and visible projected displays on 
objects of varying shapes and appearances.  

 
Projector-based Augmented Reality uses front-projection to project images directly 

onto physical object’s surfaces, not just in a user’s visual field. [Raskar, Welch et al. 
1999]. Unlike physical displays such as computer monitors, projection-based displays 
allow integration with the existing appearance of an object to create seamless displays 
[Pinhanez and Podlaseck 2005]. The displays they create are non-invasive, as they do 
not require any hardware in the object being augmented.  This feature allows projected 
displays to be used almost anywhere, in situations where physical displays would not be 
used, for example, due to cost, vandalism concern or hazardous environments. 
Projection can be used to change or supplement the functionality of the object - most 
commonly by transforming a non-augmented object “into an access point to the virtual 
information space” [Pinhanez 2001].  

Projectors are able to create images much larger than the display device itself, 
allowing even small portable projectors to augment large objects. The traditional AR 
display technologies (Head Mounted Displays (HMD), PDA, tablets or mobile phones) 
are inherently encumbering and limited to a single user. In contrast, projected displays 
have scalable resolution, improved ergonomics, easier eye accommodation (as the 
graphics appear at the same distance in the real world as the objects) and a wide field of 
view, so are visible to multiple people. These properties enable a greater sense of 
immersion and have the potential to increase the effectiveness of multi-user interaction 
or co-located group-working in an object’s physical space [Bimber and Raskar 2005]. 

Some of the earliest work in Projector-based Augmented Reality was Underkoffler, 
Ullmer and Ishii’s Luminous Room project [Underkoffler, Ullmer et al. 1999]. This 
project developed a concept for providing graphical display and interaction on each 
surface of an environment. Co-located two-way optical transducers –called I/O bulbs– 
that consist of projector and camera pairs capture the user interactions and display the 
corresponding output. The Luminous Room also demonstrated the possibility of 
embodying information in tangible objects. Here, objects could “save” associated digital 
information, such as the chess board state, allowing the user to remove the object from 
the projected surface. The projected interface would then re-appear in the saved state 
whenever the object was placed back on the surface.  

 

 
Figure 2.11 (left) A chessboard with memory (centre) Interactive optics-design, (right) A prototype I/O bulb projector-

camera system in the Luminous Room [Underkoffler, Ullmer et al. 1999] 

Underkoffler et al. present several design principles based on their experience in the 
luminous room. For example, people were often unable to distinguish between the real 
object and virtual projection. Consequently, Underkoffler et al. recommended subtle 
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animation was applied to the projections to make people aware of the virtual nature of 
the projections.  

This reduced ability to distinguish between real and virtual was used deliberately in 
the Spatially Augmented Reality project [Raskar, Welch et al. 1999], which captured a 
physical object’s inherent colour, texture and material properties (such as reflectance) 
with a camera, replaced them with a white object and projected imagery exactly 
reproducing the original appearance of the object. Raskar et al. showed that visually 
there was no difference between the original object illuminated with white light and the 
white object illuminated with the original appearance, indicating the ability to separate 
an object’s appearance from its form. Using this separation Raskar et al. demonstrate 
alternate appearances, lighting effects and animation by simply changing the projection. 
This was also one of the first projects to demonstrate that projection is not restricted to a 
planar surface or a single projector, by augmenting complex 3D objects such as a model 
representation of the Taj Mahal mausoleum in India with multiple static projectors. 

 

  
Figure 2.12 Spatially Augmented Reality (SAR) [Raskar, Welch et al. 1999] 

As demonstrated by the I/O bulb and Spatially Augmented Reality project, the 
addition of a camera to the projector creates a feedback-loop and allows the display to 
become interactive.  Projector-camera systems enable un-encumbered and un-tethered 
interactive displays on any surface, at any orientation. No special hardware is required 
in the display surface itself to support this interaction.  

2.3.1 Projector-Camera Systems 

The projection-based AR technology discussed in section 2.2 form part of a larger 
family of projector-camera systems. Here we decompose the family into three 
categories with respect to display mobility: 

1. Static projector-camera systems (such as multi-projector display walls) 
2. Mobile, handheld and wearable projector-camera systems 
3. Steerable projection from a static system with pan and tilt hardware 

 
These categories can be seen more clearly in Figure 2.13, when compared to a 

traditional desktop monitor which is a static, single user technology with a small display 
size. 

All types of projector-camera system have been used for augmenting objects with 
projection, however, static [Bandyopadhyay, Raskar et al. 2001], mobile, handheld 
[Raskar, Beardsley et al. 2006] or wearable [Karitsuka and Sato 2003] (shown in Figure 
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2.15) projector-camera systems can only opportunistically detect and project on objects 
passing through the field of view of the projector and camera. 

 

 
Figure 2.13 The Projector-Camera system family decomposed by mobility and display size, compared to traditional 

desktop monitors 

In contrast, projector-camera systems in the third category, with computer controlled 
steerable mirrors or pan and tilt platforms [Pinhanez 2001; Borkowski, Riff et al. 2003; 
Butz, Schneider et al. 2004; Ehnes, Hirota et al. 2004] allow a much larger system field 
of view and the ability to track objects moving in the environment. We use the generic 
term “Steerable Projectors” for these systems. 

2.3.2 Mobile, Handheld and Wearable Projector-Camera 
Systems  

Raskar et al. initially developed the concept of handheld projector-camera systems in 
the “intelligent Locale-Aware Mobile Projector” (iLamps) project [Raskar, VanBaar et 
al. 2005]. As seen in Figure 2.14, the handheld projector-camera system included on-
board computing, a tilt-sensor and network access. The projector-camera system was 
initially calibrated to determine the intrinsic (optical) parameters and extrinsic pose 
(relative locations and orientations) of projector and camera.  Projection-based object 
adaptive displays were then demonstrated using circular fiducial markers to allow the 
system to calculate the camera pose (hence the projector pose). With projector pose 
known relative to an object (in this case the black rectangle with a fiducial marker in 
Figure 2.14), a projection can be registered with the object so it is overlaid on its 
surfaces.  

Due to the fixed field of view of a projector, mobile and handheld projectors can only 
be used to reveal information in the environment in a similar way to a flashlight being 
used to illuminate a surface. This “peephole” metaphor [Butz and Krüger 2003] allows 
the user to see the windows and interfaces by “painting them with light”, onto an area of 
the environment.  Sony first presented a prototype handheld projector (shown in Figure 
2.15) containing accelerometers to measure the hand movement and paint a small world 
stabilised image on surfaces [Rapp, Michelitsch et al. 2004]. This concept was extended 
by Raskar et al. to project onto photo-sensing objects in the environment with their 
Radio-Frequency Id and Geometry (RFIG) project [Raskar, Beardsley et al. 2006].  
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Figure 2.14 (left and centre) The iLamps Project developed a handheld projector-camera system, (right) Detecting 

circular fiducial markers to augment a wall scene with projection 

Handheld projectors are now widely researched due to recent technology 
developments in micro displays and cheap, long-life LED and LASER light sources. 
These developments have caused a drastic reduction in the size of projectors, which will 
soon enable projectors to be carried in a pocket or embedded in mobile devices. Some 
recent research concentrates on calibration of handheld projectors  [Dao, Hosoi et al. 
2007], while other projects make use of the ability of projectors to create displays larger 
than the device itself, focussing on collaborative interaction techniques using multiple 
handheld projectors [Cao and Balakrishnan 2006; Cao, Forlines et al. 2007]. 

 

  
Figure 2.15 SONY’s Handheld spotlight projector [Rapp, Michelitsch et al. 2004], (centre left) Multi-user interaction using 

handheld projectors [Cao, Forlines et al. 2007], (right) Wearable Projector-camera system [Karitsuka and Sato 2003] 

2.3.3 Multi-Projector Display Systems 

Traditionally, multi-projector displays were created by time-consuming mechanical 
alignment of the individual projectors to abut the images. Periodic re-calibration was 
often necessary, due to factors such as vibration which caused increasing alignment 
inaccuracies over time.  

As part of the iLamps project [Raskar, VanBaar et al. 2005], Raskar et al. 
demonstrate the first ad-hoc clustering of overlapping projectors, using camera-based 
registration and image blending to create a single geometrically seamless display (see 
Figure 2.16, right). The project also developed shape adaptive displays, where the 
display was geometrically corrected to appear undistorted on multi-planar and curved 
quadric surfaces using the least-squares conformal mapping approach proposed by Levy 
et al. [Levy, Petitjean et al. 2002].  

For perceptually seamless displays, multi-projector displays require photometric and 
colourmetric calibration in addition to geometric calibration to ensure uniformity of 
brightness and colour across the display. This is discussed further in section 2.3.7. 
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Figure 2.16 (left) The PixelFlex reconfigurable multi-projector display [Yang, Gotz et al. 2001], (right) Ad-hoc projector 

clustering and geometric correction for seamless display with iLamps [Raskar, VanBaar et al. 2005] 

2.3.4 Steerable Projector-Camera Systems 

Pinhanez at IBM proposed creating “interactive displays everywhere in an 
environment by transforming any surface into a projected touch screen” [Pinhanez 
2001].  The system, which Pinhanez named the Everywhere Display (ED), uses a video 
projector and steering mechanism together with a camera to enable vision-based 
interaction with the projected imagery. The steering mechanism increases the area in 
which the display can be used, while the combination of projector and camera forms a 
powerful closed-loop visual control system, allowing display adjustment and 
unencumbered user interaction directly with the display. 

 
Figure 2.17 IBM’s Everywhere Display demonstration at SIGGRAPH [Pinhanez 2001] 

Pinhanez proposed steerable projector-camera systems for two classes of 
applications: interactive computer displays and spatial augmented reality. The steering 
mechanism enables ubiquitous interactive displays, as they can be situated on any 
surface or object within the field of view of the projector [Pingali, Pinhanez et al. 2003]. 

IBM first demonstrated simple augmented objects in their Everywhere Display 
demonstration at SIGGRAPH, seen in Figure 2.17.  Here a table was augmented with a 
simple image display onto which the user could place individual coloured M&M candy 
“pixels” to build up a picture.  To place the correct colour candy the steerable projector 
directed the user to a series of paint tins containing M&Ms, onto which were projected 
virtual buttons.  The camera system detected user touch of this virtual button, 
transforming the paint cans into interactive interfaces. 

With steerable projection, the information required in any situation can be brought to 
the location it is required.  Pinhanez demonstrates the concept of projected information 
that is “attached” to a spatial location [Pinhanez 2001], allowing phone books to appear 
at the location of the phone when the user picked up the handset, however, this location 
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was static and had to be programmed into the system. Pingali et al. approach the idea of 
location based interaction from a different direction, by creating a display that followed 
the user, allowing important information to be constantly visible [Pingali, Pinhanez et 
al. 2002].  In this project a series of static display areas were pre-calibrated around the 
room, then a camera used to track the user. The steerable projector calculated the 
nearest visible display area to the detected user, and used this as the display. 

As shown in Figure 2.18, Pinhanez et al. envision other uses, such as ambient 
displays in a user’s periphery for messaging notification, dynamic navigation signage 
and augmenting objects for ubiquitous computer access. 

 

   
Figure 2.18 (left) Messaging notification, (centre) dynamic navigation signage, (right) augmented filing cabinet object 

[Pinhanez 2001] 

The steerable projector concept has been developed further, with the FLUIDUM 
intelligent environment project using fiducial markers (see section 2.5) tagged onto 
objects such as books to locate them [Butz, Schneider et al. 2004].  Following a pre-
scan of the environment, the system could successfully find and highlight objects that 
had not moved.  

Dynamic displays can also be created on mobile objects, such as the Portable Display 
Screen demonstrated by Borkowski et al. [Borkowski, Riff et al. 2003].  The display 
screen was a sheet of white card, modified by adding a black border to allow tracking 
with computer vision.  The system allowed the user to carry a fully interactive display 
without any power or infrastructure requirements, apart from the projector-camera 
system. Ehnes et al. demonstrate a similar system [Ehnes, Hirota et al. 2004], where the 
white Personal Interaction Panel (PIP) was tracked using a fiducial marker. 

 

  
Figure 2.19 (left and centre) Portable Projected Display Screen [Borkowski 2006], (right) Personal Interaction Panel 

[Ehnes, Hirota et al. 2004] 

2.3.4.1 Existing Steerable Projector Frameworks 
Levas et al. presented a framework for steerable projector-camera systems to project 

onto objects and surfaces in their Everywhere Display EDML framework [Levas, 
Pinhanez et al. 2003]. As shown in Figure 2.20, the EDML architecture comprised three 
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layers – the lower services level containing the actual hardware dependant 
implementation, the middle integration layer which abstracts and synchronises the 
hardware, and the high level application layer. 

The lower levels provided applications for explicit user modelling of displays using a 
3D world modelling tool and provided user localisation and geometric reasoning for use 
in applications such as the user following display [Pingali, Pinhanez et al. 2002]. The 
integration layer provided the main classes of the API to build applications with the 
framework, event management, geometric distortion correction and handling of 
interactive content to be rendered on the virtual displays. 

While supporting a distributed architecture, the framework has a number of 
limitations. It is reliant on the user to explicitly model their world and pre-calibrate 
displays, hence is limited to known, static environments. Although dynamic occlusion 
detection of the pre-calibrated displays is possible, this is implemented by vision-based 
head tracking. Hence, the system cannot detect any non-human occlusion of pre-
calibrated display locations (for example, by furniture). The framework also does not 
address any methods for multiple projectors to work cooperatively, assuming only a 
single projector in any environment.  

 

 
Figure 2.20 IBM’s Steerable Interface EDML Framework 

Pingali et al. [Pingali, Pinhanez et al. 2003] build on the EDML framework design to 
characterise steerable interfaces as exhibiting the six following qualities: 

1. Moveable output interface - the ability to move video and audio around spatially. 
2. Moveable input interface – such as steerable cameras and directional 

microphones. 
3. Adaptation to user context - for example, the user’s location and orientation. 
4. Adaptation to environment - reasoning about the geometry and properties of 

surfaces, adapting to dynamic conditions such as occlusions and ambient noise. 
5. Device-free interaction - using multi-modal input techniques for interaction.  
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6. Natural interaction - Intuitive and useable interaction, sensitive to user context. 
 

 
Figure 2.21 The IBM Steerable Interfaces Characterisation [Pingali, Pinhanez et al. 2003] 

Although the characteristics Pingali et al. propose are a good way to describe 
steerable interfaces, they do not directly address the Ubiquitous Computing vision of the 
future, which proposes computing embedded into everyday objects.  It is conceded that 
“special purpose” devices for interaction could be accommodated; however, there is no 
support for projection on mobile smart objects in their interaction paradigm. 

 
We construct a steerable projector-camera system to enable vision-based detection, 

tracking and projection onto smart objects in our work. This steerable projector-camera 
system is discussed further in Appendix A. 

2.3.5 Interaction with Projector-Camera System Displays 

Without input techniques, the ability to create displays on objects is analogous to 
having a set of portable televisions which can be moved around at will, but only display 
one channel. To enable the most functionality for users requires a balanced interface, 
hence in this section we look at how we can interact with projected displays. 

 

 
Figure 2.22 Interaction Techniques for Projected Displays 
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Many interaction techniques can be used with projected displays. Some of the main 
techniques in use are shown in Figure 2.22. Interaction can be primarily decomposed 
into on-surface techniques (where the user has physical contact with the projection 
surface) and off-surface (the user is remote). We also decompose the interface 
technology itself into vision-based and non-vision-based sensing. 

The challenge with all interaction techniques is to distinguish the difference between 
pointing or hovering, versus activating [Buxton 1990]. For control activation one issue 
is that the interaction techniques discussed here all have little tactile feedback. Users 
cannot feel the edges of keys and the force when pressed, so performance will likely be 
much lower than normal keyboards or mice. Consequently, users will not be able to 
achieve eyes-free interaction [Lewis and Potosnack 1997].  However, common 
solutions to increase performance can be used, such as generating an audio or visual 
feedback for the user whenever a control is activated (e.g. simulating a key press click). 

 
2.3.5.1 Off-Surface Interaction 
Off-surface interaction techniques are primarily using pointing interfaces (LASER 

pointing [Kirstein and Müller 1998] or finger pointing) with vision detection. Pointer 
interaction techniques are similar to mouse interaction in that they allow target selection 
and gestures. However, Oh and Stuerzlinger’s experiments reported a laser pointer is 
only approximately 75% as fast as a mouse at selection [Oh and Stuerzlinger 2002]. 
Similarly, Laberge and Lapointe  report that by using a homography based camera to 
screen calibration (see section 2.3.6), an typical accuracy of only ± 2 pixels could be 
achieved [Laberge and Lapointe 2003]. Cheng and Pulo [Cheng and Pulo 2003] also 
state that laser pointer interaction suffers from three additional problems: 

1. Pointer instability due to jitter in hand movement.  
2. On-screen pointer latency relative to LASER due to low camera frame rates 
3. Selection of objects is restricted to gestures, pointer on/off events or dwell times 

They propose hiding the hand jitter and latency issues by either not showing an on-
screen cursor (relying on the laser pointer spot itself as visual position feedback), or by 
using an invisible Infra Red laser pointer and showing only an on-screen cursor.  

 
2.3.5.2 On-surface Interaction 
On-surface interaction techniques based on non-vision techniques use a variety of 

mechanical sensing methods to detect the location of fingers in real-time. The main 
drawback with all these techniques is the requirement for sensing equipment to be 
embedded in the display surface and the need to then calibrate the display-to-surface 
relationship to achieve correct sensor-projector alignment. 

Capacitive and resistive touch sensors are widely used in products such as smart 
whiteboards, laptop trackpads and touch-screen overlays. However, this technology is 
typically restricted to a single user and a maximum of one or two points of contact. 

Systems such as the Mitsubishi DiamondTouch system [Dietz and Leigh 2001] and 
Rekimoto’s SmartSkin [Rekimoto 2002] are able to support multiple simultaneous users 
with multiple points of touch, however, only DiamondTouch can differentiate between 
users. This relies on capacitive coupling and requires each user to remain in contact 
with a signal receiver to be visible to the system, limiting the interaction serendipity. 

Weight surfaces triangulate the location of objects and fingers placed on their 
surfaces using weight sensors, allowing them to be used as generic pointing devices 
[Schmidt, Strohbach et al. 2002]. This approach has several benefits – it is robust, 
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reliable and can preserve the original functionality of the surface, allowing many 
surfaces to be augmented cheaply.  The technique can also successfully determine 
active and passive loads, for example, allowing it to differentiate between a static mug 
on a table and a user’s finger.  However, it cannot differentiate between multiple users. 

Virtual Keyboard devices are designed to be used with mobile phones and PDAs to 
allow fast, convenient text input without the bulk and portability issues of a physical 
keyboard.  The devices project an image of a keyboard on a planar surface and use 
optical sensing (typically LASER or infra red break-beams) to detect when a user’s 
finger enters the area of a key, generating a key press event.  The reader is referred to 
[Kölsch and Turk 2002] for a full survey of virtual keyboards. 

Examples of tangible interfaces are discussed separately in section 2.2.3. 
 
Vision-based detection is attractive as it is non-invasive, requiring nothing more than 

a remote camera to detect interaction. Hence, hand and finger tracking is a large area of 
its own in Computer Vision research. Researchers typically employ a number of 
approaches, such as correlation tracking, model-based contour tracking, foreground 
segmentation and shape filtering [Borkowski, Letessier et al. 2004]. However, vision-
based interfaces must contend with many challenges, such as variable and inconsistent 
ambient lighting, reflections, strong shadows and camera occlusion. 

Pinhanez et al. [Pinhanez, Kjeldsen et al. 2002] proposed that the two goals for a 
vision-based finger detection system are to detect when a user touches a projected 
“button” and to track where a user is pointing on a projected screen. For some rear-
projection screens, vision can be used directly through the surface of the screen itself, 
such as with Frustrated Total Internal Reflection (FTIR) sensing  [Han 2005] or stereo-
vision for detecting finger location and distance from the surface [Wilson 2004]. 

However, for interaction with front-projected displays typical vision approaches 
perform poorly due to the potential for projected light to radically change the 
appearance and colour of a hand, as was shown in Figure 2.17 (right).  This can render 
traditional techniques that track the hand’s shape or skin colour unreliable. Background 
subtraction also will not work if dynamic imagery is being projected significantly 
brighter than the background. As a result, some researchers have used Infra Red (IR) for 
detection. However this approach typically requires removing IR-blocking filters from 
consumer cameras, then physically fitting an IR-pass filter (preventing detection of 
visible light, and hence, colour) and separate IR illumination sources. 

Some projects make use of shadows from separate IR illuminators or the projection 
light itself, using off-axis cameras to detect a finger’s shadow on the projection surface. 
The location of the shadow relative to the detected finger allows calculation of the 
distance to the surface and the location when on the display [Kale, Kwan et al. 2004; 
Wilson 2005]. However, for on-axis cameras (such as a camera attached to a projector) 
Pinhanez et al. propose using a motion based approach to overcome the majority of the 
problems associated with front projection displays [Pinhanez, Kjeldsen et al. 2001].  

The motion-based approach involves subtracting each frame from the frame before to 
create a motion mask.  This approach can create a large amount of noise on the image, 
due to changes in the projected image or movement of objects and surfaces.  Hence, 
morphological erode and dilate operations are performed to reduce noise and analyse 
neighbourhoods rather than individual pixels. 

Pinhanez et al. first tried a fingertip template matching approach in their Everywhere 
Display interfaces, however, this approach was easily fooled as any occlusion of the 
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projected interactive area generated false-positives [Kjeldsen 2005].  The small fingertip 
template used could also easily match at multiple locations on an image, so a concept of 
user location had to be introduced and the match furthest from a user was assumed to be 
the correct fingertip (requiring a tracked user). 

 

 
Figure 2.23 Fingertip matching in (a) Camera image, (b) Motion mask, (c) Finger tip template match [Pinhanez, 

Kjeldsen et al. 2001] 

Kjeldsen proposes using a new technique called “Polar Motion Maps” [Kjeldsen 
2005], which splits the circular area surrounding an interactive button (Rw on Figure 
2.24) into segments like a cartwheel and analyses each segment for the direction of 
movement of the energy in the motion mask.   

 
Figure 2.24 (far left) Polar Motion Map, (left) the corresponding segments unrolled to a rectangle, (right) PMM in use 

[Kjeldsen 2005] 

The PMM segments can be converted from polar to Cartesian coordinates, and the 
graph analysed for long narrow objects that approach from a consistent direction, do not 
pass through the target (Rw) then retract from the direction in which they approached.  
This “lightening strike” movement was found by Kjeldsen to be indicative of touching 
movements, allowing events such as movement of a hand through the target or 
occlusion (which would not exhibit narrow profiles that a retracted in the same direction 
of arrival) to be disregarded. 

Kjeldsen also proposes allowing users to define an interface arrangement themselves 
using tangible paper based representations of user interface widgets [Kjeldsen 2005], to.  
Here, the location of the paper objects defines the target for interaction and the identity 
of the object determines what interaction is possible. The Everywhere Display 
[Pinhanez 2001] vision system was then used to automatically generate an interactive 
interface, based on the spatial arrangement and identity of widgets it detects, as shown 
in Figure 2.25 (left). 

Letessier and Bérard proposed another, simpler solution [Letessier and Bérard 2004].  
By manually increasing the exposure of the camera until the projected light appears 
overexposed, the hand gains the correct exposure, as shown in Figure 2.25 (right).  
Using this method traditional finger tracking techniques can be used, but require the 
camera exposure to be set manually to optimise the finger visibility and assumes that 
the light levels in the whole environment remain constant.  
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Figure 2.25 (left) Using a red paper slider widget [Kjeldsen 2005], (right) Increasing camera exposure to compensate 

for projector light [Letessier and Bérard 2004] 

Letessier and Bérard’s method is not useful in our work; when we increase the 
exposure of the camera to remove the projection, this will over-expose the view of the 
objects, preventing us from tracking them with the camera. Consequently, in our work 
we use the method proposed by Pinhanez et al. [Pinhanez, Kjeldsen et al. 2002]  to 
implement a non-invasive vision-based finger interaction system. 

2.3.6 Projected Display Geometrical Calibration 

Video projectors are designed to project light in a direction orthogonal to a planar 
projection surface [Pinhanez, Kjeldsen et al. 2002]. This location produces the best 
image on the screen, with no geometrical distortions. Projector or surface rotation away 
from this ideal orientation causes geometrical distortion of the projected image, often 
called “keystoning”. Similarly, non-planar display surfaces also distort the projection. 

Many projectors allow compensation for small amounts of geometric distortion by 
digitally warping the image before projection so that it appears rectangular when 
displayed on the projection surface. A few projectors include an inclinometer sensor to 
perform automatic vertical distortion correction when a projector is rotated vertically 
[Raskar, VanBaar et al. 2005], however, an inclinometer on its own cannot correct for 
distortion caused by rotation in the horizontal plane or distortion due to rotation of the 
projection surface. Consequently, the correction must typically be specified manually 
by the user, using the remote control. 

 
Figure 2.26 (left) On-axis projection gives a rectangular image, (right) Geometric distortion due to horizontal projector 

rotation when projecting onto a planar screen 

It is possible to implement automatic geometric distortion correction in software by 
dynamically pre-warping the image to project.  It is always possible to correct for 
oblique projection on simple geometries, as long as the projection surface does not have 
a shape that occludes the projected light [Pinhanez 2001]. This enables projectors to be 
mounted anywhere in the environment with respect to the projection surface. For 
example, in a meeting scenario the projector could be located at the side of the room, 
where a presenter is less likely to cast shadows on the screen and where the projector 
does not occlude the audience’s view [Sukthankar, Stockton et al. 2001]. 
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Many different calibration strategies have been proposed to calculate the geometric 
correction required to allow an image to look un-distorted to an observer. Yang and 
Welch proposed an initial classification of calibration methods [Yang and Welch 2001], 
which was extended by Borkowski et al. [Borkowski, Riff et al. 2003]. The extended 
classification separates the methods based on whether they are on-line (real-time) 
calibration techniques performed while a system is operational, whether the system 
actively emits light or makes other active emissions to detect the surface, and whether 
the calibration is only valid for planar 2D surfaces or can be used for three dimensional 
surfaces. However, Borkowski et al. incorrectly classify the Laser Scanner, Structured 
Light and Stereo Vision calibrations and omit distortion correction based on projective 
texture mapping techniques. Our corrected classification is shown in Figure 2.27. 

 

 
Figure 2.27 Classification of projector-camera system geometrical calibration methods, based on [Borkowski, Riff et al. 

2003] 

Of the geometrical calibration methods, the homography based and structured light 
techniques only require a projector and camera to be performed, however, the 
homography method is limited to planar surfaces. The projective texture mapping 
requires a-priori knowledge of the projection surface geometry and projector-camera 
pose (but can be used on-line when this is known), while the remaining techniques 
require additional hardware to enable calibration. The most common geometrical 
correction methods are discussed in more detail below: 

 
2.3.6.1 Projective Texture Mapping 
Geometrically, projection is the inverse of camera viewing [Pinhanez 2001].  Hence, 

it is possible to model the projection by creating a three-dimensional virtual 
representation of the projection surface and locating a virtual camera at the same 
position and orientation as the projector in the real world. By creating the virtual camera 
with identical optical parameters to the real projector, the image seen by the camera will 
exactly replicate what the projector sees in the real world. Distortion correction is then 
performed automatically by projective texture-mapping of an image onto a virtual 
surface with the orientation and size that it would appear in the real world. The virtual 
camera now views an image that will appear geometrically correct when projected. 
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Figure 2.28 Model-based distortion correction based on known surface geometry and pose relative to the projector 

[Pinhanez 2001] 

This approach is conceptually simple, and can be easily implemented using 3D 
computer graphics hardware for real time performance when dynamically changing 
projector and display surface pose.  However, the main weaknesses with this approach 
are that it requires an exact model of the environment to be created, and the exact pose 
of the projector relative to the display surface to be detected.  This restricts its use to 
environments where the display geometry is known and tracked. 

 
2.3.6.2 Planar Homography Calibration 
Pinhanez et al. first developed a mathematical method for geometric calibration of 

projector-camera displays on planar screens using homographies [Pinhanez, Nielsen et 
al. 1999]. A homography is projective transform that links two planar surfaces in three-
dimensional space.  It is an exact mathematical description of the rotation, translation 
and scaling that maps each point between the two planes. To perform the calibration 
Sukthankar et al. first project a series of dots onto the screen and detect the location of 
the dots in the camera image, calculating the projector-to-camera transformation 
homography (T) [Sukthankar, Stockton et al. 2001]. By then detecting the location of 
the screen in the camera image (either using fiducial markers at the corners or the screen 
border edges) Sukthankar et al. calculate the camera-to-screen transformation (C). This 
allows the full projector image to screen transformation (P) to be recovered (P=C-1T). 
These transformations were used to pre-warp an image before projection to align 
correctly with the screen, as shown in Figure 2.30. 

 

 
Figure 2.29 Projecting dots onto a planar screen to recover the projector-camera homography 

For example, to calculate the projector-camera homography we would first establish 
correspondences between the projector and camera (such as projecting and detecting the 
centre of the dots in Figure 2.29), then use the following formulas to calculate the 
conversion between the coordinates in the projector image (u, v) and camera image 
coordinates (u´, v´): 
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These equations can be reformatted for homogeneous coordinates as follows:  
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Given n non-collinear corresponding points on both the image and display surface 

(where n≥4), the correspondences can be reformatted as simultaneous equations in 
equation 3.3. By assuming the constraint 1=h , the coefficients (h11 to h32) can be 
determined using Gaussian elimination if n=4, or linear least-squares with Singular 
Value Decomposition (SVD) when n>4. 
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Figure 2.30 (left) Creating the projector-camera homography, (right) Using the combined projector-screen 

transformation to project an undistorted image [Sukthankar, Stockton et al. 2001] 

The calibration performed by Sukthankar et al. was for a static system. However, 
assuming the projector-camera relationship is fixed (e.g. the camera is attached to the 
projector) and the camera can detect and track a minimum of 4 non-collinear points on 
the target planar surface, this method works in real time. Borkowski et al. use this 
method to demonstrate real-time projection geometrically aligned with their portable 
display screen, by determining the 4 corners of the black borders [Borkowski, Letessier 
et al. 2004]. 

In static environments where projection is unconstrained and no visually defined 
screen area exists, Borkowski et al. also proposed an off-line pre-calibration of 
environment [Borkowski, Letessier et al. 2004]. This calibration enables a projector-
camera system and off-axis camera to detect planar surfaces and store them for future 
use.  A world model is built by scanning the room while dynamically projecting a series 
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of straight lines.  Lines which have a curved appearance in the camera image indicate a 
non-planar surface, while a step-like discontinuity is assumed to indicate the edge of a 
surface.  Once all possible planar areas are detected, the projector can establish planar 
homographies and calculate the distance to the display surface. 

The homography approach has been extended to support automatic geometric 
calibration of multi-projector display walls [Chen, Sukthankar et al. 2002; Brown, 
Majumder et al. 2005; Bhasker, Sinha et al. 2006] and multi-planar surfaces [Ashdown, 
Flagg et al. 2004]. 

 
2.3.6.3 Curved and Unknown Surface Calibration with Structured Light 
Curved or spherical projection surfaces can be corrected using the off-line 

triangulation technique and quadric calibration method proposed by Raskar et al. 
[Raskar, VanBaar et al. 2005]. This approach projects a sequence of structured light 
patterns (see Figure 2.31, left) and detects left-right correspondences using a calibrated 
stereo camera system to triangulate the display surface geometry. A Quadric curve 
fitting approach is used with a minimum of 9 correspondences (compared to 4 for a 
homography) to enable geometric correction, as shown in Figure 2.31 (centre).  

 

  
Figure 2.31 (left) Gray-code structured light patterns (centre) Geometrically corrected multi-projector display on curved 

display [Raskar, VanBaar et al. 2005], (right) Automatic Projector Display Surface Estimation Using Every-Day Imagery 

[Yang and Welch 2001] 

As discussed by Raskar et al., the geometric correction of non-planar geometry 
requires a tracked observer to provide the correct undistorted view. It is always possible 
to generate a geometric distortion correction for an arbitrary viewpoint given known 
surface geometry and calibrated cameras and projectors [Park, Lee et al. 2006]. Hence, 
if the observer’s viewpoint is not tracked it is usually assumed their viewpoint is 
perpendicular to the projection surface. 

To calibrate completely unknown geometry Park et al. [Park, Lee et al. 2006] propose 
an off-line calibration technique which projects a series of structured light images while 
using triangulation between the projector and a single camera (by assuming the 
projector is equivalent to another camera). This approach relies on both a calibrated 
projector and camera, but can recover a grid of points on an arbitrary surface. The 
surface is modelled from the recovered 3D points by assuming it is piece-wise planar in 
the small (i.e. between neighbouring points). The recovered geometry mesh is then used 
to warp the projected image using homographies to correct for geometric distortion. 

Yang et al. use an iterative on-line approach to recovering display surface geometry 
by making use of the closed-loop of a projector-camera system [Yang and Welch 2001]. 
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The system initially assumes an orthogonal planar screen, then detects features in each 
image before projection, observes these features when projected and continually refines 
an estimate of the display surface geometry based on the difference in location using a 
Kalman filter. Over a number of frames this will converge to approximate the real 
surface, as shown in Figure 2.31 (right). This approach is in effect a structured light 
approach; however, the only structure comes from the projected content. 

Johnson and Fuchs present a similar on-line approach for planar surfaces with real-
time feature detection and tracking [Johnson and Fuchs 2007]. Their approach 
additionally predicts the pose of the projector at each frame, allowing use of a mobile 
projector with a static off-axis camera. 

Another on-line structured light approach using explicit patterns was proposed by 
Park et al. [Park, Lee et al. 2007]. Here the patterns were embedding into the display 
imagery in a way that is imperceptible to observers, by projecting a pattern in one 
frame, then its inverse in the next frame. The pattern is adapted to the colour 
distribution and spatial brightness variation of the original projected content to make it 
further imperceptible. This approach requires a camera synchronised to the projector for 
the pattern to be visible to the detection system and creates some visible flicker for 
humans with a typical 60Hz projector refresh rate. Grundhöfer et al. report the patterns 
are still visible with fast eye movements above 75Hz and propose a new approach 
which creates patterns which are below the human perceivable threshold, but still 
detectable by camera. This method estimates the threshold based on a human contrast 
sensitivity function and modifies the pattern contrast for each frame, based on the 
brightness and spatial frequencies of the projected image and original pattern 
[Grundhöfer, Seeger et al. 2007].  

 
The temporal-coded structured light approaches are not useful in dynamic 

environments as they require several projected frames to recover geometry of the target 
display surface, hence cannot easily be used with mobile display surfaces. With 
spatially-coded approaches it is possible to recover geometry with a single projected 
pattern, however, these approach create lower resolution geometry models and tend to 
be much less robust [Salvi, Pages et al. 2004]. Additionally, while the structured light 
approaches can detect and model all geometry inside the projector’s field of view, they 
cannot robustly identify and segment an arbitrary 3D object from the background on 
their own. Hence, they would have to be used with other computer vision methods when 
we wanted to detect a particular object or project at a specific location on an object.  

Instead, in our work we assume each object carries knowledge of its 3D model, which 
removes the need for on-line geometry recovery and allows projection at specific 
locations on the object. Once objects are detected and their pose calculated, the known 
surface geometry is used by the projector system to dynamically configure which 
calibration method is used. For example, with planar surfaces we could use the 
homography or projective texture mapping methods, and for curved surfaces the quadric 
calibration proposed by Raskar et al. [Raskar, VanBaar et al. 2005]. 

2.3.7 Projection Photometric and Colorimetric Calibration 

We do not limit the type, form or appearance of objects that can be used with our 
Cooperative Augmentation approach. Hence, it is likely many surfaces of everyday 
objects we would like to augment with displays are coloured, textured or non-planar, 
which is not ideal for projection. Similarly, we may want to make use of multiple 
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projectors to create seamless displays on objects. In this section we look at different 
ways to address these cases by calibrating the projection to make the image more 
visible. 

 
Photometric and colorimetric calibration is used in two scenarios: the first is when 

creating a perceptually seamless display using multiple projectors, generally with a 
normal white projection screen. With ad-hoc multi-projector displays main problem 
encountered is that the characteristics of the projectors vary. For example, projectors 
from different manufacturers differ in terms of their photometric response, colorimetric 
response and uniformity. Even among projectors of the same make and manufacturer 
the projector lamps vary in both brightness and colour as they age, as can be seen in the 
variable brightness and hue of the blue backgrounds in Figure 2.16 (left). To appear as a 
seamless, uniform display this necessitates calibration, however, the complexity of 
geometric alignment and colour calibration increases with the number of projectors.  

Several approaches have been presented for automatic calibration of multi-projector 
systems using a single camera [Raij and Pollefeys 2004; Brown, Majumder et al. 2005; 
Bhasker, Sinha et al. 2006]. Typically these involve measuring the luminance and 
chrominance properties within each projector’s image and the differences between the 
projectors. These intra-projector and inter-projector variations are used to calculate 
individual mappings to a shared brightness and colour range which can be used by all 
projectors to achieve a seamless display. Brown et al. found this approach provides a 
poor image, as the common range for all projectors can be very narrow, limiting 
contrast and colour gamut. Humans can detect luminance variations more easily than 
chrominance variations, hence Brown et al. propose trading-off chrominance uniformity 
for increased display quality by approximating perceptual uniformity [Brown, 
Majumder et al. 2005].  

 

 
Figure 2.32 (left) Colour correction to project on any surface [Bimber, Emmerling et al. 2005], (right) Real-time 

adaptation for mobile objects [Fujii, Grossberg et al. 2005] 

The second scenario where photometric and colorimetric calibration has been 
demonstrated is to compensate for the display surface itself in the case where the 
surface is non-white, non-uniform or has non-lambertian reflectance. Again, a range of 
techniques has been proposed [Nayar, Peri et al. 2003; Grossberg, Peri et al. 2004; 
Bimber, Emmerling et al. 2005]. The calibration process typically includes capturing 
the natural surface appearance and it’s response to projected colour calibration images 
with a camera. The calibration techniques then modify the projected image by 
attempting to invert the natural colour of the object surface based on the recovered 
reflectance responses, making it more visible to an observer (as shown in Figure 2.32). 
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The methods cannot completely correct very dark or saturated surfaces, as the dynamic 
range of typical projectors is not sufficient to invert the natural surface appearance. 

While these calibration techniques assume a static environment, Fujii et al. extend 
[Nayar, Peri et al. 2003] by proposing a real-time adaptation approach [Fujii, Grossberg 
et al. 2005] by making use of the projector-camera system closed loop feedback. They 
use a 3x3 matrix for each pixel to encode both the colour mixing between the channels 
of projector and camera and the surface reflectance. The values of the matrices are 
determined by projecting a series of uniform colour images and capturing the images of 
the illuminated surfaces with the camera. The compensation image is computed by 
multiplying the inverse of the colour mixing matrices with the RGB colour of the 
corresponding pixels in the input image. Following initial calibration, the method 
corrects the projection image based just on the image captured by the camera, 
optimising the projected image to look as much like the input image as possible, when 
seen by the camera. Although requiring a camera and projector with calibrated colour 
response, this approach allows dynamic changes in illumination or colour of the 
projection surface and a mobile object or projector-camera system, as shown in Figure 
2.32 (right). 

Similarly, Grundhöfer and Bimber extend their work to achieve real-time correction 
by using the GPU for calculation, while simultaneously adjusting the content of the 
input images before correction to reduce the perceived visual artefacts from limited 
projector dynamic range [Grundhöfer and Bimber 2008]. 

The two scenarios presented using the calibration methods generally assume the 
display surfaces are planar and orthogonal to the projector. In our work this is often not 
the case, as objects are mobile and need not be planar. The amount of light that arrives 
at the projection surface depends both on the distance and angle of the surface with 
respect to the projector, with oblique surfaces receiving less illumination and appearing 
darker. Hence we also need to incorporate intensity compensation based on the 
orientation of the object for non-planar objects, before the radiometric and colorimetric 
calibration is applied. 

  
Figure 2.33 (left and centre) Uneven illumination on a non-planar surface, (right) uncompensated and intensity 

compensated image [Park, Lee et al. 2006] 

Bimber et al. propose a formalisation of this compensation based on square distance 
to the surface and the angle of the projected light [Bimber, Coriand et al. 2005], 
however, generally we do not care about the absolute brightness as long as the 
projection is uniform. Hence, in our work, a simplified method proposed by Park et al. 
[Park, Lee et al. 2006] can be used as we know the surface geometry and pose of an 
object relative to the projector. 

2.3.8 Issues with Projector-based Augmented Reality 

Projector-based AR faces issues which do not occur with other display technologies, 
for example, the display brightness must overcome the ambient illumination, and that 
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image warping for geometric correction reduces the final achieved display resolution. 
However, there are three main problems which occur when using projection: 

 
2.3.8.1 Display Occlusion 
The most obvious problem with front-projection is occlusion of the projection, either 

by other objects in the environment, or by an interacting user. It was observed both by 
Pinhanez et al. and Summet et al. [Pinhanez, Kjeldsen et al. 2002; Summet, Flagg et al. 
2007] that users had to develop coping strategies for occlusions with front projection, 
moving their bodies and limbs to minimise occlusion.   

Summet et al. propose a solution using multiple redundant projectors in the 
environment and an off-axis camera to detect occlusions of the display. The projectors 
are separated spatially but their frustums overlap so that the projected image from one 
projector is able to “fill-in” areas occluded in the second projector.  In the active system 
[Summet, Flagg et al. 2007], the “Virtual Rear Projection” (VRP) method can also 
suppress the projected light on dynamically occluding users and objects, removing the 
blinding effect when users look towards the projector. While this approach works well 
when front projection is required, experiments reported that users still preferred rear 
projection systems.  The solution also requires multiple projector systems, doubling the 
equipment costs for each display. Real-time correction was also demonstrated using the 
GPU for the calculations [Flagg, Summet et al. 2005]. 

 

 
Figure 2.34 VRP used to overcome occluding light shadows [Summet, Flagg et al. 2007] 

Both the VRP shadow removal techniques and multi-projector blending algorithms to 
blend of overlapped projections are only suited to static projectors and display surfaces. 
When projecting on mobile objects, any mis-registration between the projections (for 
example, due to error in object pose calculation or differing detection, rendering and 
projection lag times in multiple projector-camera systems) creates a blurred or 
unreadable projection. 

Ehnes et al. propose another approach when using multiple steerable projectors and 
mobile objects [Ehnes, Hirota et al. 2005]. Similar to the VRP approach, multiple 
projectors have objects within their field of view simultaneously. However, instead of 
overlapped projection Ehnes et al. propose using a central application server, which 
assigns display rights based on the first projector-camera system to detect the object. A 
camera-reported quality measure (such as the distance and angle of the object surface 
with respect to the camera) is then used to determine when to change the display to 
another system [Ehnes and Hirose 2006].  

This approach does not model occlusion directly, however, as the steerable projectors 
use an on-axis camera, any occlusion of the projection would also occlude the object in 
the camera, causing a low quality measurement. The display would then automatically 
switch to another projector with the object in view. 
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2.3.8.2 Projection Focus Distance 
Typical projectors can only focus on a single focal plane located at a constant 

distance from the projector. Hence, projecting images onto non-planar surfaces, highly 
oblique surfaces or multiple surfaces at different distances causes blurring. If projectors 
possess computer controlled powered focus it is possible to calibrate the focus-distance 
relationship (as discussed in Appendix A.11) and dynamically focus on objects when 
their distance to the projector is known.  

Recent work by Bimber et al. proposes using multiple projectors focused at different 
distances in static systems [Bimber and Emmerling 2006], however, future LASER 
projectors will not have this problem at all, appearing in focus at all distances. 

 
2.3.8.3 Acceptability of Display 
Although it is possible to project interactive interfaces onto objects in an 

environment, if users do not realise the objects and displays are interactive, then there is 
no benefit beyond a traditional display. At a demonstration of the Everywhere Display 
steerable projector Kjeldsen et al. found that users failed to recognise a paint can had an 
interactive projected button, despite having just successfully touched two similar 
buttons on a wall and table [Kjeldsen, Pinhanez et al. 2002]. To investigate this further, 
Podlaseck et al. performed a series of user studies to investigate the acceptability of 
projected interfaces on everyday objects [Podlaseck, Pinhanez et al. 2003]. These 
studies propose the possibility that people have difficulty cognitively perceiving high 
functional-fixedness objects as interfaces.   

One illustrative example was a red virtual button projected onto the surface of a glass 
of milk, as seen in Figure 2.35 (left).  At the end of the first experiment 10% of the 
subjects could not even remember seeing a glass of milk, which Podlaseck et al. 
believes was because they had mentally subtracted it from task at hand. Similar results 
were presented in a different context by Rensink as inattentional blindness (where 
observers closely watching a particular object fail to see other unexpected objects) 
[Rensink 2000]. They theorise that users may effectively be “blind” to interfaces on 
some objects. Consequently, some mechanism must be employed to increase their 
visibility and highlight an application’s connection to the object. This presents a 
challenge to the direct integration of information with objects in real-world, suggesting 
that the connection of an interface to an object may need to be made more salient and 
explicit. 

 

  
Figure 2.35 (left) Interactive buttons projected on a variety of everyday surfaces, (right) Dynamic Shader Lamps 

projecting on mobile tracked object [Bandyopadhyay, Raskar et al. 2001] 

Weiser and Brown write “an affordance is a relationship between an object in the 
world and the intentions, perceptions and capabilities of a person [Weiser and Brown 
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1996].  The side of a door that only pushes out affords this action by offering a flat 
pushplate.”  Similarly, hints to the user could be weaved into the display to suggest 
interaction modalities, such as a “touch me” label on a touch sensitive button.  
However, such explicit messages are at odds with the deign goal of many interfaces 
aiming to be more natural and intuitive. Instead, subtle cues such as animation or 
interactive elements positioned specifically on objects close to a user could be used.  

2.3.9 Mobile Objects 

There has been much work on displaying projected content onto static areas of the 
environment [Pinhanez 2001], or static objects [Raskar, Welch et al. 1999; Butz, 
Schneider et al. 2004; Bimber, Coriand et al. 2005]. Similarly, there has been work on 
augmenting planar objects in very constrained scenarios such as “digital desk” scenarios 
[Wellner 1993; Robertson and Robinson 1999; Koike, Sato et al. 2001]. However, there 
has been relatively little work on augmenting mobile objects with projected displays in 
more unconstrained scenarios. 

Morishma et al. first augmented mobile objects with projected displays [Morishima, 
Yotsukura et al. 2000]. Here pre-recorded videos of faces speaking were projected onto 
a planar mask worn by a live actor. The mask was tracked by a camera and a 
homography calibration used to warp the video to correct for geometrical distortion. 
The projector was located in a shopping trolley pushed by the actor; hence the possible 
range of movement of the actor was limited. 

Increased working ranges have been demonstrated by using steerable projector-
camera systems to track mobile objects, such as the Personal Interaction Panel discussed 
in section 2.3.4. Similarly, Ehnes et al. use visual markers to track objects [Ehnes, 
Hirota et al. 2004]. The use of a steerable projector allowed tracking to occur anywhere 
within its field of view and information or graphics to be projected at locations relative 
to the marker, as shown in Figure 2.39 (right). 

Bandyopadhyay et al. investigated augmenting mobile objects with projected displays 
[Bandyopadhyay, Raskar et al. 2001]. Here 3D objects with planar surfaces were 
equipped with a magnetic and infra-red tracking system. Static projectors were used to 
augment the objects in real-time, as shown in Figure 2.35 (right). These projectors each 
required an initial calibration to match 3D points in the real world to 2D pixels in the 
projector image and hence, calculate the transformations between projector and tracking 
system’s coordinate system. A virtual 3D painting application was used to demonstrate 
the concepts of annotation and visualisation with projected displays. However, this 
work suffered from two key problems due to the tracking systems used. The first 
problem was that latency was around 110ms, which led to a 1cm distance lag even 
when the object was moved at very slow speeds. The Polhemus Fastrack magnetic 
tracker caused a second problem by limiting working range to 50-75cm.  

 
In our approach we use a projector-camera system with a vision-based object 

detection system, allowing augmentation of objects anywhere within the field of view of 
the system at camera frame-rates, without relying on separate tracking hardware.  
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2.4 Detection and Tracking of Objects 

To augment objects with projection, we must first calculate their location and 
orientation (i.e. their pose) with respect to the projector-camera system. There are many 
approaches to detecting and tracking camera or object pose in AR literature, for 
example, mechanical, magnetic, ultrasound, inertial, vision-based solutions, and hybrid 
systems combining different approaches [Azuma 1997; Rolland, Baillot et al. 2001]. 
Each approach has both advantages and disadvantages. For example, mechanical 
trackers are accurate but require a direct attachment, hence limit working volume. 
Magnetic trackers again have limited working volume and are additionally affected by 
metal objects in the environment. Ultrasound is susceptible to noise (for example, from 
jangling keys) and drift from temperature variations. Similarly, inertial systems (gyros 
and accelerometers) are expensive and again subject to drift over time [Lepetit and Fua 
2005].  

In contrast, while vision-based detection and tracking has a higher processing cost, it 
generally provides more accurate AR, as the pose is calculated directly from features in 
the image to be augmented. Vision-based detection and tracking in AR is split into 
fiducial marker-based and marker-less approaches. The marker-based approaches 
present a robust, low-cost solution to 3D pose estimation in real-time. They require no 
initialisation by hand, are robust to marker occlusion and provide a pose accurate 
enough for AR in good illumination conditions. However, they require changing the 
appearance of objects or engineering the scene to achieve this detection. 

In contrast, while markerless approaches use the natural appearance of an object, they 
typically require an off-line training phase to learn the object appearance. The 
processing cost is also generally higher than marker-based approaches, as detection 
algorithms tend to be more complex due to the difficulty in achieving a robust detection. 

2.5 Fiducial Marker Detection and Tracking 

Fiducial marker based visual tracking approaches are widely used in the AR 
community, especially in experimental prototypes due to the availability of open-source 
tracking toolkits (such as ARToolkit [Kato and Billinghurst 1999] and ARTag [Fiala 
2005]) allowing easy development. Many toolkits exist, typically each with their own 
marker appearance (such as rectangles, circles, semi-circles, and chessboard-like 
patterns), as shown in Figure 2.36 (left). Readers are referred to [Zhang, Fronz et al. 
2002] for an in-depth comparison. 

The fiducial markers themselves are printed planar patterns (similar to 2D barcodes) 
that a computer vision system can easily detect, track and decode, enabling information 
to be associated with the marker. Augmented Reality systems make use of this 
functionality to overlay computer generated information on top of detected markers 
using the detected marker pose for registration of the information with the real world.  
Traditionally a user wears a head mounted display (HMD), or carries a portable viewer 
to see the overlaid computer graphics, as shown in Figure 2.36 (right). 
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Figure 2.36 (left) Examples of different Fiducial Marker systems [Fiala 2005], (right) Using ARToolkit Markers with a 

HMD to view a virtual character [Kato and Billinghurst 1999]  

The augmentation process for ARToolkit is shown in Figure 2.37. Other marker 
systems employ a conceptually similar process, but may detect the marker outline using 
edge based techniques for robustness, and decode information encoded in the marker 
rather than using cross-correlation to identify the marker [Fiala 2005]. 

 

 
Figure 2.37 ARToolkit Recognition and Overlay method [Kato and Billinghurst 1999] 

Unfortunately, fiducial marker approaches exhibit six main limitations: 
1. Minimum Marker Size in Camera Images. The distance from the camera at 

which a marker can be detected decreases with both decreasing marker size and 
decreasing camera angular resolution. Hence, small markers, low resolution cameras 
or wide Field-Of-View (FOV) cameras will typically have a small tracking range. 
Fiala stated that for ARToolkit markers, a 75% marker recognition accuracy 
required a minimum marker edge size of 13 pixels in the image with a greyscale 
VGA camera and 18 pixels with a colour camera [Fiala 2005].  

2. Poor Location Accuracy. Malbezin et al. characterised the accuracy of ARToolkit 
marker tracking with a calibrated camera in room sized environments, between 1m 
and 2.5m distance from the camera [Malbezin, Piekarski et al. 2002].  It was found 
that the reported position error increased with distance, from 6 to 12% in the marker 
X axis and 9 to 18% in the marker Y axis, with the accuracy being further affected 
by the angle of the marker to the camera. They conclude that once calibrated, any 
systemic inaccuracy could be corrected by applying a filter to the detection results; 
however, the filter would require explicit calibration for every camera and lens 
combination used. 

3. Limited Number of Useful Marker. Some fiducial marker toolkits encode an ID to 
differentiate between different markers (e.g. ARTag toolkit [Fiala 2005]). The limit 
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on the number of markers that can be detected is the number of visually distinct 
markers that can exist with the encoding pattern used.  For example, ARTag has a 
library of 2002 rectangular markers with an encoded 11 bit unique numerical 
identity (ID). To increase the number the number of unique objects that can exist in 
the world the number of bits allocated to the ID (and hence the physical marker size) 
must be increased. Similarly, circular marker systems such as TRIP [Ipiña, 
Mendonça et al. 2002] are generally limited only by their physical size – extra rings 
with more bits can always be added to the outside of the marker.  
ARToolkit takes a different approach, with no fixed encoding scheme. This allows 
users to generate unique and visually distinct patterns inside the rectangular black 
border used for initial detection.  However, the user must then pre-calibrate the 
system and explicitly specify which patterns the system should load and search for 
at runtime. 

4. Marker Occlusion. Different marker toolkits exhibit different robustness to partial 
occlusion of the markers [Fiala 2005].  For example, as shown in Figure 2.38 (left 
and centre), ARToolkit detection will fail if even a small portion of the external 
marker border is obscured. In contrast, ARTag detection remains robust as long as 
three sides remain visible. This issue with ARToolkit can be used as a feature in 
multi-marker tracking scenarios, allowing failure in detection for one marker to be 
inferred as deliberate user interaction, for example, finger activation of a virtual 
button. 
 

 
Figure 2.38 (left and centre) Occlusion of ARToolkit marker prevents tracking, (right) Occlusion of ARTag marker  [Fiala 2005] 

5. Marker Illumination. As shown in Figure 2.39 (left), some AR toolkits lack 
robustness under varying illumination conditions due to use of a global image 
threshold [Naimark and Foxlin 2002].  Solutions to this include local or adaptive 
thresholding, or the use of more robust marker systems, such as ARTag, which use 
edge detection methods [Fiala 2005]. This is a serious issue for our work, as any 
projector light overlapping a marker may prevent detection. 

6. Visual Intrusiveness. As adding fiducial markers on objects is visually intrusive, 
Park and Park propose using Infra Red (IR) absorbing markers [Park and Park 
2004].  These markers appear black to an IR camera in environments illuminated 
with IR light, but are invisible to the human eye. Similarly, Nakazato et al. and 
Santos et. al demonstrate IR retro-reflective (but visually translucent) markers 
[Nakazato, Kanabara et al. 2004; Santos, Stork et al. 2006]. While such techniques 
remove visual intrusion, they still share the limitations of visual markers and 
additionally rely on the presence of IR light sources for detection.  
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Figure 2.39 (left) AR Toolkit fails to detect markers under different illumination conditions in the same frame [Fiala 

2005], (right) Ehnes et al. track ARToolkit markers with a steerable projector and project on modelled surfaces in the 

marker area [Ehnes, Hirota et al. 2004] 

With a view to augmentation in ubiquitous computing environments the marker based 
approaches are not ideal, as they require physical modification or engineering an objects 
external appearance to enable detection. To achieve robust detection at distance requires 
a large marker, which in turn reduces our available projection area, as illumination 
change on the marker due to projection may prevent detection. Additionally, use of 
markers is problematic for objects with non-planar surfaces, and 3D objects typically 
require multiple markers (e.g. a cube requires at least one marker per surface = 6) to 
achieve detection in all poses. Hence, our approach in this work uses the natural 
appearance of an object for markerless detection, allowing augmentation with displays 
without permanently changing an object’s appearance. 

2.6 Natural Appearance Detection and Tracking 

The use of natural appearance for marker-less detection in AR is generally a wide-
baseline matching problem, where natural features in an unknown scene have to be 
matched to a model of the object pre-built from training images, despite changing 
viewpoint and illumination conditions. In this work we consider only monocular (i.e. 
single camera) model-based detection and tracking approaches. We also distinguish 
between detection and tracking. Detection is identifying a known object in an unknown 
scene, whereas tracking is typically limited to following a previously detected object in 
an unknown scene. Tracking algorithms either require an initial detection step, or 
require that the object to be tracked is manually manipulated into a pose close to the 
starting pose assumed by the tracker. In this thesis we concentrate on object detection, 
however to understand the difference more clearly we first look briefly at tracking 
approaches before investigating detection in more detail. 

 The reader is directed to [Lepetit and Fua 2005] for a full survey of 3D model-based 
detection and tracking. 

2.6.1 Tracking 

Recursive tracking algorithms only face a narrow-baseline matching problem, as they 
typically just consider the last few camera frames to predict the current pose. Over such 
small timescales any object or camera movement is generally small and object 
appearance is not likely to change. However, object or camera occlusion, fast motion, or 
appearance and illumination changes between consecutive frames can cause loss of 
tracking, requiring re-initialisation either by another detection step, or manual re-
alignment. Recursive tracking in general is also susceptible to error accumulation 
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[Lepetit and Fua 2005]. The advantages of tracking approaches are that a predictor-
corrector framework constrains the search for matching features between frames based 
on their recent location, reducing image processing requirements and hence allowing 
faster, more real-time performance.  

The two most common frameworks on which trackers are based are the Kalman filter 
[Kalman 1960] and Particle filter [Isard and Blake 1998]. Both these frameworks use a 
Bayesian formulation to estimate the probability density of successive poses in the 
space of all possible camera or object poses. Kalman filters only consider a Gaussian 
distribution, whereas Particle Filters use a more general representation with a set of 
weighted pose hypotheses. Each particle is an individual hypothesis, allowing multiple 
hypotheses to be supported simultaneously. However, to describe complex motion a 
large set of particles is required, with consequent high processing cost. Particle filters 
are also more prone to jitter in the predicted pose, which can be smoothed using a filter 
[Isard and Blake 1998]. 

Objects with strong edge contours also allow use of edge tracking methods such as 
the popular RAPiD algorithm [Harris 1993]. RAPiD based algorithms generally project 
lines from the object’s known 3D model into camera image coordinates, based on an 
estimate of the object’s pose, as shown in Figure 2.40 (a). At intervals along visible 
lines a number of control points are generated (b). A 1D search is performed at each 
control point for edges in the camera image, perpendicular to the projected lines (c). 
The 3D motion of the object between consecutive frames can be calculated from the 2D 
displacement of the control points and used to predict both the pose in the next frame 
and hence, which control points will be visible [Drummond and Cipolla 2002; Klein 
and Drummond 2003]. 

  
Figure 2.40 (left) Drummond and Cipolla’s RAPiD-like algorithm, (right) robustness to partial occlusion [Drummond and 

Cipolla 2002] 

The main problem with algorithms based on RAPiD is their lack of robustness; as 
incorrectly matched edges from occlusion, shadow, object texture or background clutter 
cause incorrect pose computation. Hence, a number of extensions have been proposed 
to make RAPiD more robust, such as grouping control points to form primitives (such 
as a line or quadrilateral), the use of robust estimators such as RANSAC to detect 
outliers or integration of RAPiD into a Kalman filter [Lepetit and Fua 2005]. 

Approaches based on extracting and matching line segments to a 3D model are also 
possible, trading-off generality for robustness [Deriche and Faugeras 1990; Lowe 1992; 
Koller, Danilidis et al. 1993]. However, the edge based methods are generally fast, 
simple, robust to changing illumination and object scale. Their main problem is failure 
due to mismatching when backgrounds become cluttered or when rapid change in pose 
occurs. 
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2.6.2 Detection 

There are several challenges when detecting objects using their natural appearance. 
For example, objects themselves have widely differing appearances, and we need to 
detect them over a large scale range and with the object in any pose. Many approaches 
have been proposed using cues of an objects appearance, such as colour, texture, shape 
and features on the object. A selection of popular approaches to detecting these cues are 
described below: 

 
2.6.2.1 Colour 
Colour is a powerful cue for humans, used in many ways everyday in the real-world; 

for example, in traffic lights, as identifying features in man-made products, in 
advertisements or warning signs. In computer vision, colour histograms, first proposed 
by Swain and Ballard [Swain and Ballard 1991], have been shown to be invariant to 
rotation and robust to appearance changes such as viewpoint changes, scale and partial 
occlusion and even shape. Hence, a 3D object can be represented using a small number 
of histograms, corresponding to a set of canonical views (Swain and Ballard 
recommend 6 views). However, in their original work Swain and Ballard reported the 
need for a sparse colour distribution in the histogram to distinguish different objects, 
which can be achieved using a high dimensional histogram. Similarly, colour 
histograms are illumination variant, so illumination intensity, temperature and colour 
will all affect the final histogram. In contrast, histogram matching techniques are 
generally robust, as the histogram representation uses the entire appearance of the object 
rather than just a small number of interest points. 

Histograms are created by dividing a colour-space into discrete units (bins) and filling 
those bins with each pixel of that colour from the source image. The result will be a set 
of bins which represent the approximate colour distribution in the image. Histograms 
can be multi-dimensional (e.g. 3D Red-Green-Blue histograms) and bins can be larger 
than a single value (e.g. for an 8-bit RGB colour image each bin could be 16 colour 
values wide, giving a 16x16x16 bin histogram). 

As most objects have surfaces composed of regions of similar colour, peaks will be 
formed in the histogram. Objects can be detected by matching a colour histogram from 
a camera image region to a histogram from a training sample of the object using either 
the histogram intersection measurement (for two histograms V and Q): 
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 With histograms a high match value will still be obtained, even if individual pixel 

colour matches are not exact, because the regions are well matched.  
Swain and Ballard also propose histogram back-projection as a way of locating an 

object in an image. Here the colour values in the source image are replaced by matching 
values from a ratio histogram calculated between the object model and image 
histogram. Swain and Ballard then propose convolving the result image with a mask of 
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the estimated size of the object and extracting maxima which correspond to an expected 
location. 

 
2.6.2.2 Texture 
Many objects cannot be described by colour alone (for example, black objects), hence 

objects with visible texture on their surfaces allow a wider range of techniques to be 
employed. For example, template matching approaches are fast and can be easily used 
to track 3D objects with planar surfaces (assuming a calibrated camera), although this 
method is susceptible to failure with occlusion and must be explicitly trained with 
varying illumination to become robust to illumination change [Jurie and Dhome 2002]. 

The histogram approach of Swain and Ballard was generalised to multidimensional 
histograms of receptive fields by Schiele and Crowley to detect object texture [Schiele 
and Crowley 2000]. The histograms encode a statistical representation of the 
appearance of objects based on vectors of joint statistics of local neighbourhood 
operators such as image intensity Gaussian derivatives (Dx,Dy) or gradient magnitude 
and the local response of the Laplacian operator (Mag-Lap), as shown in Figure 2.41. 
Multidimensional histograms are used to provide a reliable estimate of the probability 
density function without being computational expensive.  

Experimental results show the histograms are robust to partial occlusion of the object 
and are able to recognise multiple objects in cluttered scenes in real-time using the 
probabilistic local-appearance hashing approach proposed by Schiele and Crowley.  
When matching, Schiele and Crowley found Chi-squared divergence function provides 
better detection results than intersection, with respect to appearance changes, additive 
Gaussian noise and blur [Schiele and Crowley 2000]. 

Another approach to presented by Schaffalitzky and Zisserman develops a region 
descriptor for texture detection, using a class of statistical descriptors which is invariant 
to affine viewpoint and photometric transformations [Schaffalitzky and Zisserman 
2001]. Their method was demonstrated directly in wide-baseline matching to calculate 
the epipolar geometry between two views despite significant changes in viewpoint; 
however, their work makes the assumption that all regions are planar. 

 

  
Figure 2.41 (left) Two dissimilar objects and their Mag-Lap histograms corresponding to a particular viewpoint, image 

plane rotation and scale. [Schiele and Crowley 2000], (right) Shape Context 2D log-polar histogram based on relative 

point locations [Belongie, Malik et al. 2002] 

2.6.2.3 Shape 
Object shape can be described using either a global or local shape description. For 

global shape typical approaches use PCA-based methods [Turk and Pentland 1991; 
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Murase and Nayar 1995]. Here a global eigenspace is built as training images are 
projected into it. PCA analysis reduces the dimensionality of the training image set, 
leaving only those features in the images that are critical for detection. To train the 
representation typically a set of images of each object in different poses with varied 
lighting (to make it illumination invariant) are used. This image set is compressed to a 
low-dimensional sub-space by computing eigenvectors and eigenvalues on the 
covariance matrix of the training images and the highest eigenvectors kept. These 
eigenvectors represent a manifold. When detecting an object in an unknown image, the 
image is projected into the eigenspace and recognised based on the manifold it lies on. 
The pose is determined by the location of the projection on the manifold [Murase and 
Nayar 1995]. PCA based methods require the image projected to the eigenspace to be 
the same size as the training images, hence a scale-space must be created for scale-
invariant detection [Lindeberg 1990]. Turk and Pentland also propose using a 2D 
gaussian centred on the training and test images to reduce image intensity at the borders, 
as cluttered backgrounds negatively affect the detection [Turk and Pentland 1991]. 

Local shape can be detected using many methods. Here we look at methods that 
describe the silhouette contours of an object, as these can be directly matched to a pre-
computed database of object appearances with the object in different poses. For objects 
with known exact 3D models this database of object appearances can be calculated 
directly by rendering the model in different poses and extracting the silhouette contour 
using an edge detection algorithm, such as the Canny algorithm [Canny 1986]. 

The Curvature Scale Space (CSS) algorithm is part of the MPEG7 standard, for use in 
2D shape detection [F.Mokhtarian 1995]. CSS is a “multi-scale organization of the 
inflection points of a 2D contour in an image”, i.e. zero-crossing points on the contour 
are detected when the contour changes direction. The multi-scale segmentation renders 
the system robust to edge noise and local shape differences. This algorithm has been 
demonstrated in 3D object detection [F.Mokhtarian, Khalili et al. 2001] and because the 
silhouettes of objects will be very similar with only small changes in pose, Mokhtarian 
and Abbasi also proposed a way of determining how many unique training views are 
required in an appearance database to maximise detection rates [F.Mokhtarian and 
Abbasi 2005]. This allows objects with complex and non-rotationally symmetric 
geometries to estimate pose by direct matching with CSS to the appearance database. 

The Shape Context method described by Belongie et al. [Belongie, Malik et al. 2001; 
Belongie, Malik et al. 2002] is related to deformable templates [Aixut, Meneses et al. 
2003; Felzenszwalb 2005] and has achieved success in charcter recognition. The 
contours of an object are first extracted using an edge detection algorithm and a set of 
points detected on the contours, either equally or randomly spaced.  The shape context 
algorithm then captures the relative distribution of points in the contours relative to each 
point on the shape. As shown in Figure 2.41, a histogram of the number of contour 
points in each “bin” of the log-polar coordinates can be created to describe each point. 
Descriptors are similar for homologous (corresponding) points and dissimilar for non-
homologous points, hence objects can be detected by matching the log-polar histograms 
and generating point correspondences. As the number of points in training and test 
images is identical, the matching process is a linear assignment problem, with the goal 
of assigning the best match to each point. Here, the histograms are used to calculate and 
minimise the cost for each match. Belongie et al. then align training and test images 
using a thin-plate-spline method of point-set alignment to model the deformation 
required to align the two images. 
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2.6.2.4 Features 
Another approach using the natural appearance of an object is local features. Local 

feature based detection algorithms aim to uniquely describe (and hence detect) an object 
using just a few key points. By extracting a set of interest points such as corners or 
blobs from training images of an object we can use the local image area immediately 
surrounding the interest point to calculate a feature vector which we assume serves to 
uniquely describe and identify that point. A database of local features registered to a 3D 
model of the object is constructed off-line. At runtime interest points are detected in the 
camera image. Object detection now becomes a problem of matching features between 
the training set and camera image by comparing feature descriptors. Once 2D image to 
3D model correspondences are established they can be directly used to calculate the 
object’s 3D pose. Readers are referred to [Mikolajczyk and Schmid 2005; Mikolajczyk, 
Tuytelaars et al. 2005] for an in-depth comparison of different feature detection and 
descriptor algorithms. 

 

   
Figure 2.42 (left) SIFT local feature based AR method, (right, top) SIFT Features detected on a mug, (right, bottom) 

AR teapot added to camera display [Gordon and Lowe 2004] 

Local features are demonstrated for marker-less real-time object detection and 
tracking [Gordon and Lowe 2004; Gordon and Lowe 2006]. Here Gordon and Lowe use 
an off-line metric model-building phase to initially acquire scene geometry with SIFT 
scale and rotation-invariant features [Lowe 2004]. The 3D feature model can then be 
used on-line for near real-time detection and tracking with local features for AR, as 
show in Figure 2.42. 

Affine viewpoint-transform invariant features which deform their shape to the local 
region orientation have also been proposed [Matas, Chum et al. 2002; Mikolajczyk and 
Schmid 2002]. The geometry and intensity based affine region trackers proposed are 
also invariant to linear changes in the illumination, increasing robustness for real-world 
environments. However, the number of actual features detected is less as only invariant 
features are kept and (due to their invariance) these features are also less discriminative, 
hence and the possiblity of mis-matches increases. 

2.6.3 Multi-Cue Detection and Tracking 

As objects vary significantly in their appearance, approaches based on a single cue 
such as just colour or shape can perform poorly in real-world environments. No single 
visual cue is general enough but also robust enough to cope with all possible 
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combinations of object appearance and environment, hence, multi-cue detection systems 
have been proposed. The goal of multi-cue approaches is to increase robustness for 
detection and tracking in dynamic environments. In theory, a combination of 
complementary cues leads to an enlarged working domain, while a combination of 
redundant cues leads to an increased reliability in detection [Spengler and Schiele 
2001].  

Popular cue combinations are edges and vertices of the 3D model [Hirose and Saito 
2005], edges and texture [Vacchetti, Lepetit et al. 2004], colour and edges [Li and 
Chaumette 2004], colour and texture [Brasnett, Mihaylova et al. 2005], intensity, shape 
and colour [Spengler and Schiele 2001], shape, texture and depth [Giebel, Gavrila et al. 
2004]. However, these combinations are fixed at runtime. 

Extended or unscented Kalman filters have been widely used for multi-sensor fusion 
[Welch and Bishop 1997; You and Neumann 2001; Foxlin and Naimark 2003]; 
however, Kalman filters require a good measurement model. As objects and cameras 
can be mobile or handheld in AR, it is difficult to define a model suitable for such 
unpredictable motion [VanRhijn and Mulder 2005].  

Typically, multiple detection cues are fused in particle filter tracking frameworks, 
allowing multiple target hypotheses to exist simultaneously [Spengler and Schiele 2001; 
Giebel, Gavrila et al. 2004; Li and Chaumette 2004; Brasnett, Mihaylova et al. 2005]. In 
this case the detection of each cue is often assumed to be independent and they are 
democratically integrated to contribute to the overall measurement density. Hence, 
when different image cues are fused simultaneously, the failure of one cue will not 
affect the others [Li and Chaumette 2004]. 

Several other methods have been proposed in multi-cue tracking for AR, for example 
using edges and vertices of the 3D model [Hirose and Saito 2005]. Similarly, Vachetti 
et al., use edges of the 3D model and texture [Vacchetti, Lepetit et al. 2004]. Here, they 
extend the RAPiD tracker to consider multiple contour candidates instead of just the 
closest, to solve edge ambiguities. The correct match is then selected during pose 
optimization using a robust estimator. Texture is detected as Harris corners [Harris and 
Stephens 1988] on the surface of the object and both are fused using the method 
described [Vacchetti and Lepetit 2004]. This fusion makes both the registration 
accuracy more stable and allows the system to handle textured and un-textured objects, 
however, it does not take into account rapid camera or object movement. 

In our approach we also use multiple detection algorithms to detect smart objects, but 
cues are chosen at runtime by a selection step based both on the appearance knowledge 
contained within a smart object and the object’s context (such as the background). 

2.6.4 Camera Model 

Understanding how cameras and projectors are modelled is important to understand 
how an object’s pose is calculated and how projectors and cameras are calibrated in this 
thesis. 

In this work we use a standard pinhole camera model for both projectors and cameras, 
formulating the projection of light rays between 3D space and the image plane of the 
camera or projector. We assume this projection is a perspective projection. As can be 
seen in Figure 2.43 (left), the camera image plane (where the projection of 3D points is 
formed) is modelled as a 2D plane in the X,Y axes with the Z axis towards the object. 
P(x,y) is the principle point, where the Z axis (representing the optical axis of the 
camera) intersects the image plane. 
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Figure 2.43 (left) Pinhole Perspective Camera Model, (right) Checkerboard pattern for camera calibration with overlaid 

pattern coordinate system 

The 3D coordinates of Object X are defined as [X,Y,Z]T and the corresponding 
projection on the camera image plane (x) is [xc,yc] T. These are related by the equation 
sx = PX, where s is a scale factor and P is a 3x4 projection matrix defined up to scale. 

The projection matrix P can be decomposed as: 
 

[ ]tRKP =  (2.6)
 
where K is a 3x3 matrix of the intrinsic optical parameters of the camera (the camera 

calibration matrix) and [ ]tR  is a 3x4 matrix of extrinsic parameters (R represents a 3x3 
rotation matrix and t a translation) defining the transformation of the object (or camera) 
from the world coordinate system to camera coordinate system [Lepetit and Fua 2005]. 
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The intrinsic parameter matrix (K) is composed of fx,fy which are the focal lengths of 

the lens in the X and Y axes respectively. These focal lengths are determined in terms of 
pixels per unit distance in the respective axes. Px,Py are the pixel coordinates of the 
principal point in the camera image. We assume rectangular pixels, hence skew = 0. 

In this work we use the Zhang’s camera calibration method [Zhang 2000] to recover 
the camera intrinsic parameter matrix (K) from images captured of a planar 
checkerboard pattern in different orientations and at different distances to the camera, as 
shown in Figure 2.43 (right). Additionally, as a camera lens is not optically perfect, we 
assume a second order lens distortion model with radial and tangential distortion 
[Hartley and Zisserman 2003]. Lens distortion is estimated at the same time as 
calibration with Zhang’s method. All camera images captured in this work are initially 
corrected for lens distortion before use. 

Readers are referred to [Hartley and Zisserman 2003] for a full discussion of camera 
calibration. 
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2.6.5 Pose calculation 

As an object moves around an environment its appearance changes depending on its 
relative orientation and distance to the camera. As we are interested in detection of 
objects in unconstrained real-world scenarios we aim to recover the full 6 degree-of-
freedom 3D location and orientation of the object relative to the camera when it is in 
any pose, or at any scale.  

Pose Calculation involves calculating the transformation which allows the best fit of 
an object’s 3D model to features detected in a 2D camera image. This is equivalent to 
calculating [ ]tR , the extrinsic parameters of the object (or camera). Many different 
approaches have been proposed, but most approaches require correspondences to 
already have been established between the image and 3D model before the pose 
calculation step. Some of the most common methods are described below: 

 
A 3D object pose can be calculated directly from correspondences using a Direct 

Linear Transform (DLT). This method is similar to the homography projector 
calibration process described in section 2.3.6, however, the formulation is now a linear 
system of equations for 3D-to-2D projection. A unique solution can be obtained to the 
equations using Singular Value Decomposition (SVD) when the intrinsic parameters are 
known and there are 6 or more correspondences. However, as the DLT algorithm 
minimises algebraic error in its solution, the calculated pose may not be the best 
geometric fit of the model. Instead, we can re-formulate the equations to give us the 
minimum re-projection error between the 3D points and their 2D coordinates: 

 
[ ]
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xPXdisttR ),(minarg 2  (2.8)

 
This can now be solved using linear least squares minimisation techniques or non-

linear iterative approaches [Lepetit and Fua 2005]. The iterative approaches such as 
Gauss-Newton and Levenberg-Marquardt can also be used as a way to improve 
accuracy following an initial pose calculation such as DLT, or when we have an initial 
estimate of the pose (for example, from other non-vision-based sensors). 

As any incorrect correspondences in the pose calculation process causes errors in the 
calculated pose, a robust estimator such as RANSAC [Fischler and Bolles 1981] or an 
M-estimator is typically used in model-based tracking. The two approaches are 
complimentary, with M-estimators producing accurate solutions but requiring an initial 
estimate, while RANSAC does not requiring an estimate but typically uses only a subset 
of all correspondences. RANSAC itself is a simple iterative algorithm, randomly 
extracting the smallest set of correspondences required to calculate a pose (Fischler and 
Bolles use 3 correspondences). After pose calculation the algorithm projects all 3D 
model points and measures the re-projection error to the corresponding 2D points 
detected in the camera image. If the points are projected close enough the corresponding 
points are treated as inliers. RANSAC finally returns the pose with the largest number 
of inliers, theoretically eliminating incorrectly matched correspondences. 

DeMenthon and Davis’ POSIT algorithm first calculates an approximate pose by 
assuming the camera model is a scaled orthographic projection  [DeMenthon and L.S. 
Davis 1995]. With a simpler camera model there are less unknown components of the 
projection, hence with more than 4 corresponding points a pose can be calculated by 
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solving a set of linear equations. After the initial estimate each point is weighted based 
on the re-projection error (scaling the coordinates) and the process is iterated until it 
converges. The POSIT algorithm does not work when the model is planar; hence, 
Oberkampf et al. extend the original algorithm for the coplanar case [Oberkampf, 
DeMenthon et al. 1996]. As incorrect correspondences in the pose calculation process 
cause an incorrect pose to be calculated, in more recent work David et al. propose 
combining the POSIT algorithm with a softassign approach [Gold, Rangarajan et al. 
1998]. This allows simultaneous determination of pose and correspondence with the 
softPOSIT method for points [David, DeMenthon et al. 2002], lines [David, DeMenthon 
et al. 2003] and line features when there are high-clutter backgrounds [David and 
DeMenthon 2005].  

In contrast, voting approaches such as the Generalised Hough Transform (GHT) only 
represent object structure implicitly for efficient matching, avoiding the need for costly 
methods to group features for robust pose calculation (such as RANSAC). Instead, 
matching feature pairs (such as 3D model lines and image edges) are converted into 
votes for a rigid transformation which would align the corresponding features, assuming 
the matches are correct. Votes from multiple matches for a consistent transformation 
make peaks in a voting histogram; hence the transform is robust to outliers. This 
approach is used with Lowe’s SIFT local features as an initial clustering step to reduce 
outliers before RANSAC [Brown and Lowe 2002; Lowe 2004]. 

Geometric hashing approaches use a similar approach, but use a hash table instead of 
a multi-dimensional voting space for performance reasons [Wolfson 1990; Lamdan and 
Wolfson 1998]. Hence, while the GHT quantises all possible transformations between a 
model and object into its bins, geometric hashing quantises only a set of discrete 
transformations represented by the hash basis. 

 
In our work we first establish correspondences between features such as interest 

points or lines in the camera image and the object’s 3D model, then use a robust 
approach combining DLT and RANSAC for initial pose estimation and a small number 
of Gauss-Newton iterations to refine the pose and increase accuracy. 

Readers are referred to Hartley and Zisserman for a complete introduction to pose 
calculation [Hartley and Zisserman 2003]. 

 
2.6.5.1 Pose Jitter 
One of the major problems with pose calculation is jitter, which can arise even with a 

static camera and object due to two main factors:  
The first is that mismatched features or noise in the image affects the calculation, so 

when calculating pose from a few correspondences even small differences in the 
location of detected features in the camera image can have a large effect on the overall 
pose calculation. Robust matching techniques such as RANSAC can be used to reject 
outliers with large errors when the solutions are over-constrained with many 
correspondences, however, they can still include features with small reprojection errors.  

The second factor is that numerical methods calculating a Perspective transformation 
from n Points (PnP) have multiple valid solutions for small numbers of 
correspondences. For example, the original RANSAC algorithm uses 3 points, which 
has up to 4 possible solutions. The results can usually be constrained, for example, by 
ensuring the calculated pose places the object in front of the camera rather than behind. 
However, this problem cannot be entirely eliminated in the case where ambiguous data 
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causes a model to fit in multiple valid ways. One example for humans is the popular 
Necker Cube optical illusion, where with certain line or corner arrangements a simple 
cube appears inverted. In vision systems this can lead to flipping between two poses. 

Both these factors lead to jitter, which can either be smoothed using a motion model, 
minimised either using an approach such as keyframes discussed in section 2.6.6, or by 
employing stronger constraints. One solution using stronger constraints is registration 
with planar structures such as polygons or circles in the scene. This approach can be 
useful as many planar surfaces exist in everyday environments. For example, Ferrari et 
al. track a planar surface under affine transformations and overlay virtual textures 
[Ferrari, Tuytelaars et al. 2001].  

2.6.6 Hybrid Detection  

To trade-off the advantages and disadvantages of both the maker-based and 
markerless approaches hybrid detection approaches have been proposed. Genc et al. 
first proposed a learning-based approach, where markers are initially used to train a 
detection system while corners are extracted from the scene [Genc, Riedel et al. 2002]. 
A bundle adjustment is then performed off-line to reconstruct object geometry. This 
model is then used for tracking with a robust corner matching algorithm. 

Similarly, Bougeois et al. use pose information from initial marker detection to 
remove the requirements for hand initialisation of a 3D model-based tracker for 
successive frames [Bourgeois, Martinsson et al. 2005]. 

Recently, as computer processing power has increased a real-time tracking by 
detection approach has become feasible in markerless tracking approaches [Lepetit and 
Fua 2005]. However, as illustrated by Lepetit and Fua, detection in each frame 
independently has three main problems: reduced accuracy, increased jitter in the 
recovered pose and increased processing requirements over narrow-baseline matching. 
Consequently, imposing temporal continuity constraints across frames can help increase 
the robustness and quality of the results. For example, Vacchetti et al. propose a hybrid 
algorithm, combining a small number of key-frame models (generated from training 
images of the object in known pose) together with a real-time bundle adjustment 
algorithm [Vacchetti and Lepetit 2004]. This formulates the tracking as both wide-
baseline matching to the key-frames and narrow-baseline matching to previous frames. 
The hybrid detection-tracking approach copes with large viewpoint changes due to the 
key-frames, while reducing pose jitter and drift. 

Hybrid methods using vision detection with physical sensors have also been 
proposed. These are discussed further in section 2.7.  

2.7 Vision-Based Detection with Physical Sensing 

There are many failure modes for vision-based detection: giving false positives where 
no object exists, incorrect classification, or failing to detect an object. Common reasons 
for failure can be classified as: environment-related failures (such as significant changes 
in the illumination), motion-related failures (such as fast movement of the object or 
camera causing blurring of the image), distraction related failures (for example, where 
multiple objects with identical appearance are present), or occlusion-related failures 
where objects or environment partly or fully occlude object we want to detect. 
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To address these problems, researchers have used sensing in combination with vision-
based detection. Most related work falls into two categories: 

1. Sensing for Pose and Object Motion Prediction 
2. Structured Light Sensing for Location and Pose 

2.7.1 Sensing for Pose and Object Motion Prediction 

Vision-based detection and pose calculation faces the problem that any rapid motion 
of the camera or object during the camera exposure generally causes blur. This motion 
blur changes an object’s appearance; hence, can easily cause a loss of tracking.  

Hybrid vision-inertial detection systems are often used to overcome this problem. For 
example, Klein and Drummond [Klein and Drummond 2003], You et al. [You, 
Neumann et al. 1999] and Chandraker et al. [Chandraker, Stock et al. 2003] all use 
inertial sensing to predict object motion when an object is not detected visually. Here, 
the vision and sensing approaches attempt to compensate for the limitations of the other 
technology, with vision to correct drift in the inertial system, and the inertial system to 
compensate for blur or occlusion in the camera image. Aron et al. use a similar 
approach [Aron, Simon et al. 2004], but here inertial sensing is used directly for guided 
local feature matching. In contrast, Kotake et al. present a different approach, using only 
an inclinometer sensor in the camera to constrain the detection and pose calculation 
process [Kotake, Satoh et al. 2005; Kotake, Satoh et al. 2007]. 

Combined vision-based and optical sensing methods have also been used. Klein et al. 
track a tablet using the edges in its 3D model and IR LED markers [Klein and 
Drummond 2004]. The LED are detected with a separate high-speed fixed camera, 
allowing detection and pose calculation even under large or fast movements which 
cause the edge features to blur and vision-based tracking to fail. However, in common 
with many hybrid systems using outside-in trackers, their system requires an additional 
offline calibration procedure to calculate the transformation between the optical sensing 
and vision-based camera coordinate systems. 

Everyday objects face many problems when integrating sensing as part of their 
detection process. For example, inertial sensors are expensive; hence they cannot be 
routinely integrated with all objects. Separate outside-in trackers (such as optical or 
magnetic trackers) either require additional hardware in the object or environment and 
explicit calibration before use. 

2.7.2 Structured Light Sensing for Location and Pose  

Lee et al. [Lee, Dietz et al. 2004; Lee, Hudson et al. 2005] propose using light sensors 
in the objects to help address some of the problems associated with vision-based 
detection approaches, such as the problems of figure-ground separation (identifying 
what is the object and what is the background), variable lighting conditions, material 
reflectance properties (as reflective or transparent objects are challenging to track) and 
non-planar or non-continuous surfaces.  

Lee et al. embedded light sensors in the corners of an augmented portable display 
screen and projected a series of structured light gray codes towards the object. The 
sensors detect and transmit observed light values back to the projector and the projector 
directly locates the display screen in its frame of reference based on the detected 
changes in brightness over time. Unfortunately due to the temporal coding used this 
approach suffers form two problems, firstly that the user sees a distracting set of 



2.7    VISION-BASED DETECTION WITH PHYSICAL SENSING 

 52

flickering patterns on their object, and secondly the gray code localisation takes up to a 
second, so cannot be used to augment mobile objects in real-time.  

 

  
Figure 2.44 (left) Projection on mobile planar surfaces with single light sensor [Summet and Sukthankar 2005], (right) 

Projection onto surfaces with sensors at each corner for rotation information [Lee, Hudson et al. 2005] 

Summet and Sukthankar extended this to real-time interaction on mobile screens 
[Summet and Sukthankar 2005], by restricting the size and location of projected 
patterns to the immediate area around the screen corners (as shown in Figure 2.44).  
This implementation reduced the flickering effect and allowed the remainder of the 
projection area to be used for display, however the update rate still limited movement 
speeds to slow hand motions before tracking was lost. 

Raskar et al. demonstrated similar objects which sense projected structured light  
[Raskar, Beardsley et al. 2004], however, their implementation reverses the display 
paradigm by assuming a dynamic handheld projector used like a virtual flashlight and 
static objects. In this case, smart tags attached to objects use active RFID instead of a 
wireless RF link to return observed light values to the handheld projector.  A gyroscope 
embedded in the projector also allows the object’s relative 3D location to be calculated 
directly based on movement of the handheld projector coupled with the changes in the 
object’s gray code value. 

More recent work by Raskar et al. on their Prakash system [Raskar, Nii et al. 2007] 
presented a high-speed system that detects 3D location and orientation of photo-sensing 
tags using multiple Infra-Red (IR) projectors. Cheap Light Emitting Diodes (LED) were 
used as the light source, replacing the expensive video projectors used previously. The 
demonstration system achieved over a 500Hz update rate, based on fast switching of the 
LEDs and the use of sequentially illuminated dedicated binary code masks in the 
projector. 

Structured light techniques require a minimum of one un-occluded light sensor in 
view of the projector to enable detection, or three light sensors for calculation of 3D 
location and orientation. The Prakash system [Raskar, Nii et al. 2007] reverses the 
paradigm, in that it requires only a single sensor, but a minimum of three LED 
projectors to calculate 3D location and pose. However, both approaches require many 
more sensors to guarantee correct pose calculation when used with 3D or self-occluding 
objects. For example, cubical objects would require either 18 light sensors (3 per face), 
or 6 for the Prakash system to order to detect all poses. 

 
In contrast to the approaches that use magnetic, inertial or light sensors directly, in 

our work any movement sensor information available in a smart object is used to 
constrain the detection task. This allows indirect and opportunistic use of sensing to 
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increase detection robustness, without requiring expensive sensors, obtrusive sensors, or 
a minimum number of sensors to operate. 

2.8 Summary 

As we have seen in section 2.2.4, there is potential for output capability in smart 
objects to benefit the user by redressing the input-output imbalance in physical tangible 
interfaces. We reviewed projector-based augmented reality approaches as a suitable 
means to create non-invasive displays on objects and projector-camera system hardware 
used for the display itself. Smart objects can then achieve a display on their surfaces by 
cooperating with projector-camera systems. Of the approaches surveyed we integrate 
geometric, photometric and colorimetric correction in our work to enable displays that 
are undistorted and visible for an observer. Of the hardware surveyed we construct a 
steerable projector-camera system to enable vision-based detection, tracking and 
projection onto objects. This system is discussed further in Appendix A. 

We reviewed computer vision approaches suitable for achieving vision-based 
detection and tracking of smart objects. Of the approaches surveyed in our work we 
integrate the markerless natural appearance detection cues of colour, texture, shape and 
features of objects described in section 2.6. We use multiple natural appearance cues as 
a single cue is not robust enough to detect all objects in every situation; however, we 
need to understand how to combine the cues to achieve the best detection performance. 
A first step towards this understanding is to investigate how the natural appearance 
detection methods perform with the object in different detection conditions, such as 
with scaling and rotation. 

To increase robustness to some of the failure modes associated with pure vision-
based detection approaches we integrate a hybrid vision and physical sensing detection 
method in our work. We propose using the sensing capabilities of a smart object in 
cooperation with vision-based detection in the projector-camera system, but we need to 
understand how sensing helps detection and what sensors are best suited for use. 

This cooperative approach between smart object and projector-camera system is 
formalised in the Cooperative Augmentation Framework presented in Chapter 3. 
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Chapter 3 Cooperative Augmentation 
     Conceptual Framework 

In this chapter we present Cooperative Augmentation, a framework enabling smart 
objects and projector-camera systems to cooperate to achieve non-invasive projected 
displays on the smart object’s surfaces. 

 
There are eight defining characteristics of the Cooperative Augmentation concept: 

1. Generic, ubiquitous projector-camera systems offering a display service. 
All knowledge required to detect, track and project on objects was traditionally held 
by the projector-camera system in smart environments. In contrast, this knowledge 
is distributed among the smart objects in our approach, so that each smart object 
now contains the knowledge required achieve a display. This reduces the projector-
camera systems to providing a generic display service, allowing us to assume they 
are ubiquitous in the environment. 

2. Spontaneous cooperation between smart objects and projector-camera systems. 
Projector-camera systems in the environment are able to support spontaneous 
interaction with any type of smart object. An object simply registers for use of the 
generic display service to obtain an output capability on its surfaces.  

3. Smart objects embodying self-description knowledge. 
We assume smart objects are both real world objects with an inherent use and 
autonomous computational nodes. Objects cooperate with the projector-camera 
systems to achieve a display by describing knowledge they carry which is vital to 
the visual-detection and projection process, such as knowledge of their appearance. 
We call this information the “Object Model”, as it is a representation of the object’s 
appearance, form and capabilities.  

4. Dynamic tailoring of projector-camera system services to smart objects. 
The projector-camera system uses the Object Model to dynamically tailor its 
services to the object. The Cooperative Augmentation approach is flexible, as a 
dynamic configuration process caters for varying amounts of knowledge in the 
object. All configuration occurs automatically in response to the knowledge 
embodied by the Object Model. 

5. Using smart object capabilities to constrain detection and tracking. 
When sensor information is available from the object, this can be integrated in the 
detection and tracking process, allowing us to dynamically constrain the process and 
increase visual detection performance. 

6. Smart objects control interaction with projector-camera systems. 
After detection the smart object controls the interaction with projector-camera 
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systems. The smart object issues projection requests to the projector-camera system, 
controlling how the projected output on its surfaces changes and allowing direct 
visual feedback to interaction. 

7. Displays on the objects themselves, without modifying object appearance or 
function. 
Unlike physical embedded displays, the projected display is a temporary display 
which does not permanently modify the object’s appearance or function. 

8. Projector-camera systems dynamically update knowledge held by the object. 
Over time, the camera system extracts additional knowledge about the object’s 
appearance, and re-embeds this within the object, enriching the original Object 
Model and enabling increased detection performance. 

 
This chapter expands the Cooperative Augmentation concept by explaining the four 

key areas of: the Cooperative Augmentation environment, the Object Model 
representation of the Smart Objects, the projector-camera system model and the actual 
Cooperative Augmentation process itself. 

3.1 Cooperative Augmentation Environment 

We assume all smart objects, projectors and cameras exist in a shared three-
dimensional space, which we call the “environment”. This allows us to locate each 
object in a shared frame of reference and easily model the relationships between 
devices. We term the shared frame of reference the world coordinate system, which is 
modelled as a three-dimensional Cartesian system. This can have an arbitrary origin in 
the physical world. 

3.2 The Object Model 

The “Object Model” is a description of a smart object and its capabilities, allowing 
the projection system to dynamically configure its detection and projection services for 
each object at runtime. We assume the Object Model knowledge is initially embedded 
within the object during manufacture. However, the knowledge can also be extended 
and added to by projector-camera systems. 

 
The model consists of five components: 
1. Unique Object Identifier 

This allows an object to be uniquely identified on the network as a source and 
recipient of event messages and data streams. For example, by the IP address of 
the object’s hardware. 

2. Appearance Knowledge 
This knowledge describes the visual appearance of the smart object. The 
description is specific information extracted by computational methods from 
camera images of the object. For example, knowledge about the object’s colour, 
or locations and descriptions of features detected on the object. 

3. 3D Model 
A 3D model of the object is required to both allow a projector-camera system to 



3.3    THE PROJECTOR-CAMERA SYSTEM MODEL 

 56

compute the object’s pose and enable the framework to refer to individual 
surfaces. 

4. Sensor Knowledge 
The sensor model is a description of the data delivered by the object’s sensors. 
The data type is classified into three groups with regard to the originating sensor: 
movement sensor data, light sensor data and others.  The data is further classified 
into streaming or event-based, depending on the way sensor data is output from 
the smart object.  The model contains associated sensor resolutions, and sensor 
range information to allow the framework to interpret sensor values. 

5. Location and Orientation of the Object 
When an object enters an environment, it does not know its location and 
orientation in the world coordinate system. A projector-camera system provides 
this information on detection of the object, to complete the Object Model. 

3.3 The Projector-Camera System Model 

A projector-camera system consists of a projector, camera and their controlling 
systems.  While many projector-camera systems are typically co-located devices (such 
as steerable projector-camera systems), we model the physical projector and camera as 
independent objects. However, each requires knowledge of its current location and 
orientation in the world coordinate system. This knowledge can be obtained by 5 
methods: 

 
1. Direct measurement for static devices. 
2. Self-calibration and location methods for static devices (i.e. combining  

techniques discussed in sections 2.3.3,  2.3.6 and 6.4, or multi-camera calibration 
techniques [Sinha and Pollefeys 2006]). 

3. Vision-based Simultaneous Location And Mapping (SLAM) methods 
(e.g.[Davison and Murray 2002; Davison 2003; Chekhlov, Gee et al. 2007; Klein 
and Murray 2007]) for mobile devices. 

4. By calculation, where steerable hardware is installed in a known orientation 
[Spassova 2004]. 

5. From 3D location and orientation sensing systems attached to the device. 
 

This approach allows virtualisation of a projector-camera system pairing across 
multiple projectors and cameras. The framework can now use any projector or camera 
hardware distributed in the environment in addition to static, steerable, mobile and 
handheld projector-camera systems. For example, in an environment with many 
distributed fixed cameras and a handheld projector, the camera used as part of a 
projector-camera system pair could vary depending on the location of the projection. In 
this case, as each device has knowledge of its location and orientation we can calculate 
the closest camera or the camera with the best view of the projection. 

We assume projector-camera pairs only exist when the respective viewing and 
projection frustums overlap, allowing objects detected by the camera to be projected on 
by the projector.  
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A projector-camera system has five capabilities in our framework: 
1. To provide a service allowing smart objects to register for detection and 

projection. 
2. To detect smart objects in the camera images and calculate their location and 

orientation based on the knowledge and sensing embedded in the object, as 
explained in section 3.4. 

3. To project an image onto an object in an area specified by the smart object, or 
choose the area most visible to the projector.   

4. To perform geometry correction to a projected image so that the image appears to 
be attached to the object’s surface and is undistorted. 

5. To perform photometric correction to a projected image, compensating for 
variation in an object’s surface colour and texture so the image appears more 
visible. 

 
In addition, the framework allows explicit modelling of steerable projector-camera 

system pairs. In this case we assume the projector and camera are co-located and their 
respective viewing and projection frustums constantly overlap. 

 
A steerable projector-camera system has two additional capabilities: 
1. To search an environment for smart objects by automatically rotating the pan and 

tilt hardware. 
2. To track detected objects by automatically rotating the pan and tilt hardware to 

centre the detected object in the camera and projector frustums. 

3.4 Cooperative Augmentation Process 

We decompose the cooperative augmentation of an object into five steps: 
 
1. Registration 

As an object enters the environment it detects the presence of a location and 
projection service through a service discovery mechanism. The object sends a 
message to the projector-camera system requesting registration for the projection 
service to display messages. On receipt of the registration request, the projector-
camera system requests the Object Model from the smart object. 

2. Detection 
Following registration, the object begins streaming sensor data to the projector-
camera system, as shown in Figure 3.1 (A). This data is used in combination with 
the Object Model to constrain the visual detection process and generate location 
and orientation hypotheses (B). When an object is located with sufficient 
accuracy, a location and orientation hypothesis is returned to the smart object (C) 
to update the Object Model. This process is explained in more detail in section 
3.4.1. 

 



3.4    COOPERATIVE AUGMENTATION PROCESS 

 58

 
Figure 3.1 Detection Sequence Diagram 

3. Projection 
When an object has knowledge of its location and orientation it can request a 
projection onto its surfaces. For example, as the projector sends location 
information to the object, if an object is placed in the wrong area of the 
environment it could request a warning message is projected until moved to the 
correct location. This projection request message contains both the content to 
project and location description of where on the object to project the content, as 
shown in Figure 3.2 (A). Any geometric distortion that would appear when 
projecting on an object non-orthogonal to the projector is automatically corrected. 
The projection image is additionally corrected for the surface colour of the object 
to make it more visible to the user (B). The projector system starts displaying the 
corrected content on the objects surfaces immediately on receipt of the request, if 
the object is in view and the projector system is idle (C). This process is explained 
in more detail in section 3.4.2 

 

 
Figure 3.2 Projection Sequence Diagram 

4. Interaction with smart object 
A requested projection is active as long as the object is detected, including during 
movement or manipulation of the object. Consequently, smart objects can give 
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direct feedback to the user in response to the manipulation or movement of the 
object by changing the projection. Interactive user-interface components can also 
be projected, exploiting a user’s experience with traditional desktop interfaces 
while allowing direct visual feedback on the object itself. The possibilities for 
interaction with smart objects are discussed in more detail in section 6.2.4. 

5. Update Appearance 
Additional information about the appearance of an object’s surfaces can be 
extracted once the object has been detected and its pose calculated. As part of the 
cooperative process this new knowledge can be re-embedded into the Object 
Model for faster and more robust detection on next entry to an augmented 
environment. Even if an object is already detected reliably with one detection 
method, extracting more knowledge is beneficial as the environment can also 
change. For example, when distracting objects are introduced with similar 
appearances, the wall is painted a different colour, or the object is simply taken to 
another room. Similarly, the appearance updating capability allows deployment of 
new detection algorithms to the projector-camera system and automatic update of 
the object’s appearance description to include the new algorithms following first 
detection with another method. 

 

3.4.1 Detection 

The Object Model transmitted to the projector-camera system contains an appearance 
description which allows visual detection of the object. The projector-camera system 
dynamically configures its visual object detection processing based on the type of 
appearance knowledge in the Object Model, and the sensors the object possesses. As 
seen in Figure 3.3, this processing involves computation of one or more vision detection 
methods on images from a camera system, location and orientation (pose) computation 
for one or more object location and orientation hypotheses and return of the best 
hypothesis to the Object Model. 

Image Acquisition

Pose Computation

Smart 
Object

Appearance
Knowledge

3D Model
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Location and Orientation Hypothesis
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Sensing

Re-embedding
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Figure 3.3 Knowledge flow in the detection process 
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The cooperative augmentation framework serendipitously uses sensors the object 
possesses to constrain the detection process. One typical class of sensor that can be used 
is movement sensors. Common sensor hardware that can be used for movement 
detection are accelerometers, ball-switches, tilt-switches and force sensors which detect 
pick-up and put-down events. If an object is moving, we use visual differences generated 
between the camera image and a background model to provide a basic figure-ground 
segmentation in the detection process, increasing the probability of correct detection. 

Maintaining a background model also allows us to take the object’s context into 
account in the detection process. For example, if we know the object’s colour is similar 
to the background colour we would not use a colour detection method, as the probability 
of detection is low. 

3.4.2 Projection 

Following projection requests there are cases where projection cannot begin 
immediately, such as where the projection system is busy, the object is occluded or the 
object is out of the field of view of the projector.  Here the display requests are cached 
at the projector system and the projection commences when the object is in view and the 
projector is available. Projection requests are displayed sequentially and simultaneous 
projection onto multiple objects is possible when all objects are within the field of view 
of a projector-camera system.  

If multiple projectors exist in the environment, the display request applies 
simultaneously to all projectors. This allows the object to roam freely in an environment 
and achieve a display whenever it is in the field of view of a projector. To prevent 
multiple projectors overlaying displays onto the same surface a display rights token 
system is introduced. Here, each projector determines the visual quality of its projection 
based on the distance and relative orientation of the object’s surface to the projector 
using the metric introduced by Ehnes and Hirose [Ehnes and Hirose 2006]. Closer, more 
orthogonal projectors score higher, allowing a ranking to be performed and the best 
projector assigned display rights either for the whole object or on a per-surface basis. 

A rectangular image projected on to a non-perpendicular or non-planar surface 
exhibits geometric distortion. We compensate for this distortion by warping our 
projected image, as we know both the surface geometry of the object and the pose of the 
surface with respect to the projector.  We obtain the surface shape from the geometric 
3D model embedded within the Object Model and the pose of the object from the 
detection process. As we have seen in related work section 2.3.6 the geometric 
correction methods required depend on the surface geometry, with curved surfaces 
requiring a different approach to planar surfaces. Hence, we use the surface shape to 
directly configure the type of geometric correction applied in projection. 

As one goal of the framework is to avoid the physical modification of the appearance 
of smart objects, their surfaces can present a challenge to projection. Smooth, diffuse 
and light coloured object surfaces are ideal for projection; however, few everyday 
objects exhibit these characteristics. Certain combinations of projected content and 
object surface colour can make the projection almost invisible to the human eye, for 
example, when projecting yellow text on a deep red background. Conversely, with a 
smooth, diffuse, light coloured object, the projection illumination on the object can 
significantly alter its appearance, causing the visual detection process to fail. 

To compensate for this problem we use photometric and colorimetric correction 
techniques discussed in section 2.3.7 in the projection process.  
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3.5 Conclusion 

This chapter expanded and formalised the Cooperative Augmentation concept 
introduced in Chapter 1, to provide detailed information about the four key areas of the 
framework (the Cooperative Augmentation Environment, the Object Model, the 
projector-camera system model and the cooperative augmentation process). We 
illustrated how knowledge from the Object Model and sensing can be used with a 
projector-camera system to cooperatively detect an object and project onto its surfaces. 

An example implementation of this framework is discussed in Chapter 6 and Chapter 
7. The next two chapters look in more detail at the detection process. Firstly, Chapter 4 
investigates natural-appearance vision-based detection algorithms, while Chapter 5 
explores how embedded sensing in the smart objects can be used in cooperation with 
visual detection to improve detection performance. 
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Chapter 4 Vision-Based Object  
     Detection 

A central problem for achieving displays on smart objects is their detection and 
tracking. As discussed in section 2.4, common approaches to object tracking involve 
embedding dedicated hardware location systems. However, many systems have 
limitations such as a small working volume, which precludes their use with mobile 
smart objects in unconstrained environments. In contrast, vision-based detection is 
commonly used in experimental prototypes by placing planar fiducial markers on 
objects. This enables detection of mobile objects anywhere in the camera’s field of 
view. However, it requires modifying the appearance of an object with visually 
intrusive markers to enable detection, and for our work it suffers from several key 
limitations, as discussed in section 2.5. 

Consequently, with a view to ubiquitous augmentation of objects, it is more realistic 
to base detection on the natural appearance of objects. While this vision-based detection 
non-intrusive, it is a significant challenge in real-world environments, as objects 
naturally vary in their appearance. Hence, there is an open question as to how best to 
use natural appearance detection and how different methods perform in different 
detection conditions, such as when an object appears with scaling and rotation as it 
moves around an unconstrained environment. 

4.1 Natural Appearance Detection 

In this chapter we investigate four detection methods, representing different natural 
appearance cues of objects (colour, texture, shape and surface features). The rationale 
for studying approaches that rely on different cues is that objects in real world naturally 
vary in their appearance – hence we assume that multiple methods should be provided 
as alternatives for detection. No single cue is both general enough and robust enough to 
cope with all combinations of object appearance and environment. 

We perform an experimental study targeted at understanding the impact of object 
scale and rotation on different detection methods. This is important for detection in 
realistic scenarios, as objects will appear at varying distances and orientations with 
respect to the camera. We also look in-depth at the features cue, investigating the 
impact of invariance to scale and rotation in different feature detection algorithms. 

As a result of the study, we gain insight into training requirements of different 
detection approaches to enable vision-based detection. This is important for embedding 
appearance knowledge into smart objects to achieve initial detection and for the 
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cooperative augmentation process to know when the appearance knowledge updating 
step is best performed (see section 3.4). 

4.2 Object Detection Methods 

Four detection methods were chosen as being well-known and typical for their 
respective appearance cues. These four methods form the basis for the studies presented 
in section 4.4 and Chapter 5: 

 
For Colour we use Swain and Ballard’s colour histograms [Swain and Ballard 1991]. 

We choose to use CIE 1976 L*a*b* colour histograms, as this model was empirically 
found to detect light and dark objects better than Hue-Saturation-Lightness or RGB 
colour models. ‘L’ defines lightness; ‘a’ is the red/green value and ‘b’ the yellow/blue 
value. Unlike the RGB model, Lab colour is designed to approximate human vision, 
aiming for perceptual uniformity. We calculate a 3-dimensional histogram of the image, 
with each dimension divided into 16 bins, each 16 values wide.  

For Texture we use Schiele’s multidimensional histograms of receptive fields 
[Schiele and Crowley 2000]. We choose to use 2-dimensional Gradient Magnitude and 
Laplacian histograms due to their invariance to rotation in the camera plane. Each 
dimension has 32 bins, each 8 values wide. Scale invariance is achieved by training 
with images of the object at multiple scales then creating a scale space when detecting 
the object by Gaussian smoothing the image with increasing standard deviation (σ). 
Here we train with images smoothed with σ=2.0 then use 3 scales in detection, equal to 
0.5σ, σ, 2σ, to allow objects at different scales to be detected. 

For Shape we use Belongie’s shape context descriptors [Belongie, Malik et al. 2001].  
The contours on an object are matched with 100 points, using 5 radial bin and 12 angle 
bin histograms. The descriptors are made scale invariant by resizing the diameter of the 
radial bins equal to the mean distance between all point pairs, and rotation invariant by 
averaging the angle of all point pairs and calculating all angles relative to the mean.  

For Features we first perform both an in-depth study of the Local Features method, 
where we evaluate 9 detection algorithms: Harris, Harris-Laplace, Harris-Affine, 
Hessian, Hessian-Laplace, Hessian-Affine, Difference-of-Gaussians (DoG), Laplacian-
of-Gaussians (LoG) and Maximally Stable Extremal Regions (MSER) [Mikolajczyk, 
Tuytelaars et al. 2005]. All these algorithms are evaluated in combination with Lowe’s 
Scale Invariant Feature Transform (SIFT) descriptor [Lowe 2004] . 

For the remainder of the studies in this work we use only the complete SIFT 
algorithm presented by Lowe (comprising DoG detector and SIFT descriptor) as this is 
one of the most popular and widely used local feature algorithms, giving a good 
compromise between discriminative power and robustness [Mikolajczyk and Schmid 
2005]. SIFT is invariant to scale, rotation in the plane of the camera image and partially 
invariant (robust) to changing viewpoint and illumination. We use the standard scale 
space image pyramid presented by Lowe, with 3 scales per octave and σ = 1.6. 

 
In terms of complexity, the methods range from low (colour histograms) to high 

(SIFT local features), with texture and shape falling somewhere in between. More 
information on each of these methods can be found in related work section 2.6.2.  
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4.3 Evaluation Dataset 

We use ten objects as the dataset for experiments, reflecting everyday objects of 
varying shape, size and appearance (see Figure 4.1). They are a football, a chemical 
container barrel, a book, a product box, a smart cube, a chair, a cup, a notepad, a cereal 
box and a toaster. The largest object was the chair (90x42x41cm); the smallest was the 
cube (9x9x9cm). 

 
Figure 4.1 Experiment Objects (left to right, top to bottom): a football, a chemical container barrel, a book, a product 

box, a smart cube, a chair, a cup, a notepad, a cereal box and a toaster. 

4.3.1 Object Appearance Library 

We created an object appearance library to train algorithms for the experiments 
presented in section 4.4 and Chapter 5. The library consists of images of the objects 
with varying scale and rotation against plain backgrounds. Colour images of each object 
were acquired with even illumination using a Pixelink A742 machine vision camera, 
with 1280x1024 pixels and a 12mm lens (with a 40.27x30.75° field of view). For the 
varying scale, images of the objects were captured in 5cm intervals between 1 and 6m 
from a fixed camera (10x100=1000 images). 6m approximated the size of a large room 
used in our scenario. The camera was horizontal, perpendicular to the front surface of 
the objects and at the vertical centre of the object. For rotation, images of the objects 
were captured at distances of 2m, 3m, 4m and 5m from a fixed camera. At each distance 
the objects were rotated in 10° intervals for a full 360° around the object’s vertical 
world axis using a turntable (4x36x10=1440 images total). The camera was fixed 1.5m 
above the height of the turntable with a 40° declination angle, providing a view of both 
the top surface and sides of the objects on the turntable between 2 and 5m from the 
camera. All images were manually annotated with an object bounding box for a ground 
truth object location. 

 

  
Figure 4.2 (left) Box Object Scale images at 1m, 3m, 6m from camera, (right) Notepad object rotation images at -40°, 0°, +40° 
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4.4 Scale and Rotation Experiments 

One of the challenges for visual detection algorithms is to reliably detect objects. 
Real-world objects are composed of different structures at different scales, which means 
in practice they appear different depending on the scale of observation. This effect can 
be seen in Figure 4.3, where different numbers of corners are detected and in different 
locations when the cereal box object appears at different distances to the camera.  

 

   
Figure 4.3 Different numbers of corner features (yellow dots) are detected and in different locations on the Cereal box 

object at 1m, 3m and 6m distance with the single-scale Harris algorithm [Harris and Stephens 1988] 

When detecting an object in an unknown scene, there is no way to know at which 
scale the object will appear, as the distance to the object is unknown. In theory, by 
representing the object or camera image at multiple scales in a scale-space, detection 
algorithms can be made scale-invariant. A scale-space is built by successively 
smoothing an image using a Gaussian kernel with an increasing standard deviation (σ), 
to remove more and more fine detail [Lindeberg 1990]. We can now try to match the 
object at different scales or choose the most appropriate scale. 

 
Figure 4.4 Camera and Object Detection Coordinate System Transformations 

Rotation of an object can be decomposed into 2D rotation in the camera plane rz, 
equivalent to rolling the camera and general 3D rotation (rx,ry) equivalent to changing 
the camera viewpoint (see Figure 4.4).  

When an object is rotated in the 2D plane of the camera image (rz), the method we 
use to detect an object may cause it to appear different. For example, if our detection 
algorithm relies on first gaussian derivatives (dx,dy) for gradient calculation, the results 
will change depending on the orientation of the object. Detection algorithms can be 
made invariant to this 2D rotation, however, general 3D rotation of an object presents 
another problem. In this case there are two separate aspects to the problem:  

1. The appearance of an object surface becomes distorted when it is rotated from 
being perpendicular to the camera vector tz.  



4.4    SCALE AND ROTATION EXPERIMENTS 

 66

2. As the object rotates, surfaces disappear from view and new surfaces appear.  
 
We perform experiments to answer the four following research questions: 

R1) What is the impact of using local feature algorithms invariant to scale,  
rotation or affine transformation, rather than non-invariant algorithms? 

R2)  Is scale and 3D rotation an issue for the final 4 detection methods we choose? 
R3)  At what distance do we need to train our 4 methods? 
R4)  Are some of the 4 methods more robust to scale and rotation than others? 

. 

4.4.1 Design 

 
4.4.2.1 Research Question R1 
To address question R1 we perform four series of experiments using 9 local feature 

detection algorithms {Harris, Harris-Laplace, Harris-Affine, Hessian, Hessian-Laplace, 
Hessian-Affine, Maximally-Stable-Extremal-Regions (MSER), Difference-of-Gaussians 
(DoG), Laplacian of Gaussians (LoG) } and the SIFT descriptor algorithm:  

 
1. The first experiment investigates the quantity of features detected with scale.  
2. The second experiment series investigates detection repeatability over the whole 

scale range when the algorithms are trained at different distances. For six training 
distances scale variant algorithms were compared against scale and affine 
invariant algorithms. 

3. The third experiment series investigates 2D rotation of an object in the camera 
plane (rz) and rotation invariance in feature descriptors by comparing the 
descriptor matching performance of rotation variant and rotation invariant 
algorithms under 2D rotation. 

4. The fourth set of experiments addresses the general case of local feature detection 
performance with 3D object rotation (rx,ry) by comparing the detector matching 
repeatability and descriptor matching performance of rotation variant and rotation 
invariant algorithms under 3D rotation. 

 
4.4.2.2 Research Questions R2 to R4 
R2 to R4 look at the performance of final four detection algorithms: Lab colour 

histograms, Mag-Lap multi-dimensional histograms for texture, shape context and SIFT 
for features on objects. We address R2 and R4 by performing another two series of 
experiments: 

 
1. The first series evaluates the average detection performance over all objects of 

each algorithm, when the objects are scaled. 
2. The second series evaluates the average detection repeatability for SIFT local 

features over all objects, and the average detection performance of the other three 
algorithms over all objects, when the objects are rotated. 
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We investigate if scale and rotation is an issue, and compare the results between 
algorithms to identify whether some detection methods are more robust than others. 
From this we also gain insights into the training knowledge required to detect objects, 
addressing R3. 

4.4.2 Procedure 

For the local feature experiments, we define a procedure for calculating detection 
repeatability and descriptor matching performance as explained below. 

 
To compare the relative performance of interest point detectors we use the 

repeatability criterion described by Mikolajczyk and Schmid [Mikolajczyk and Schmid 
2004]. For this we compute the percentage ratio between the number of point or region 
correspondences (found between the current image from the scale set and the features 
found on the object in the training image) and the minimum number of points detected 
in both images. The correspondences are established by projecting points from each 
image into the other using a manually-annotated ground truth homography. We 
establish a correspondence when the following two criteria are met: 

 
1. If the point locations are less than 1.5 pixels apart when projected.  
2. Additionally, for scale and affine-invariant points, when the image region we 

project has an overlap intersection error εs < 0.4. This error corresponds to 40% 
overlap error and is chosen as according to Mikolajczyk et al. as regions with 
50% overlap error can still be matched successfully with a robust descriptor 
[Mikolajczyk, Tuytelaars et al. 2005]. The intersection error of the regions (εs) is 
defined as the intersection and union of the regions: 
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where μa and μb are the regions (represented as elliptical regions for affine-invariant 
features or circles for scale-invariant features, and defined by xTμx = 1), A is the locally 
linearised ground truth homography relating the images and AT its transpose 
[Mikolajczyk, Tuytelaars et al. 2005]. The error can be computed numerically, or in our 
case by counting the number of pixels in the union and the intersection of regions when 
one region is projected into the second using the homography. 

 
Relative matching performance of the descriptors is evaluated by establishing 

correspondences between descriptors in the test image and descriptors in the training 
image using nearest-neighbour Euclidean distance. Correct matches are determined by 
the overlap error (as for detector repeatability), but here we assume a match is correct if 
the overlap error is < 50% of the region (εs < 0.5). The final matching percentage score 
(known as Recall) is calculated as the number of correct matches with respect to the 
total correspondences: 

 

ancesCorrespond #
matchesCorrect  # Recall =  (4.2) 
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4.4.2.1 Research Question R1 
1. For the first series of experiments the 9 local feature algorithms were run on each 

image from the object appearance library scale set (see section 4.3.1) and the 
number of features detected inside the ground truth object location bounding box 
was recorded. 

2. The second series is divided into 6 sub-experiments, corresponding to 6 algorithm 
training distances. Each local feature algorithm was trained at meter intervals 
between 1 and 6m (inclusive) using images from the object appearance library 
scale set. For training, feature detection was constrained to only detect features on 
the object by using the manually annotated ground-truth bounding box. Features 
were then detected in the remaining images in the scale set and the detection 
repeatability between the training and test images calculated using the method 
described above. 

3. For each of the images of objects at 3m distance in the object appearance library 
scale set (see section 4.3.1) a 2D object rotation was simulated by rotating images 
in 10° increments between 0° and 350° using an affine transform. Simulation was 
used for this experiment as it was the easiest way to ensure accurate and 
repeatable rotations across all the objects without the need for specialized 
hardware to physically rotate the object. The SIFT descriptor [Lowe 2004] is 
computed for each interest point detected by the local feature detection algorithms 
in all images. The detection algorithms were trained with images of all objects at 
0° rotation and matched against images of the objects at the other rotation angles 
to compare non-rotation invariant descriptors against rotation invariant 
descriptors. 

4. The experiment is divided into 4 sub-experiments. The 4 sub-experiments are for 
4 algorithm training distances, at meter intervals between 3 and 6m. In each sub-
experiment the 9 algorithms were trained with the 0° rotation images of each 
object at the respective distance from the object appearance library rotation set 
(see section 4.3.1). These training images were matched to the -70° to +70° 
rotation images, comparing both scale invariant against non-scale invariant 
detector repeatability and non-rotation invariant descriptors against rotation 
invariant descriptor matching performance. 

 
4.4.2.2 Research Questions R2 to R4 
For the final 4 detection algorithms we define a procedure for calculating detection 

performance as detailed below. 
For colour histogram detection we use a variation of Bradski’s CAMSHIFT approach 

[Bradski 1998]. The object histogram is first back-projected into the camera image and 
the bounding box of the largest blob is detected, representing the most likely object 
location. The CAMSHIFT algorithm is then used to refine the bounding box size and 
location based on the original object histogram. 

For texture detection with multi-dimensional histograms we use an exhaustive search 
method, dividing each scale image into a grid of scale-adapted 2D windows of uniform 
size, with 25% partial overlap between each window. Each area’s histogram is 
calculated and matched against the object’s histogram. For object location use a mean-
shift [Comaniciu and Meer 2002] clustering approach similar to Liebe and Schiele’s 
scale-adaptive method [Leibe and Schiele 2004] when match result maxima are greater 
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than a pre-determined threshold. Hence, the 3D mean-shift clustering function 
(X,Y,Scale) acts as a Parzen window probability density estimation for the position of 
the object, allowing a more accurate location hypothesis. We increase the clustering 
window size as scale increases above 1.0 as the histogram matching results are spread 
over a larger area. 

For shape detection we use a similar approach to texture, but restricted to single scale, 
due to the scale-invariance of our shape context algorithm. 

For colour histogram, shape context and multi-dimensional histograms algorithms, 
correct detection was assumed when the detection bounding box had <50% overlap 
error with the ground truth bounding box from the test image library. For SIFT local 
features correct detection was assumed when a minimum of 8 features were matched to 
the training image using nearest-neighbour Euclidean distance matching and >50% of 
feature correspondences were correct. 

 
1. The first experiment set investigates scale-invariance in the 4 detection algorithms 

and aims to quantify in what scale range we can repeatably detect an object. We 
performed 6 sub-experiments, each with a different training distance. All of the 
algorithms were trained with an image at meter intervals between 1 and 6m 
(inclusive), resulting in the 6 sub-experiments. The remaining images of the 
object appearance image library (99 images) were used for testing. The results for 
all four cues are averaged over all objects to give the percentage of all detected 
objects over the scale range (every 5cm). 

2. The second set of experiments investigates 3D rotation. For each object we 
trained the algorithms using a single 0° image from the object appearance library. 
The remainder of the images between -80° (anti-clockwise rotation of object from 
0°) and +80° (clockwise rotation) were used to evaluate the percentage of objects 
detected with each algorithm. We both trained and tested the algorithms with 
images of the objects at 3m distance as this is the centre of our working range. 

4.4.3 Apparatus 

A 3.4GHz dual core Pentium-4 computer running Windows XP SP2 was used for all 
experiments in this thesis. The detection algorithms were implemented in C++ using 
Intel OpenCV API for image processing 

4.4.4 Results 

We first present results for the first four experiments to investigate local feature 
algorithm performance with scaling and rotation, followed by results of the detection 
performance for the final four selected detection algorithms for colour, texture, shape 
and features. 

 
4.4.4.1 Research Question R1: Local Features with Scaling and Rotation 
Although we performed the experiments for all objects in the object appearance 

library, we only present the results for the Mediacube object below as the general trends 
for all objects are the same, hence, these results are representative of the other objects. 
Additionally, we only present results for the Harris-based family of detectors as the 
result trends are also representative of the relative Hessian-based detector performances.  
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Figure 4.5 (left) Number of features detected on Mediacube object by Harris-based algorithms, (right) Harris-based 

algorithm detector repeatability when trained at 4m 

As can be seen in Figure 4.5 (left), the number of points detected by all Harris based 
detectors decreases with distance, as the object appearance gets smaller in the image.  
The single-scale Harris detector always detects the least interest points as only the 
original image scale is used. In contrast, the Harris multi-scale detector detects all points 
where the Harris operator reaches a maximum in scale-space, leading to between 3 and 
5 times more interest points throughout the whole object distance range.  The number of 
points detected by the Harris-Laplace scale-invariant detector falls between the two, as 
it only detects points where the Laplacian also reaches a maximum. The affine-invariant 
Harris detector returns fewer points than the scale-invariant detector as the algorithm 
discards points which are not also invariant to affine transformations. 

The difference in repeatability of the Harris-based detectors when trained with a 
single image of the object at 4m distance can easily be seen in Figure 4.5 (right). Here 
the single-scale Harris only has a small 2m range (3m to 5m) where points are 
repeatably detected, centred on the training distance. In contrast, multi-scale Harris-
Laplace and scale-invariant Harris-Laplace have an almost constant performance across 
the scale range. Harris-Affine displays a general improving trend from 1m towards 6m, 
with a peak around the 4m training distance. For a 4m training image the scale factor 
ranges from 1:4 at 1m to 1.43:1 at 6m, with 4m being 1:1. 

Figure 4.6 (left) shows that for the single scale Harris algorithm to achieve equivalent 
detection repeatability approaching the multi-scale and scale-invariant Harris-Laplace 
algorithms (over 60% throughout the test range), we must train and match the algorithm 
at 4 separate distances. The training images distances of 1.1m, 1.85m, 3m and 5m were 
determined empirically to have both minimum scale overlap between detectors and to 
maximise the repeatability across the whole scale range. This is equivalent to running 
the Harris detector algorithm 4 times independently on the image, with the consequent 
quadrupling of runtime. 

The mean repeatability of the Harris-based algorithms over the whole distance range 
while varying the training data distance is shown in Figure 4.6 (right). Here we can see 
that both the multi-scale and scale-invariant Harris-Laplace algorithms have a stable 
mean repeatability around 91.22% and 75.12% respectively when the training image 
distance is varied. However, the training image scale makes a large difference both for 
Harris and Harris-Affine. The Harris algorithm has the highest repeatability (41.10%) 
when trained at 5m, and Harris-Affine reaches a peak of 74.98% when trained with 
images of the object at 6m. 
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Figure 4.6(left) Harris detector with multiple training images 1.1m,1.85m,3m,5m, (right) Mean repeatability with varying 

training distance for Harris-based detector algorithms 

Figure 4.7 (left) compares rotation-invariant descriptors with rotation-variant 
descriptors, both with and without multiple training images. As shown by the red 
dashed line, the rotation-variant Harris-Laplace-SIFT matching result with only a single 
training image is only ever above 50% within 50° of the training image 0°/360° angle. 
In contrast, the rotation-invariant descriptor performance was more constant, with a 
mean average around 60% for the whole 360° rotation. Rotation-variant matching 
performance was also evaluated relative to multiple training images. In this case 60° 
rotation increments were determined empirically to produce performance similar to 
rotation-invariant descriptors, while using the least training images. 

For 3D objects such as the Mediacube the number of features detected did not change 
significantly with 3D rotation, as seen in Figure 4.7 (right), due to textured surfaces on 
multiple faces being visible at each rotation angle. However, for 2D objects such as the 
notepad or objects where some surfaces lacked strong texture the number of points 
detected depended greatly on viewpoint. This led to large changes in the detector 
repeatability and descriptor matching percentages with 3D object rotation. 
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Figure 4.7 (left) SIFT Descriptor matching percentages with 2D rotation, (right) Number of features detected with 3D 

rotation 
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Figure 4.8 (left) Detector repeatability for 3D rotation, (right) Descriptor matching percentages for 3D rotation 

The repeatability of interest point detection with viewpoint transformation is shown 
in Figure 4.8 (left).  As can be seen, for all algorithms the repeatability is generally at a 
maximum near the training image orientation (0°) and decreases with increasing 
rotation in either direction. In this graph the multi-scale Harris-Laplace algorithm 
performs best. Affine-invariance only leads to a small improvement in mean 
repeatability over scale-invariance of 37% against 34% respectively, over the whole 
rotation range. On average, between 20° and 40° from the training image orientation the 
repeatability has decreased to 50% or under.  

The matching performance of SIFT descriptors with 3D object rotation is shown in 
Figure 4.8 (right).  As can be seen, all algorithms have almost identical performance 
irrespective of whether the descriptor is rotation-variant or invariant. 

 
4.4.4.2 Research Questions R2 to R4: Detection with Scaling and Rotation 
To address questions R2 to R4 with the final 4 detection algorithms we first present 

the detection results for scale over all objects, followed by the results for 3D rotation:  
Figure 4.9 (left) shows detection performance over all objects for SIFT local features. 

It is clearly visible that the percentage of objects detected falls below 50% after 4.5m 
distance when trained at 1m. For the chosen scale range, the average percentage of 
objects detected is highest when trained at 2m (M=82.31, SD=14.34). However, the 
detection percentage varies least across the scale range when trained at 6m (M=74.44, 
SD=9.32).  

Figure 4.9 (right) shows detection performance over all objects for the Shape Context 
algorithm. Detection percentage is lowest when we train at 6m, never increasing above 
30% across the scale range. The performance when training at both 1m and 3m both 
show a downward trend with similar detection performances, however, the highest 
percentage of objects were detected at when trained 1m (M=56.10, SD=19.71). 

Figure 4.10 (left) and (right) show detection performance over all objects for Texture 
and Colour respectively. The results for both experiments show an overall downward 
tendency for all training distances, with little difference in performance between the 
training distances. For Texture, the highest percentage of objects were detected with a 
training distance of 2m (M=72.74, SD=26.59). Here, 50% or more of the objects are 
detected between 1m and 6m, with the exception of 4.5m to 5.5m where, unusually, the 
performance drops. In contrast, for Colour the highest percentage of objects are detected 
when we train at 6m (M=38.05, SD=46.81). The standard deviation for all colour 
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training distances is high, indicating a high variability of detection performance 
between objects. In fact, 50% of the objects were never detected by colour. 

 

 
Figure 4.9 (left) Detection performance over all objects for SIFT local features at 1m, 2m and 6m training distances, 

(right) Detection performance over all objects for Shape Context at 1m, 3m and 6m training distances. 

 

 
Figure 4.10  (left) Detection performance over all objects for Texture (Mag-Lap) Multidimensional Histograms at 1m, 2m 

and 6m training distances, (right) Detection performance over all objects for LAB Colour Histograms at 1m, 3m and 6m 

training distances. 

 
Figure 4.11 (left) shows detection repeatability over all objects at 3m, for SIFT local 

features, when we rotate in the horizontal plane. The curve is bell-shaped and shows a 
sharp fall off in repeatability as we rotate objects away from 0°. Around 20° rotation the 
repeatability falls to around 40% on average, for all objects. This means only 40% of 
the original training image features are still being detected. This performance is object 
dependant. For example, the book object has repeatability greater than 40% between -
40° and 40°, peaking at 10° (65.25%). In contrast, the barrel’s repeatability is only ever 
above 40% at 10°, where it reaches its peak (42.11%).  
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Figure 4.11 (left) Detection percentage repeatability of SIFT (DoG) over all objects when varying 3D rotation angle, 

(right) Detection performance over all objects when varying 3D rotation angle, for Texture, Colour and Shape, at 3m 

training and test distances. 

Figure 4.11 (right) shows the percentage of objects detected at 3m, for the remaining 
three algorithms. For both Texture and Shape the curves have a bell-shaped trend, 
similar to SIFT. The colour algorithm varies between 80% and 50% of objects detected, 
but does not show a decreasing tendency with rotation. 

4.5 Discussion 

This section discusses issues arising from the Scale and Rotation experiments in 
section 4.4. 

 
4.5.1 Research Question R1 
For local feature algorithms, the drawback of a single-scale algorithm becomes 

apparent, as features are only repeatably detected and matched around the training 
image scale. The scale where we extract our smart objects appearance makes a big 
difference and to enable detection throughout the whole scale range for an object such 
as the Mediacube we need to match features detected from training images at 
approximately each meter (replicating a multi-scale algorithm). 

The most repeatable interest point detection occurred with the multi-scale algorithm; 
however, as can be seen in Figure 4.5 (left) the Harris-Laplace multi-scale algorithm 
detects many more features than other Harris-based algorithms, so consequently has a 
higher processing cost. The additional number of descriptors to match also causes a 
higher probability of mismatches with large scale errors.  

Both the number of interest points returned by the detectors and the number of 
mismatches is important, as wide-baseline detection approaches based on feature 
correspondences require enough correct matches to enable pose calculation when using 
robust approaches such as RANSAC [Fischler and Bolles 1981]. As RANSAC easily 
fails with >50% mismatches, there is a trade-off between having enough interest points 
to ensure pose calculation, and number of mis-matches. 

Our results agree with those presented by Mikolajczyk et al. [Mikolajczyk, Tuytelaars 
et al. 2005] which showed that scale-invariant Harris-Laplace performs better than 
Harris-Affine with large scale changes. This is illustrated with the reduced Harris-
Affine performance near 1m in Figure 4.5 (right). 
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Figure 4.7 (left) shows it is possible to make use of matching to multiple training 
images to recover object rotation. However, we need training images with at least 60° 
increments for rotation-variant SIFT descriptors to perform equal to rotation-invariant 
descriptors. This increases the number of training images we must match by at least 6 
for each 3D rotation of the object. 

As can be seen when comparing Figure 4.7 (left) and Figure 4.8 (right), the 
performance of algorithms under affine transformations (such as 3D rotation) is very 
different to 2D rotation in the camera plane. The use of rotation-invariant descriptors 
only provides invariance to 2D rotation in the plane of the camera. For 3D rotation 
multiple object viewpoints must be stored and matched, with a consequent increase in 
runtime. 

Unfortunately, when detecting objects moving around a large environment in the real 
world, objects are likely to move in multiple axes simultaneously. As features disappear 
and re-appear as an object is manipulated or moved, multiple viewpoints are required to 
detect the object in all poses. For example, in Figure 4.8 (right) the matching 
performance with the Mediacube object is only above 50% between the angles of -25° 
to +35°, which is equal to a 60° useful viewing angle (centred roughly on the 0° training 
orientation). This result agrees well with those presented by Mikolajczyk and Schmidt  
[Mikolajczyk and Schmid 2005] and Lowe [Lowe 2004], who recommend a maximum 
rotation of 60° between viewpoints for 3D object detection. This would require 14 
viewpoints to describe a 3D object with a viewing sphere using equally spaced 60° 
polar intervals (26 for 60° latitude and longitude intervals). The use of non-scale 
invariant detector and rotation-variant descriptors multiplies this requirement by another 
6, for a total of 84 training images to match for just single-scale detection. In contrast, 
when using scale (or affine) invariant detectors and rotation-invariant descriptors a full 
viewing sphere only requires training and matching the 14 viewpoints.  

 
4.5.2 Research Question R2 to R4 
The results from the experiments to address R2 to R4 show it is important to consider 

scale and rotation effects when designing a detection system with multiple cues. For 
example, for scale, we learned that different algorithms perform best when trained at 
different distances. Shape performs best when trained at 1m, Local Features and 
Texture are best at 2m and Colour performs best at 6m.  

Similarly, the algorithms perform differently when we rotate objects. Here, colour 
does not exhibit a strong decreasing tendency with rotation, suggesting that one 
viewpoint of a uniformly colourful object may be enough to detect the object in any 
pose, and only a small number of viewpoints are required for 3D objects with non-
uniform surfaces (Swain and Ballard recommend 6 viewpoints [Swain and Ballard 
1991]). In contrast, the more bell-shaped curves for the other methods indicate that to 
detect an object in any pose we need to extract information from many more 
viewpoints. 

These results support both our starting assumption that different detection methods 
behave differently and hence the argument for using multiple detection methods. 

The fact that detection performance results when scaling and rotating objects were 
often not close to 100% around the distance or angle where we train our detection 
system also suggest that some of the objects were either not detected by a particular 
method or there is a large inter-object detection performance variability with the 
algorithms. This finding is investigated further in Chapter 5. 
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4.6 Conclusion 

In this chapter we conducted an experimental study to understand impact of object 
scale and rotation on different detection methods. We first studied in-depth the impact 
of scale and rotation on local feature algorithms, finding that scale and rotation invariant 
algorithms provide performance benefits over single scale and rotation-variant 
algorithms. This enables us to use invariant algorithms to detect objects without loss of 
discrimination, hence, we chose to use the popular SIFT algorithm in our work to detect 
objects with the features cue. 

From the second set of experiments we found that scale and rotation has a large 
impact on detection performance. An object’s appearance changes as it is rotated in 3D, 
but the change can be much greater than with scaling, as whole surfaces can appear or 
disappear. This has important implications for our approach, and we found that with the 
exception of the colour method we need to train our algorithms with multiple object 
viewpoints to detect an object in any pose. Similarly, we learned that detection 
performance varies when the algorithm is trained at different distances and found the 
best training distances for each algorithm based on our dataset. This knowledge is 
significant as it enables our framework to extract additional appearance knowledge from 
the camera image when an object is at the best training distance. 

 



5.1    VIDEO TEST LIBRARY 

 77

Chapter 5 Cooperative Detection 

The experiments presented in Chapter 4 demonstrated that it is possible for a camera 
to detect objects at a range of scales and orientations by using the natural appearance 
cues of colour, texture, shape and features on objects. These experiments were 
performed using training and test images with plain backgrounds. However, cluttered 
real world environments with distractions are a large problem for traditional computer 
vision approaches and can negatively impact detection performance. For example, if 
two identical objects appear in the camera image, there is no way for the camera system 
to determine which is the correct object and which is the distraction on its own. 

In this chapter we look at how cooperation between a smart object and the vision-
based detection system allows the sensing capability of objects to be used in the 
detection process. To achieve this we perform a study exploring cooperative detection 
between the camera system and smart object. Specifically, we analyse the increase in 
detection performance achieved when using movement sensing in the smart object.  

5.1 Video Test Library 

Synchronised sensor data and video of each object moving in a cluttered lab 
environment was captured for the testing library. The objects and equipment used was 
identical to that described in section 4.3. Video of each object was captured at 10fps for 
20 seconds from a fixed camera location at 2.15m height from the ground, with a 25° 
declination angle. All video was captured with even illumination. The objects were 
handheld and moved at a constant walking pace (approximately 0.75m/s) in a 15m path 
shaped like a ‘P’ from first entry through a door 5m from the camera. The object moved 
around the loop of the ‘P’ towards the camera (the tip is 2m from the camera), then 
returning to the door (see Figure 5.1 for example images). 

 

 

 
Figure 5.1 Video Test library images of chemical container (top) and cereal box (bottom). 
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The test videos include challenging detection conditions such as scaling, rotation 
around the object’s vertical axis and motion blur. Distractions were also present (from 
other objects or areas of the scene with similar appearances) and the limited camera 
field of view caused partial occlusion in some frames, hence the videos reflect realistic 
detection scenarios. Video frames with up to 50% of the object occluded were included 
in the 200 frame analysed. Each of these 200 frames was manually annotated with a 2D 
bounding box for a ground truth object location.  

A Particle Smart-Its device in the object sent data from an IEE FSR152 force sensor 
wirelessly at 13ms intervals. Data was abstracted to simple object moving and object 
not moving events using thresholds on the results of operations performed on the raw 
sensor values, which allows us to abstract away from the performance of individual 
sensor types. Here we calculate the mean value over a window of 20 samples (260ms). 
The threshold was set empirically so the object generated continuous “non-moving” 
events when placed on a surface and “moving” events when mobile. 

5.2 Cooperative Detection Experiments 

We hypothesise that there are several measurable benefits from using movement 
sensing in combination with vision detection: 

H1) Sensing increases detection performance (i.e. sensing reduces the number of 
misdetections and outliers). 

H2) Sensing increases the detection performance of non-discriminative and simple 
detection methods to the level of the most discriminative and most complex. 

H3) Sensing increases detection algorithm speed. 
H4) Sensing reduces the time to first object detection from entry to an environment. 

To evaluate our approach using multiple detection methods, we also propose a 
research question:  

R1) How do algorithm detection performances change with the individual objects? 
 

5.2.1 Design 

To address hypothesis H1 we designed four between-subjects experiments, one for 
each algorithm. Movement sensing was the independent variable for this experiment set, 
with two levels: 1) with sensing and 2) without sensing. The dependant variable is the 
detection performance, which is the percentage of frames where the object is correctly 
detected. 

The second set of experiments addresses hypothesis H2.  Here three algorithms each 
combined with movement sensing are compared to the SIFT local feature algorithm 
without sensing. The local feature algorithm is used as a benchmark. 

To address hypothesis (H3) we compare the runtime of all four algorithms with 
sensing to the runtime without sensing. Movement was again the independent variable, 
with two levels: 1) with sensing and 2) without sensing. The dependant variable is the 
algorithm runtime. 

Finally we conduct a set of experiments to address the last hypothesis (H4). Here the 
time to first detect the object of all four algorithms with sensing is compared to the time 
to first detect the object without sensing. Movement sensing was again the independent 
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variable, with two levels: 1) with sensing and 2) without sensing. The dependant 
variable is the time taken to first detect the object from entry into the environment. 

To address the research question R1, we break down the detection results from the 
first set of experiments, firstly looking at the detection performances of each object, and 
secondly the detection performance from combinations of cues. 

Apparatus was the same as in the section 4.4 experiments. 

5.2.2 Training 

In order to perform the experiments, we first trained all four algorithms. For each 
object, then for each detection algorithm, an appearance description was trained using 
the rotation images in the object appearance library (see section 4.3). As the video test 
library includes rotation around the object’s vertical axis we use multiple viewpoints for 
detection in the experiments. We assume the bottom surface of objects is not visible, 
consequently the description was trained with 6 viewpoints from the upper viewing 
hemisphere with the object at 3m distance from the camera (the centre of our working 
range) in rotation intervals of 60° around the object’s vertical axis. The object ground 
truth bounding boxes were used to mask the training images when creating the 
appearance descriptions of the objects. 

5.2.3 Procedure 

For all experiments the 4 algorithms were run on the 200 frames of each object video 
in the video test library using the respective object appearance description for detection. 
As there were multiple viewpoints, the algorithm is run multiple times in each frame 
with the individual viewpoints. We assume a correct detection from any viewpoint is a 
detection of the object.  

We use the same detection procedure as discussed for the 4 algorithms in section 
4.4.3.2. 

The detection result from the algorithms was a bounding box for colour histogram, 
shape context and multi-dimensional histograms, or a set of feature correspondences for 
the local feature algorithm. For the first three algorithms, correct detection was assumed 
when the detection bounding box had <50% overlap error with the ground truth 
bounding box. For local features correct detection was assumed when a minimum of 8 
features were matched to the training image using nearest-neighbour Euclidean distance 
matching and >50% of feature correspondences were correct. Correct correspondences 
were established based on a manually annotated ground truth homography 
transformation between the test image and the training image of the object. 

Detection algorithm processing time was measured over all 200 frames in the test 
video using timers with millisecond resolution and the mean time per frame calculated. 

The time taken to first detect the object was measured by counting the number of 
frames before the first detection occurs when the object is visible on entry into the 
environment. These results were converted to time based on the fixed 10fps frame rate 
we used for the video by dividing the number of frames by 10. The times were mean 
averaged for each detection method for the two cases: with sensing and without sensing. 
Objects with no detections in either or both of the two cases are excluded from the 
analysis of the respective detection method. 
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For the multi-cue detection performance, a successful detection was recorded 
whenever any one of the combination of cues detected the object successfully. This is 
equivalent to a simple logical OR cue combination. 

5.2.4 Results 

5.2.4.1 Hypotheses H1 and H2 
Figure 5.2 shows the detection performance of four algorithms: SIFT local features, 

Mag-Lap Texture, Lab Colour and Shape Context. The results presented are mean 
averaged first for each object, then for each algorithm. It is clearly visible that for all 
algorithms the use of movement sensing increases detection performance over no 
sensing. These results support hypothesis H1. 
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Figure 5.2 Graph of detection algorithm results without sensing (orange) and with movement sensing (blue), averaged 

over all objects. Error bars show 95% Confidence level (Cl) of mean. 

Without sensing, the Local Feature algorithm has the highest performance (orange 
bar on the left) of all algorithms, when averaged over all objects in the test video 
library. On average, the use of sensing (M=41.07, SE=10.82) gives a statistically 
significant improvement in detection results over no-sensing (M=28.42, SE=9.13) for 
all objects, with the Local Feature (SIFT) detection algorithm, t(9)=-3.75, p<.05, r=.78.  

The Texture algorithm shows the greatest increase in detection performance when 
using movement sensing. The use of sensing (M=57.63, SE=7.71) gives a statistically 
significant improvement in detection results over no-sensing (M=2.98, SE=1.50) for all 
objects, with the Texture detection algorithm, t(9)=-7.24, p<.001, r=.92.  

The colour algorithm has the highest detection performance of all algorithms when 
used with sensing. The use of sensing (M=63.22, SE=5.92) gives a statistically 
significant improvement in detection results over no-sensing (M=21.82, SE=9.30) for 
all objects, with the Lab colour detection algorithm, t(9)=-6.02, p<.001, r=.89.  

While the performance of the shape algorithm increases with movement sensing, this 
algorithm has the lowest mean performance when used with sensing. On average, the 



5.2    COOPERATIVE DETECTION EXPERIMENTS 

 81

use of sensing (M=33.03, SE=5.69) gives a statistically significant improvement in 
detection results over no-sensing (M=5.52, SE=1.52) for all objects, with the Shape 
Context detection algorithm, t(9)=-5.93, p<.001, r=.89.  

When using movement sensing, all algorithm performances are higher than the 
performance of local features without sensing. This supports hypothesis H2. 

 
5.2.4.2 Hypothesis H3 

Table 5.1 Mean algorithm runtime per frame, averaged over 200 frames 

Method No Sensing (ms) Movement  
Sensing (ms) 

Local Features 641 605 
Texture 648 447 
Colour 307 307 
Shape 852 288 

 
Table 5.1 shows the mean time per detection for each of the four algorithms, with and 

without the use of movement sensing.  It is clearly visible that for three algorithms 
(Local features, Texture and Shape) the use of sensing reduces the mean detection time 
per frame, supporting our hypothesis H3. 

 
5.2.4.3 Hypothesis H4 
Table 5.2 shows the mean time to object detection from first entry to the environment 

for each of the four algorithms, with and without the use of movement sensing.  It is 
clearly visible that for all four algorithms the use of sensing reduces the mean detection 
time, supporting our hypothesis H4. For all algorithms and all objects, the mean average 
time before first detection when using sensing is 0.67s, compared to 3.97s without 
sensing. The use of sensing both reduced the inter-object and the inter-algorithm 
variability in detection time, as can be seen by the consistently lower scores in standard 
deviation with sensing. 

Overall, the Colour algorithm showed the greatest change with a mean average of 
6.78s over all objects before first detection without sensing, while only 0.15s with the 
use of movement sensing. The lowest change was for the Local Features algorithm, with 
an average of 1.35s reduction from 2.36s to 1.01s with sensing. The highest variation in 
detection times between objects was seen when detecting object with the Shape 
algorithm without sensing (SD=4.39), however, shape shows the largest decrease in 
standard deviation with sensing (to SD=0.78). 

 
Table 5.2 Mean time to detection from first entry to the environment 

Method Mean Time,  
No Sensing (s) 

Std Dev,  
No Sensing 

Mean Time, 
Sensing (s) 

Std Dev, 
Sensing 

Local Features 2.36 2.33 1.01 1.73 
Texture 2.30 1.48 0.93 0.10 
Colour 6.78 1.45 0.15 0.10 
Shape 4.44 4.39 0.58 0.78 
Mean (s) 3.97  0.67  
Std Dev 2.12 0.39 
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5.2.4.4 Research Question R1 
The following Figure 5.3 and Figure 5.4 show the detection results with the four 

detection algorithms for each object in the test video library. 
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Figure 5.3  (left) SIFT Local Feature Detection Performance with and without sensing for each object in test library, 

(right) Mag-Lap Texture Detection Performance with and without sensing for each object in test library 
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Figure 5.4 (left) Lab Colour Detection Performance with and without sensing for each object in test library, (right) Shape 

Context Detection Performance with and without sensing for each object in test library 

As can be seen in the local features performance in Figure 5.3 (left), the book, 
notepad and cereal box objects are detected very well, with or without sensing. 
However, some objects such as the chair, mug or toaster are detected in few video 
frames. 

Although the average texture detection performance shown in Figure 5.3 (right) is the 
lowest of all algorithms without sensing, all objects except the mug achieve 
performance around 50% or greater when using movement sensing. When detecting the 
notepad object, texture also produces the highest detection result for any object and any 
algorithm using movement sensing (detected in 94.44% of all video frames). 
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As seen in Figure 5.4 (left), the colour detection performance again varies greatly by 
object without sensing, similar to local features. Here, barrel, book, chair and cereal 
objects are detected well, without sensing. However, all objects achieve detection 
performance higher than 25% with sensing, and this is reflected by colour achieving the 
highest mean average detection result for all algorithms. The mug in particular has its 
highest detection performance here, when detecting with the use of movement sensing 
(42.42% of all video frames). 

The shape detection performance shown in Figure 5.4 (right) without sensing is 
higher on average than texture, however, the average with sensing is the lowest of all 
algorithms. Only the notepad object achieves detection performance higher than 50% 
when using sensing. 

 
5.2.4.5 Multiple-Cue Combination 
The results from section 5.2.4.4 are used for Table 5.3 and Table 5.4Error! Reference 

source not found. to rank each detection cue by its detection performance for each 
object, without and with movement sensing respectively. The Local Features algorithm 
proved to be the best single cue for 70% of the objects without sensing, while colour is 
the best single cue for 70% of the objects with movement sensing. However, more 
importantly, each of the cues we studied was the best algorithm for at least of one of the 
objects, indicating that there is potential for further improvement in overall detection 
performance by using multiple cues. 

Using the cue ranking from Table 5.3 and Table 5.4, we illustrate the detection 
performance improvement attained over a single cue when using multiple cues to detect 
objects in cluttered scenes, such as the video test library (see section 5.1). 

The overall detection performance achieved by multi-cue combination, together with 
the breakdown of cue contribution to this performance figure (shown as column colour) 
can be seen in Figure 5.5 and Figure 5.6. It is clearly visible that by using a combination 
of the highest performing cue (lowest colour of the column) together with other cues, 
the overall detection performance improves for all objects in the study, with or without 
movement sensing. 

Over all objects without sensing the mean average performance increases from 
37.89% (with just the highest performing single cue) to 43.47% with all 4 cues, an 
improvement of 4.96%. The largest performance increase is for the book, which 
improves from 71.52% to 86.71% (a 15.19% increase in the number of frames 
detected). The smallest increase is for the Card object (0.62%). The most frequent 
combination of two cues was Local Features and Shape, ranked as the best two for 50% 
of all objects. 

For objects with movement sensing, the mean detection performance increase was 
larger (15.38%), with the ball object benefiting from the largest increase (of 26.77%) to 
77.78% of frames detected. The smallest improvement was for the Card object (8.13%). 
The most frequent combination of two cues was Colour and Texture, ranked as the best 
two for 40% of all objects. 
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Figure 5.5 Detection Performance improvement using multiple cues, No Sensing 

 
Figure 5.6 Detection Performance improvement using multiple cues and Movement Sensing 

Using a combination of the three best cues produces much less additional benefit. For 
objects without sensing a third cue only produced a mean increase of 0.62% over the 
use of the two best cues, with the largest increase being an additional 2.47% of 
detection performance for the ball. Objects with movement sensing again benefit more, 
however the increase is again much less than the improvement gained over a single cue, 
when using the two best cues. The mean improvement is 2.10%, with the ball again 
benefiting the most with an 8.03% increase in performance. The Barrel, Book and Chair 
did not increase in performance by adding a third cue. 

The addition of a fourth cue did not improve detection performance in any object, 
with or without movement sensing. 

 

5.3 Discussion 

This section discusses issues arising from the Cooperative Detection experiments in 
section 5.2. 
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5.3.1 Single Cue Detection  

 
5.3.1.1 Hypothesis H1 
For hypothesis H1 we compared the means of detection performances. The results 

indicate that performance significantly increases in all algorithms when detecting smart 
objects with basic movement sensing. Consequently, in our experiments the use of 
unobtrusively embedded sensing makes the detection process more robust. We believe 
this performance increase can be generalised to other detection algorithms, as it was 
observed for all four cues of the object’s appearance. Consequently we suggest that 
smart objects should try and include at least one type of movement sensor. A range of 
basic movement sensors are available, such as accelerometers, gyroscopes, ball 
switches, tilt switches, and force sensors.  

 
5.3.1.2 Hypothesis H2 
To address hypothesis H2 detection performance of less complex algorithms (texture, 

colour and shape) with sensing was compared to local features without sensing. The 
results suggest that less complex detection algorithms used with sensing achieve better 
performance than local features. Consequently, smart objects with movement sensors 
can use a less complex method to be detected with no loss in performance. The runtime 
of less complex detection methods also tends to be faster, as seen in Table 5.1.  

 
5.3.1.3 Hypothesis H3 
To address hypothesis H3 we compared the runtime of the four detection algorithms 

with sensing against runtime without sensing. While the absolute runtimes are a 
function of the algorithm implementation, CPU speed and image size being processed, 
we showed that three algorithms (texture, shape, local features) increased measurably in 
speed with the use of context information from movement sensing. This movement 
mask constrains the detection by enabling areas without movement to be discarded from 
the processing, hence increasing overall processing speed. The Lab colour histogram 
implementation did not increase in speed as the current implementation of the method 
only uses the movement sensing events to mask the result of the colour detection step 
into moving and non-moving areas. This mask operation is performed in under 1ms. Re-
implementation of the colour detection algorithm would allow the movement mask to 
be taken into account. 

Algorithm speed could be increased further for all algorithms by using information 
from previous frames to predict an object’s location in the current frame, or by using 
guided matching where location hypotheses from different detection method are fused 
(both methods constrain the search space with a region of interest). 

 
5.3.1.4 Hypothesis H4 
To address hypothesis H4 we compared the time to first detect an object following 

entry to the environment for each of the four algorithms with sensing, against time to 
detection without sensing. The results shown in Table 5.2 indicate that sensing provides 
additional benefit by enabling objects to be detected faster than without sensing. For 
example, the 0.15s time for Colour detection and low standard deviation of 0.10 when 
using sensing indicates that objects are typically detected within the first few frames of 
becoming visible to the camera (each frame is captured at 0.10s intervals).  
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The reduction in detection times is likely due to two reasons. The first is that the use 
of movement sensing constrains the detection process, allowing a faster overall 
detection. However, if we compare the results against the detection performance results 
in Figure 5.2, we infer that a secondary reason for the reduction in detection time seen 
in Table 5.2 is likely due to the absolute overall increase in detection performance with 
sensing. Here, the objects are detected in more frames overall and this effect occurs in 
all the videos; hence this will contribute to an average reduction in detection time. 

 
5.3.1.5 Research question R1 
We posed research question R1 to look at how our object dataset (shown in Figure 

4.1) was detected with different algorithms. The test videos include challenging 
detection conditions (scaling, rotation, distractions, motion blur and partial occlusion), 
hence the results reflect expected real-world performance. Location prediction between 
frames with Kalman or Particle filters is expected to improve all results further. 

In the local features performance, the chair, mug and toaster have few detections 
because of their appearance. The chair has plenty of corner features, however many 
look identical due to the geometrically repetitive structure. Similarly, objects with 
repeating patterns on their surface, such as the ball, also exhibit high numbers of 
mismatches. Local features use the area around each detected corner for calculating a 
descriptor. Consequently, the structure of the chair again causes poor matching results, 
as features detected at object boundaries include a lot of background. Plain objects such 
as the toaster and small objects, such as the mug only have a small number of features, 
so are difficult to detect reliably.  

For texture and shape, all objects had a poor performance when used without sensing 
due to the cluttered environment in the video test library. Here other objects and 
surfaces with different appearances but similar amounts texture or similar shapes 
distract the algorithms. Sensing constrains the search area, causing less distraction and 
higher performance.  

The colour algorithm performs best with uniform and brightly coloured object 
appearances. The low detection rate of the barrel without sensing (28.28% of frames) is 
due to other chemical containers in the background distracting the algorithm. Movement 
sensing masks the distraction and increases detection to 81.31% of the video frames.  

 
Table 5.5 Guidance for which method to use, based on object appearance type 

Object Appearance Type Best Method Worst Method 
Small Objects Colour Texture / Features 
Large Objects Features / Texture / 

Shape  

Plain Objects  or  
Objects with Repeating Pattern Colour / Shape Texture / Features 

Non-Repeating Pattern or 
Textured  Objects Features / Texture Colour / Shape 

Saturated Colourful Objects Colour  
Muted Colour or  
Black and White Objects 

Features / Texture / 
Shape Colour 

Simple Geometry Depends on 
appearance.  

Complex Geometry or 
Geometry with Holes 

Colour / Texture  / 
Shape Features 
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Colour with sensing was the only algorithm to detect the white mug in more than 
40% of the video frames. Movement sensing masked the static white wall, responsible 
for distraction. The small size and plain appearance of the mug made it a particularly 
challenging object, almost never detected with other algorithms. 

These results underline the fact that a single algorithm cannot reliably detect all 
objects, and validates our approach using multiple cues and method selection. 

In practice the results suggest when certain algorithms should be used to achieve the 
best detection performance. This knowledge can be incorporated into our method 
selection step, however, the suggestions do not take into account external factors such 
as the object’s context (for example, its background). 

 

5.3.2 Multi-Cue Combination 

The performance benefits from multi-cue detection are shown clearly by Figure 5.5 
and Figure 5.6. As the cue rankings changed with objects and performance benefits are 
seen when using multiple cue detection, we infer that the four cues we use in detection 
are complimentary. 

When using all 4 cues without movement sensing the objects are on average only 
detected in 43.47% of all the video frames, which is a very low detection performance 
for a system which aims to be deployed in a real-world environment. These detection 
results are also significantly lower than the results reported for the algorithms in [Swain 
and Ballard 1991; Schiele and Crowley 2000; Belongie, Malik et al. 2002; Lowe 2004], 
however, the reported results were typically for objects on plain backgrounds or with 
dissimilar distracting objects. The use of movement sensing with multiple-cues on our 
approach makes the detection robust to the clutter and distraction seen in “realistic” 
environments. Over all objects the mean average detection performance is now 
increased to 88.72% of video frames, when using all 4 cues. 

All objects receive an increase in detection performance by using the two best cues 
for detection, by a mean average of 15.38% when used with movement sensing. 
However, increasing the number of cues considered beyond two gives little additional 
benefit (2.10% for 3 cues) and the addition of a fourth cue did not improve detection 
performance in any object..  

The multi-cue results presented are a best-case scenario, where appearance 
knowledge is available for all cues and the ranking of cues is known a-priori. We may 
not initially know the ranking of cues in new objects to achieve best detection 
performance, however, in practice the detection system can maintain detection metrics 
for each object and method combination. This valuable knowledge can be re-embedded 
into the smart object so it is not lost when the object leaves the environment. 

Unless multiple cues can be implemented to run in parallel, multi-cue detection is 
always a trade-off. Each extra detection algorithm causes a corresponding increase in 
total run-time per camera frame. Consequently, the detection performance increase must 
be balanced against the processing required in the projector-camera system. Table 5.1 
shows that algorithm runtime can be decreased by the use of movement sensing for 3 of 
the 4 algorithms, and comparing Figure 5.5 and Figure 5.6 we see a larger effect from 
multi-cue detection when used with sensing. This suggests that when a smart object 
contains a movement sensor and has appearance knowledge for a minimum of two cues, 
the detection system has the potential to run both algorithms and combine the results 
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with little penalty in terms of runtime, to achieve a further performance increase over 
sensing alone. 

Sequential combination of cues also allows location hypotheses from the first cue to 
be used when processing the second. For example, if the colour detection method 
returns two possible locations when searching for a blue chemical container, we can 
choose to constrain our processing of the second cue to just these image areas, giving 
both a reduction in runtime and increased chance of detection with the second cue. 
However, detection using sequential cue combination is more liable to exhibit 
catastrophic failure, due to detection failures in early cue methods. Hence democratic 
integration (parallel combination) could be used for robustness and sequential 
combination for accuracy or speed. 

5.3.3 Limitation of Movement Sensing 

The results support all three of our hypotheses on the benefits of the use of movement 
sensing in combination with vision-based detection. However, there are some 
limitations to an approach only involving movement. To detect static objects, the only 
way we can use movement sensing is to exclude moving areas in the image from the 
detection process. While this confers some similarities to the scenario where there is a 
moving object and static background, the detection performance will vary between 
performance without sensing and with sensing, depending on the size of the moving 
area in the image.  

In this case, greater knowledge of the object’s context from other sensors may help us 
detect the object, for example, using an embedded electronic compass or any other 
available location system. If the object has external light sensors the structured light 
approaches taken by [Lee, Hudson et al. 2005; Summet and Sukthankar 2005; Raskar, 
Nii et al. 2007] would also be possible. 

5.3.4 Use of Sensing in smart objects for Pose Calculation 

Following the initial detection process, the location and orientation (the pose) of a 
smart object must be calculated before a projection can be established.  The space that 
the Projector-Camera system and smart objects exist in is modelled in a 3D coordinate 
system with a single world origin. Local coordinate systems exist for all projectors, 
cameras and objects. For example, objects can be modelled with the centre of the object 
as their local origin and their front surface parallel to the X,Y plane, however, with 
known transformations we can convert between any arbitrary coordinate systems. Pose 
calculation aims to recover all 6 degrees of freedom of the object to camera coordinate 
system transformation (see Figure 4.4, section 4.4). This comprises the location of the 
object origin in X,Y,Z camera coordinate system (tx,ty,tz) and rotation of the object local 
coordinate system relative to the camera X,Y,Z axes (rx,ry,rz).  

If a new object enters the environment it can be in an arbitrary location and 
orientation. For example, a user who enters with a cubic object held in the palm of their 
hand could have any of its 6 surfaces upwards. The location tx,ty,tz can be estimated 
both from the centre of detection in camera coordinate system and the apparent size of 
the detection area combined with the known surface size from the 3D model stored in 
the smart object. 

We model the orientation transformation as P, where rx,ry,rz ∈ [0, 2Π). In order to 
determine P we have to search in 3ℜ , a search space of [0, 2Π) * [0, 2Π) * [0, 2Π) 
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possibilities. However, if the object contains a 3D accelerometer sensor, we can make 
use of the sensing ability to help us recover the object pose.  

3D Accelerometers can be easily calibrated to measure their orientation relative to 
gravity using methods such as that proposed by Krohn et al. [Krohn, Beigl et al. 2005]. 
The smart object can also use machine learning methods and be trained to detect its 
orientation using the method proposed by Van Laerhoeven et al. for smart cubes, with 
little cost (20 extra multiplication and 5 addition operations per 3D accelerometer 
reading) [VanLaerhoven, Villar et al. 2003].  

We assume the camera orientation relative to gravity is known, either from a pan and 
tilt unit with known mounting orientation, or by using an inclinometer sensor, as 
proposed for handheld projectors by Raskar et al. [Raskar, Beardsley et al. 2006].  
These methods therefore allow direct calculation of 2 of the 3 rotation parameters of the 
vector P directly from the accelerometers. The third rotation (rotation around the gravity 
vector) cannot be detected with accelerometers. Using this knowledge we reduce our 
search space from 3ℜ  to ℜ , as we only need to recover 1 unknown rotation in P, a 
search space of just [0, 2Π). 

If an object contains electronic compasses or gyroscopes, attempts could also be 
made to detect the third rotation axis. However, a minimum of 3 orthogonal compasses 
would be required as orientation errors increase significantly with any tilt. 

5.4 Conclusion 

In this chapter we conducted an experimental study, to explore cooperative detection 
between the visual detection system and smart object. 

We found that detection performance increases when using basic movement sensing 
with all four detection algorithms. Movement sensing constrains the search space, 
reducing distractions from the cluttered real-world environment. The improvement was 
observed for all algorithms, suggesting this can be generalised to other detection 
algorithms. This is a significant result for our framework, as it means any objects with 
embedded movement sensors can achieve more likely visual detection by cooperating 
with the projector-camera systems and sharing their sensor information. 

 In addition, we found that with the use of movement sensing, simple algorithms 
achieve similar or better detection performance to complex detection algorithms and 
that the runtime of 3 of the 4 detection algorithms in the study was reduced. This has 
important implications for the projector-camera systems in our framework, as it means 
overall detection performance can be maintained or improved either while reducing the 
amount of processing power required for detection, or that detection speed can be 
increased. This allows more flexibility in object detection. For example, when objects 
share their sensing information we can increase the chances of detecting and tracking a 
moving object by using the fastest algorithms. Similarly, we can either increase 
robustness in detection or detect more than one object simultaneously by running 
multiple detection methods in parallel, with no loss in detection speed. 

None of the algorithms had a high detection performance for all objects in our 
dataset. This is another significant result for our framework, as it underlines the fact that 
a single cue cannot reliably detect all objects. Consequently, this indicates it is 
worthwhile supporting multiple detection methods and validates the approach we 
propose in the Cooperative Augmentation framework.  
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In this study the most challenging objects to detect were small, plain objects, which 
were best detected with colour and movement sensing. The best objects were highly 
textured (a non-repeating pattern or unique features) or had uniform saturated colour. 

Multi-cue detection was demonstrated to improve detection performance for all 
objects when using the best 2 cues; however, little improvement was seen when using 
more than 2. This effect is again down to the variable natural appearance of objects. 

Improvements in detection performance were most pronounced when using 
movement sensing. The time saved in detection when using movement sensing can be 
traded off with processing of additional cues, enabling a projector-camera system in our 
framework to improve detection performance while maintaining the original single cue 
detection speed. 

In conclusion, the results presented in this chapter indicate that the combination of 
different sensing modalities is important in detection. Smart objects that cooperate with 
projector-camera systems and share their embedded sensing information can benefit 
directly with faster or more robust detection and pose calculation. 

These findings are used to inform the design of a system architecture for Cooperative 
Augmentation in Chapter 6. 
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Chapter 6 System Architecture 

This chapter describes a system architecture which serves to validate the feasibility of 
the Cooperative Augmentation approach proposed in Chapter 3. 

The design of the architecture integrates all components of the Cooperative 
Augmentation framework and is directly informed by the results from the visual 
detection experiments in Chapter 4 and Chapter 5. This enables the architecture to serve 
as a platform for the demonstration applications presented in Chapter 7. 

We first discuss the design itself, in terms of the components which comprise the 
architecture, followed by the implementation details, and then discuss the issues which 
arise in practice when implementing the design with a set of smart objects and steerable 
projector-camera systems. Finally, three series of experiments are presented to 
characterise the performance of the architecture in terms of the detection method 
memory requirements in the smart object, the accuracy of pose calculation, the 
magnitude of jitter in pose calculation and a combined system evaluation of the overall 
projection accuracy on the smart objects. 

6.1 Architecture Design Overview 

The architecture is designed to enable detection, tracking and interactive projection 
on a smart object’s surfaces. As discussed in section 3.3, the framework aims to enable 
serendipitous use of any projector and camera hardware distributed in the environment 
in the augmentation process. Hence, the architecture is designed to support multiple 
projector and camera systems by using a distributed client-server design. 

To achieve this distributed design we assume our system has four aspects of 
knowledge about the physical hardware: 

 
1. Location and orientation of all projectors and cameras, as discussed in section 3.3 
2. Calibration information about the intrinsic optical characteristics of the cameras 

and projectors, as discussed in sections 6.2.1 and 6.2.2. 
3. Calibration of any pan and tilt unit used in a steerable projector-camera system, as 

discussed in section 6.2.3. 
4. Knowledge of the pairing of distributed projector and camera hardware in the 

environment to form projector-camera systems. 
 
The cooperative augmentation conceptual framework maps to a physical structure of 

mobile smart objects and projector-camera systems in a ubiquitous computing 
environment, as seen in Figure 6.1. A discovery mechanism allows smart objects to 
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initially discover services offered by projector-camera systems, and register for the 
services. We assume the objects use an existing service discovery mechanism, so this 
component will not be discussed further in this thesis.  

Smart Object

ProjectorCamera

Smart Object

Knowledge
Updating

Pan & Tilt 
Tracking

Projection

Detection and Location
Service

Discovery
Service

Projection 
Service

Database Server

Knowledge

Sensing

Object
Proxy

Detection

Pan & Tilt 
Tracking

 
Figure 6.1 Distributed System Architecture Overview 

A detection and tracking service exists for each camera in the environment. The 
service is composed of the two core components Detection and Knowledge updating. If 
a camera is attached to pan and tilt hardware, Pan and Tilt Tracking forms the third 
optional component of the service. 

A projection service exists for each projector in the environment. The service is 
composed of the core projection component and a second optional Pan and Tilt 
Tracking component if the projector is attached to pan and tilt hardware. 

The detection and projection services may share a Pan and Tilt Tracking component 
if they are part of the same physical steerable projector-camera system. 

Physical devices such as smart objects are represented by proxy components in the 
system architecture. We assume proxies, services and applications in our architecture 
send and receive messages in a common message format, using a common protocol on 
the network. This design ensures that the system architecture can be distributed 
effectively while abstracting from the hardware and allowing proxy components to be 
easily exchanged. 

The Database Server component is a single world model maintained on the network, 
supporting services and applications on top of its model. The world model contains 
knowledge of all projectors, cameras and smart objects in the “environment”. In the 
real-world this “environment” maps to an area of physical space visible to the projector-
camera systems contained within it, which supports projected displays on smart objects.  

The Object Proxy component is responsible for maintaining coordination of state 
between a physical smart object and the cached knowledge in the Database Server 
component. 
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6.1.1 Architecture Novelty 

The architecture components themselves are based on several well-established 
concepts discussed in related work Chapter 2, such as the natural appearance detection 
and pose calculation algorithms used in the detection component, or the geometric, 
photometric and colorimetric correction algorithms in the projection component. 
Additionally, our architecture incorporates the six novel aspects described below. 

The first is the embedding of the knowledge required to achieve a display in to the 
object. This removes the need to store information about all possible objects which can 
enter the environment, or manually update the system whenever a new object appears. 
This avoids creation of large databases of objects which must be searched in detection, 
reducing the possibility of misdetection. Instead, the initial smart object registration step 
makes the object detection process simpler, as the system knows exactly which objects 
are present in the environment and hence, what to search for. 

The second is that abstraction enables flexibility in our architecture. By abstracting 
the detection and projection process to services in the environment we enable use by 
any type of smart object and any projector or camera hardware. Similarly, by 
abstracting object movement sensors to generic moving or non-moving events we 
enable use of any type of sensor able to detect movement. For example, accelerometers, 
gyros, ball switches, tilt switches or force sensors which detect pick-up and put-down 
events. Here we only care about detecting basic motion, allowing us to abstract away 
from the specific performance or calibration requirements of individual sensors. 

The third is that our system is flexible and adaptable to the knowledge contained in 
the object due to a dynamic tailoring process. This process occurs in two situations: 
firstly, in dynamic multi-cue detection algorithm selection based on knowledge 
embodied in the smart object, its sensing capabilities, the object context and its current 
detection status. Secondly in dynamic projector geometry correction algorithm selection 
based on knowledge of object geometry embodied in the smart object. 

The fourth is that objects monitor their own appearance and form via embedded 
sensing and update the projector camera system when these change. For example, an 
articulated object such as a book changes both appearance and form when opened, but 
with embedded sensing it can detect the opening and automatically updates the 
projector-camera system with a new appearance description and 3D model geometry; 
hence, tracking continues uninterrupted. 

The fifth is a dynamic projector and camera pairing method to support multiple 
projectors and cameras distributed in the environment. This process allows 
serendipitous cooperation between projector and camera services in our architecture to 
achieve the best display possible on smart objects in the environment. 

The final aspect is that over time camera systems automatically extract more 
appearance knowledge about objects and re-embed this into the smart object. Even if 
the object is already detected reliably with one detection method, extracting more 
knowledge is beneficial as the environment can also change. For example, distracting 
objects are introduced with similar appearances, the wall is painted a different colour, or 
the object is simply taken to another room. Similarly, new detection algorithms can be 
easily deployed in the projector-camera system, as the object appearance knowledge 
will be automatically updated with the new appearance information. 
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6.2 Architecture Components 

The components of the architecture are described in more detail in the following 
sections. 

6.2.1 Detection and Tracking 

The design of the detection system architecture is informed directly from the results 
presented in Chapter 4 and Chapter 5. We design multi-cue detection system with the 
different detection methods (shown in Table 6.1), corresponding to different appearance 
cues of the object (colour, texture, shape and features of objects).  

 
Table 6.1 Appearance knowledge levels and detection methods with associated processing cost 

Appearance 
Knowledge Detection Method Discriminative 

Power 
Cost in 
Time 

Colour Colour histogram comparison Low Low 

Texture  Multidimensional Receptive Field 
Histograms Medium Medium 

Shape Contour detection and Shape 
Context Medium Medium 

Local Features Interest point detection and 
feature descriptor comparison High High 

 
These methods form a flexible layered detection process that allows an object to enter 

the environment with different levels of appearance knowledge.  As we descend the 
table, the power of the detection methods to discriminate between objects with similar 
appearances increases, however, at the cost of increased processing time (due to 
increasing algorithm complexity).  We consider higher discriminative methods to hold 
more knowledge about the object.  

 
6.2.1.1 Multi-Cue Detection Method Selection 
The detection method selection step forms a novel part of the visual detection pipeline 

shown in Figure 6.2. Here, following each camera frame acquisition the method 
selection step is performed based directly on the appearance knowledge embedded in the 
object, its embedded sensing capability and its visual context obtained from the 
background model.   

If an object holds only knowledge of a single cue, the respective natural appearance 
algorithm is automatically executed. Additional appearance knowledge can be 
subsequently extracted by the knowledge updating component once the object is 
detected and its pose calculated, as discussed in section 6.2.7. 

Where an object holds appearance knowledge of more than one cue, the design 
allows either a single cue to be used, or multiple cues to be fused for improved detection 
performance (as demonstrated in section 5.2). However, detection method selection is 
always a trade-off, as processing multiple methods sequentially and the more 
discriminative individual methods (such as local features) both share the cost of 
increased processing requirements. 
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Figure 6.2 Detection method selection based on smart object knowledge 

To inform the architecture of the cues most likely to detect the object we maintain 
detection metrics, which are updated each time a detection process is executed. We 
store total and mean average algorithm runtime and detection performance histories. 
The detection performance metrics are only used following first detection of an object 
and only updated when the object is potentially visible (i.e. its last location was inside 
the camera FOV). These cue performance metrics also re-embedded into each object to 
allow use of the accumulated knowledge in other environments. 

When using only a single cue we can choose to prioritise one of three aspects of the 
detection process: 

 
1. Detection speed, by using the fastest method when objects are moving 
2. Accuracy, by using the detection with the highest detection rate when objects 

are static. 
3. Robustness, by using the most discriminative (least abstract) information to 

increase the probability of detection when distractions are present. 
 
When multiple cues are available we need to decide which cues should be combined. 

To perform this method selection we rank the detection methods based on suitability for 
detecting a particular object. The ranking is based on three aspects: 

 
1. When an object is moving we rank algorithms with shorter average runtimes 

higher, whereas algorithms with higher detection performance are ranked higher 
for static objects. 

2. We take the object’s context into account, by looking at the background model 
and the object’s movement sensing capabilities. For example, we can directly 
compare the object’s colour histogram with the colour histogram of the area of the 
background model currently visible to the camera. If the histograms are similar 
we would not select the colour method unless the object had movement sensors 
and was mobile, as the probability of detection is low due to distraction (see the 
Cooperative Detection experiment in Chapter 5). 
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3. Objects can store optional knowledge of their detection performance with scale 
and rotation (as explained in section 4.4). This allows us to select a method which 
performs best at the current distance and orientation, following first detection of 
the object.  

 
6.2.1.2 Pose Calculation 
If the object is successfully detected a 2D location result is generated.  This can take 

the form of correspondences between extracted image features and features in the Object 
Model, or a 2D image region in which the object has been detected. 

The pose calculation step is subsequently performed to calculate the 3D location and 
orientation of the object with respect to the camera. The object pose can then be 
converted into a world coordinate system pose using the known camera location and 
orientation. This, in turn, allows the projection service to later convert the object world 
coordinate system pose to the pose of the object with respect to the projector using the 
known projector location and orientation, as shown in Figure 6.3. 

 

 
Figure 6.3 The 4 coordinate systems: Camera, Projector and smart object Local Coordinate Systems, and the arbitrary 

World Coordinate System 

The object pose is calculated either directly from matched local feature 
correspondences, or by fitting the 3D model to edges detected in the 2D image region 
from the detection step. This step requires both the geometrical 3D model of an object 
and the camera intrinsic parameter matrix obtained from the camera calibration. 

If the camera has a computer controllable powered zoom lens then the system has the 
ability to either detect many objects in a large area with the wide angle setting, or zoom 
in to increase the accuracy of detection for a single object or closely spaced group. The 
pose calculation algorithm requires the camera calibration to calculate the pose, 
however, this changes with the focal length when the lens is zoomed. Consequently, we 
can pre-calibrate the camera at multiple focal lengths, load these calibrations in the 
architecture, automatically fit a linear function and use this for interpolating the 
calibration matrix between the calibrated positions, based on the current zoom setting. 
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6.2.2 Projection 

The design of the projection component enables undistorted images to be projected 
by correcting geometric distortion in the image resulting from projecting on a non-
perpendicular or non-planar surface, as discussed in section 2.3.6. We compensate for 
this distortion by warping our projected image, as we know both the surface geometry 
of the object and the 3D pose of the surface with respect to the projector.  We obtain the 
surface shape from the geometric 3D model embedded within the Object Model and the 
pose of the object from the detection process. The surface shape directly configures the 
geometric correction method used in projection [Bimber and Raskar 2005], as shown in 
Table 6.2. 

Table 6.2 Geometric correction methods for projection based on object geometry [Bimber and Raskar 2005] 

Object Geometries Correction Method 
Planar Planar Homography Rectilinear 
Cylindrical Quadric Image Transfer Spherical 
Irregular Discretised Warping 

 
The projection service manages projection requests from the smart object. Content is 

either downloaded from a location supplied by the object, or is loaded directly from the 
object for projection onto the object’s surfaces. 

Images of the object’s surfaces from the detection service are used to correct the 
colour of the projection image to make it more visible on coloured and patterned object 
surfaces, as discussed in section 2.3.7. 

The projection component requires the optical calibration of the projector to display 
projections accurately. This is obtained from the methods described in section 6.4. The 
projector calibration provides the system with three aspects of knowledge: 

 
1. Horizontal and vertical Field Of View (FOV). 
2. The optical Centre of Projection (COP). 
3. Native projector resolution in pixels. 

 
As discussed in section 2.3.8, in traditional (i.e. non-LASER) projectors an image 

appears acceptably in focus at the actual focal plane and for a limited distance in front 
and behind this distance. Outside this distance the projection appears blurred and 
difficult to read. Consequently, for environments with mobile objects (or objects with 
large depths) we must dynamically focus on objects to ensure a readable projection. If 
the projector hardware contains a computer controllable powered focus lens, the focus 
setting must be calibrated manually at multiple distances, by moving an orthogonal 
planar surface in steps from the minimum to maximum focus-distance and at each step 
focussing and recording the focus setting. The architecture can then load this calibration 
data and fit a non-linear function automatically, to be used for interpolating a dynamic 
focus based on the distance to a single object, or average of a group of objects.  

Similarly, we would like maximum resolution projection (from the projector at 
maximum zoom) on each object, however this restricts both the size of the object and 
the number of objects that can be projected on, as the field of view of the projector is 
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limited. If the projector hardware has a computer controllable powered zoom lens then 
the system has the ability to trade-off the zoom level (hence projection resolution) with 
field of view dynamically, so as to encompass the most objects with the highest 
resolution. To use the zoom, the projector’s optical parameters must be calibrated at 
multiple zoom settings and these calibrations loaded by the architecture, a linear 
function automatically fit and used for calculating the zoom setting based on the 
position of objects in the field of view of the projector requesting a projection. 

 
To enable multiple projector-camera systems, we design our projection component 

using a similar display rights method to Ehnes et al. [Ehnes, Hirota et al. 2005] (see 
related work, section 2.3.8), which relies on the world model having an overview of all 
camera, projector and object locations and viewing volumes. Each projector determines 
the visual quality of its projection based on the distance and relative orientation of the 
object’s surface to the projector using the metric introduced by Ehnes and Hirose 
[Ehnes and Hirose 2006]. Closer, more orthogonal projectors score higher, allowing a 
ranking to be performed and the best projector assigned display rights. This ranking is 
performed for each surface of an object (as defined in the 3D model) with an active 
projection, allowing simultaneous projection from multiple projectors onto multiple 
surfaces of the same 3D object. This method has the benefit of maximising the area of 
the object which can be projected on, while eliminating the possibility of mis-
registration from image overlap causing blurred or unreadable projections. 

6.2.3 Pan & Tilt Tracking Component 

The pan and tilt component is solely responsible for controlling steerable hardware, 
allowing minimal code modification when changing or modifying hardware. We design 
the component to enable searching for objects using two search methods, and choose 
between them depending on our knowledge of the object. 

 
6.2.3.1 Search and Tracking Methods 
 The first method is used to detect objects when the system has no prior knowledge of 

their location. In this case we use a creeping line search to rotate the pan and tilt 
hardware through its whole mechanical field of view. Figure 6.4 (left) shows this search 
method. The dotted line represents the pan and tilt mechanical Field Of View (FOV). 
The length and spacing of the movement track lines is based on both the pan and tilt 
FOV, and the angular FOV of the camera hardware being rotated, represented by the 
blue box. The track is designed so that some overlap of camera FOV occurs in the 
longest axis (here the horizontal pan axis), increasing the likelihood of detecting objects 
located midway between the track legs. However, the amount of overlap is a trade-off, 
as increasing overlap requires more tilt legs, hence, more time per search. 

The second search method is used when the system has prior knowledge of an 
object’s location in the world coordinate system. In this case the hardware is rotated to 
point at the object’s last known location and an expanding-box search is used from this 
point, as shown in Figure 6.4 (right). In this case the movement track is solely based on 
the angular field of view of the hardware being rotated, represented by the blue box. 
The track is again designed so that some overlap in field of view occurs and for this 
pattern we overlap in both pan and tilt axes. 
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Figure 6.4 Search Methods: (left) Creeping Line Search over the whole Pan and Tilt Field Of View, (right) Expanding-

Box search from previous object location 

Once detected by the detection system, an object can be dynamically tracked. We 
assume knowledge of the location and orientation of the pan and tilt hardware in the 
world coordinate system and knowledge of the object location from the detection 
system. Consequently, object tracking is accomplished by calculating the relative angle 
of an object to the pan and tilt hardware origin in the pan and tilt axes, then rotating the 
hardware to minimise these angles. 

 
6.2.3.2 A Concept of System Focus 
If multiple smart objects exist in an environment it is possible to simultaneously 

detect and project on all objects inside a projector-camera system field of view. 
However, if only one projector-camera system exists and one or more objects are 
mobile this becomes a resource allocation problem. In this case the system must decide 
which objects to track. 

 To help resolve this problem we introduce a concept of system “focus”, which is 
similar to the concept of human attention. The system focus dynamically determines 
which objects to track and can be set either explicitly by the user, by an application 
aware of multiple objects, or automatically according to a set of rules. 

An automatic system focus can be designed in many ways, depending on the amount 
of knowledge available about the user’s context.  For example, we theorise that 
detection of object movement indicates deliberate interaction by a user. Consequently, 
we can easily design a system which always focuses on moving objects.  However, such 
a naive function would encounter many difficult situations. For example, if a projection 
is already established on a group of static objects and another unrelated user moves 
through the camera field of view carrying another smart object, the projection would 
follow the unrelated user. 

Another solution to the problem is to make use of multiple projector-camera systems 
in the environment, as discussed in section 6.2.2. The system architecture is designed to 
allow multiple projectors and cameras automatically detect and project on any objects 
within their field of view. This allows easy load-balancing across multiple projectors, so 
that an object can still receive a projection (even if it is not the best quality) if an object 
is inside the field of view of a projector and helps to overcome the problem of 
projection starvation, where an object never receives a projection as another mobile 
object is continually in focus.  
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6.2.3.3 Pan and Tilt Hardware Control 
The pan and tilt tracking component abstracts from direct hardware control. This 

abstraction layer allows the pan and tilt hardware to be controlled in terms of angles in 
the world coordinate system, rather than in a hardware-dependant way. As we assume 
the pan and tilt unit has knowledge of its location and orientation in the world 
coordinate system, we can calculate the orientation of the pan and tilt hardware using a 
calibration between the hardware-dependant measurement units used to control the pan 
and tilt orientation to angles in the physical world.  

We assume the pan and tilt hardware has an open-loop control system, so that there is 
no feedback of actual pan and tilt orientation. This requires a simulation of the motion 
of the hardware to determine the instantaneous location and orientation of the projector 
or camera attached to it. We simulate the motion of the hardware using a system of 
equations of motion, as proposed by Ehnes et al. [Ehnes, Hirota et al. 2004]. Two 
systems of control are possible, based on different hardware implementations:  

 
1. Constant Speed Control, where the projector rotation speed is set (either 

manually, or by the system architecture) and constant for the whole of a 
movement, with exception of very short acceleration and deceleration periods. 

2. Constant Time Control, where a projector always takes a constant time to perform 
a movement by automatically varying its rotation speed. This is subject to its 
maximum rotation speed, which limits the angle it can rotate in a constant time. 
Angles greater than this require increasing amounts of time.  

 
For both control systems the maximum rotation speed will never be reached on very 

short movements, as the projector acceleration and deceleration phases overlap. 
However, in practice, the maximum pan or tilt movement speed we can actually use 
while searching or tracking with a camera is primarily determined by the camera 
exposure length. Fast movements with long exposures will cause blurring in the camera 
image unless the object is moving in the same direction at exactly the same angular rate. 
This blurring can cause loss of tracking and reduced detection performance. 

Both control systems use the same equations of motion, however, we change the way 
the velocity variable is calculated for the different systems. To determine the current 
pan or tilt angle ( )tS  we simulate movement individually for each axis using the 
following equation: 

 
( ) ( )startstart ttVStS −+=  (6.1) 

 
where S(t) is the angle at time t, Sstart is the intial angle and in the constant speed 

control system V is the signed rotation velocity (measured in degrees per second).  
In the constant time control system the velocity is proportional to the distance 

remaining to the destination angle, limited by the maximum velocity. Consequently, V 
is calculated with the following equation: 
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where V is the signed rotation velocity, Sstart is the intial angle, Send is the destination 
angle, and constT  is the empirically measured constant time for the movement. 

Ehnes et al. [Ehnes, Hirota et al. 2004] extended this simulation to include initial 
acceleration by adding an acceleration constant A, which must be empirically measured. 
This allows us to incorporate the time required to accelerate from the previous velocity 
to a new velocity. 

 

( ) ( ) ( )2
startt-t

2
AttVStS startstartstart +−+=  (6.3) 

 
where startV  is the initial velocity set for the constant speed control, or calculated for 

the constant time control system. 
While using an acceleration term may provide greater angle accuracy, it in turn relies 

on an accurate empirical measurement of the acceleration. This can be challenging 
without using actual sensors, as many pan and tilt units accelerate very rapidly. 

In the constant speed control system we can calculate motionT , the time required for the 
motion (and hence the time the projector will arrive at the destination by adding the 
current time) using the simple equation: 

 
( )

V
SS

T endstart
motion

−
=  (6. 4) 

 
For the constant time simulation we simply assume the projector has arrived at its 

destination when t is greater than the constant time of motion. 

6.2.4 Smart Objects 

Smart objects describe themselves and their capabilities through knowledge 
embedded in the Object Model, contained in the object itself (as discussed in section 
3.2). We assume that the smart objects automatically detect availability of a detection 
and projection service (simulating the availability of a discovery service such as UPnP 
[UPnP(TM)Forum 2003] ), allowing them to cooperate with projector-camera systems 
and communicate this knowledge. Many everyday smart objects possess on-board 
sensing such as light, temperature and movement sensors associated with other 
purposes. The smart object cooperates with projector-camera systems to communicate 
this information, enabling serendipitous constraining of the detection process. Finally, 
the component assumes smart objects do not have access to external location systems 
precise enough to allow projector-camera systems to register a projected image with the 
object’s surfaces. 

In the Cooperative Augmentation Framework it is the smart object which controls the 
interaction with projector-camera systems. The smart object issues projection requests 
to control how an output (the projection) changes. Projection directly onto the object is 
the visual feedback to interaction. 

The smart object is modelled as a state machine which responds to user interaction 
based on variations in input values, such as sensor inputs. This modelling is analogous 
to programming the smart object.  
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To “program” the smart object state machine we define a set of states which are 
constantly evaluated against the sensors. Each state defines one or more sensors 
together with operations on the raw sensor values (such as calculating the variance, or 
the mean), minimum and maximum boundary values required to enter the state, and the 
method of combining results from individual sensor operations, such as boolean AND 
or OR. Only when the operations performed on the raw sensor values evaluate to within 
the boundary values set and the required number of sensors (all for AND, or any one 
sensor for OR) are in range does the state change. A hierarchical tree of sensors, with 
each branch having its own method of sensor combination can be used to describe 
complex states. 

Each Object Model contains three separate classes of states, for three associated 
object characteristics: 

 
1. States to determine when object is moving or static (and so generate moving events) 
2. States to determine when object changes appearance or geometrical shape (for 

example, for articulated objects to update the architecture with a new appearance 
and 3D model) 

3. States to determine when projections are requested. One state must be defined per 
projection. 

 
6.2.4.1 Input Modalities for State Change 
Seven separate input modalities have been identified for use in modelling interaction 

with smart objects to enable the three separate classes of states to be programmed. We 
cluster the modalities into direct interaction (i.e. the user is physically touching the 
object) and indirect interaction: 

 
Direct interaction that can be sensed by the object: 

1) Manipulation of object location and orientation, as sensed by the camera. 
2) Manipulation of object geometry (for example, opening a book). 
3) Manipulation of physical interaction components on and sensed by object (for 

example, direct interaction with buttons or dials on its surfaces). 
4) Other manipulation of object, sensed by object (for example, shaking detected 

by an embedded accelerometer sensor). 
5) Interactive Projected User Interfaces (sensed via a camera). 

 
Indirect interaction that can be sensed or used by the object: 

6) Manipulation of physical environment remote to object (for example, 
switching the light on in the room). 

7) Interaction with other smart objects in the environment. 
 
All these input modalities are treated as sensors in the system architecture. 

Consequently, the sensor knowledge contained in the Object Model varies depending 
not just on the sensors physically embedded within the smart object, but also on what 
modalities we want to use for input in our smart object program. 

Physical and projected user interface components, such as buttons, dials and sliders, 
are also modelled as sensors. Buttons are modelled with a range of 0-1, with 2 possible 
values of 0 (not pressed) and 1 (pressed). Dials and sliders are modelled as a continuous 
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value range between 0-100. Multiple axis controls are modelled as separate single axis 
controls. For example, a 2D joystick would be modelled as 2 sliders with separate 
physical axes. 

Additionally, the current projection can be used as a sensor. As smart objects are 
modelled with a state machine, all possible projections must be known a-priori. 
Consequently, each individual projection can be numbered and used as an input sensor 
value when programming an object’s states. For example, if projection image number 2 
contains a button, we only want to detect whether the button is pressed when this 
projection is being displayed, as the other projections may not include buttons. While 
this requires us to model what is projecting in any individual state, it does not restrict 
what can be projected. For example, a video can be modelled as one projection in a 
single state, rather than a collection of individual numbered projection frames, each 
with its own state. 

 
6.2.4.2 State Machine Processing 
A generic pseudo code example of the processing required to determine when a state 

change occurs, and hence, when an event message is generated is shown below: 
 

foreach defined state s 

 

foreach sensor n in state s 

  Run Operation defined for sensor n on raw sensor data 

 

  if operation result > min limit and result < max limit 

   sensor n result = 1 

  else  

sensor n result = 0 

  endif 

endfor 

 

if result combination method == AND 

  if all n results == 1 

   Change to state s 

   End 

endif 

 

else if result combination method == OR 

  if any of n results == 1 

   Change to state s 

   End 

endif 

endif 

 

endfor 

 
The state processing example above does not take into account hierarchical trees of 

sensors; however, this is supported simply by recursion of the processing algorithm. In 
this case the nested processing return the result value of the processing rather than 
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change states directly, and the higher levels in turn use these results as sensor values in 
their processing. 

In addition to the demonstration applications presented in Chapter 7, three simple 
examples of programming a smart object using the state-machine approach can be 
found in Appendix B. 

6.2.5 Object Proxy 

The object proxy translates messages between the native format of the smart object 
hardware and the architecture message format. By using a standard message format in 
the architecture different to the smart object format, this allows us to substitute different 
object hardware and only have to re-write the proxy. 

Unknown messages received from the smart object by the Object Proxy are converted 
to the architecture message format and broadcast on the network. Similarly, unknown 
messages addressed to the smart object received from the architecture by the Proxy are 
converted to smart object format and forwarded to the smart object. This automatic 
conversion process allows the object to implement functionality outside of our defined 
system architecture, with the only requirement being that other communicating 
applications use our architecture message format for communication. 

Similarly, it allows the smart object to decide where the abstraction of raw data 
values to events is performed, as events generated directly by the smart object are 
treated as unknown messages. 

A smart object is modelled as a state machine which emits events and projection 
requests in response to changes in sensor data, location, orientation or stored 
knowledge. The object proxy converts any sensor data streamed from the smart object 
directly to event messages if the smart object is unable to perform this operation due to 
lack of processing power.  

The object proxy application itself is generic, with conversion processing configured 
dynamically for each smart object from the Object Model. As discussed in section 6.2.4, 
the Object Model stores the description of sensors in the object and the conversion 
method to events. This conversion method is described in terms of operations (such as 
calculate the variance, or the mean), minimum and maximum threshold values and the 
method of combining results from the operations, such as boolean AND or OR. This 
conversion of data to events can be applied to any type of sensor data. The processing 
required to determine when a state change occurs, and hence, when an event message is 
generated is identical that described in 6.2.4. 

6.2.6 Database Server 

The smart objects initially register with the Database Server and provide a Unique ID 
(UID). This creates the virtual object cache in the server which mirrors state changes of 
the physical object. Changes to the database state are either broadcast on the network to 
all applications or sent to the smart object, depending on the source and contents of the 
message. Other applications can now query the object state directly from the server.  

Maintaining an Object Model database has four additional benefits: 
 
1. It synchronises access to smart object knowledge by different services and 

applications 
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2. It coordinates distributed projector and camera hardware, allowing them to each 
offer separate projection and detection services, while maintaining a unified world 
model of the environment 

3. It allows services to be stopped and subsequently re-initialised with current world 
state by querying the database. 

4. It minimises network traffic to and from the physical smart object 
Object proxies are responsible for keeping the Object Model updated when the 3D 

model or appearance of the object changes.  The database server additionally caches any 
display request messages or requests for interactive projected interfaces sent by the 
Object. This allows architecture applications to re-initialise and regain full knowledge 
of the object state by querying the database server. 

 
6.2.6.1 Projector and Camera Database 
Similarly, projectors and cameras register with the Database Server, so it contains 

knowledge of all hardware in the “environment”. The concept of an environment is 
introduced here as many projector-camera systems may be deployed throughout a 
building. The concept itself is similar to the concept of sub-nets in IP address based 
networking, where small areas of a larger network are effectively segregated. Similarly, 
our concept has a single database server responsible for a small physical real-world 
area, or “environment” and a small group of projectors and cameras. This enables our 
approach to easily scale, allowing simultaneous use of many objects in a whole 
building. Similarly, if mobile, handheld or wearable projector-camera systems enter the 
environment this approach also maintains the benefits of hardware flexibility and 
performance. 

The server maintains a database of all projectors and cameras present in the 
environment. When a projection is requested by an object, this database is used to 
identify the physical detection and projection hardware currently detecting and 
projecting onto each object surface. We form loosely-coupled projector-camera system 
pairs from all the available hardware in the environment for each projection requested. 

We aim to dynamically modify the pairings so that the best projector and camera is 
always used to increase robustness. Detection and projection can continue as long as 
one camera and one projector can see the object, even if other hardware is occluded. 

For example, we can imagine an environment with two projectors and two cameras 
which form two separate physical projector-camera systems, as each camera is attached 
to the top of its respective projector. Both projector-camera systems are oriented the 
same way, but with a small horizontal separation between them. Consequently, there is 
a large horizontal overlap of the viewing frustums between the projector-camera 
systems. Inside the overlapped region we can use any (or all) of the cameras and 
projectors for the detection and projection tasks. If a person walks in front of the object, 
the actual hardware used will vary depending on which projector and camera is 
occluded as the person walks past. 

 
6.2.6.2 Dynamic Pairing 
All cameras detecting a smart object return a location and orientation update to the 

database server. If more than one camera detects the object the location and orientation 
hypotheses are integrated to a single predicted location via a Particle filter [Pupilli and 
Calway 2006]. The predicted location is finally returned to the smart object in a location 
and orientation update message.  
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The Database Server stores an array of the UID of cameras currently tracking the 
object in the respective Object Model. We assume that the object is not being tracked if 
its location and orientation has not been updated by a detection service for a user 
defined time (e.g. 1 second). 

When an object requests a projection the request is sent to all projectors. Each 
projector returns a visibility score based on the relative location and orientation of the 
object’s projection location with respect to the projector. The database server manages 
the projectors to ensure only one projector is active for each requested projection. 

The returned values are ranked, and the highest scoring projector has the object set in-
focus (the concept of system focus is discussed in section 6.2.3). Lower scoring 
projectors have the object set to out-of-focus. The database server re-evaluates all 
visibility scores at a user defined interval (e.g. 1 second) and changes the projector’s 
focus as required. Two strategies are possible to prevent rapid flicking between different 
projectors with identical scores: 

1. A user-configurable delay before change. 
2. A re-focus threshold, so the projector chosen remains active until its score 

drops below a pre-defined minimum, irrespective of the ranking. 
 

6.2.7 Knowledge Updating 

The design of the Cooperative Augmentation architecture provides a mechanism for 
re-embedding knowledge into smart objects. The knowledge is extracted by the 
knowledge updating component and re-embedded into a smart object via the Database 
Server and Object Proxy. This design has three main benefits. Firstly, it allows the 
objects to enter the environment with flexible amounts of appearance knowledge. 
Secondly, it allows projector-camera systems to use multiple-cues in detection to 
increase detection performance (as shown in section 5.2). Thirdly, new detection 
methods can be implemented in the projector-camera system for improved detection 
performance, without explicit modification to the Smart Object. Instead, the knowledge 
updating component automates appearance extraction and re-embedding in the object. 

To achieve this automation, the component uses images of the object’s surfaces 
extracted from the camera image by using the known 3D model and pose of the object 
when detected. The new detection method can be used in the knowledge update process 
to extract new appearance knowledge from each surface whenever the surface is at the 
optimum distance and orientation relative to the camera for training the detection 
methods (see section 4.4.2). This knowledge is re-embedded in the Object Model for 
more flexible and more robust detection. 

Newly extracted knowledge is merged with existing knowledge in the Object Model. 
If the knowledge is not contained in the object we simply add the knowledge to the 
Object Model. However, if the object already contains knowledge extracted with the 
same detection method we have three options: 

 
1. Keep the existing knowledge 
2. Replace the existing Knowledge with the new knowledge 
3. Merge the existing Knowledge with the new knowledge 
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To determine which option to choose we can run the detection method twice per 
camera frame (once for the old knowledge, once for the new knowledge). At the end of 
a pre-determined period we decide which knowledge performs best and either keep the 
old knowledge or replace it. 

Knowledge can also be merged, however this has dangers as the resultant knowledge 
may not accurately reflect the object’s appearance if there was a misdetection, or the old 
and new knowledge were extracted under different conditions. For example, a blue 
chemical container would appear to have one hue under incandescent illumination 
(3200K temperature), and a different hue in daylight (6500K temperature) unless the 
camera is accurately colour calibrated in each case. 

Extracted appearance knowledge is stored in the Object Model on a per-surface basis, 
relating to surfaces defined in the 3D model.  

6.3 Implementation 

This section describes a demonstration implementation of the Cooperative 
Augmentation conceptual framework using the system architecture designed above. 

As the system will be deployed in a lab environment, we aim for a level of 
performance to allow the implementation to function as an interactive demonstrator: 

 
1. Based dimensions of the lab environment shown in Figure 6.5, the 

implementation should aim to detect, track and project onto objects up to a 
minimum of 6m from the projector-camera system. 

2. The implementation should aim to achieve a maximum 20mm median projection 
location error and a maximum 1° median orientation error when projecting on a 
planar object at 3m distance from the camera. 

 

 
 

Figure 6.5 Two views of a Lab Environment: (left) South-West Elevation, (right) North-East Elevation 

We implement smart objects using Smart-Its particle hardware [Decker, Krohn et al. 
2005], with attached “ssimp” sensor board part (see section 2.2.1). 

A steerable projector-camera system (shown in Figure 6.6) similar to the ones 
described by Ehnes et al. [Ehnes, Hirota et al. 2004]and Butz et al. [Butz, Schneider et 
al. 2004] is implemented from a moving-head display light pan and tilt unit, a 
lightweight DLP projector and a firewire camera.  As our scenarios incorporate mobile 

2.6m

5.765m5.475m
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objects, there is great benefit in using a moving head steerable projector system, as it 
allows a single system to be mounted in a location with the best view of the whole 
environment (the centre of the ceiling) and maximise the volume in which objects can 
be tracked.  

 
Figure 6.6 The moving-head steerable projector-camera system 

The pan and tilt unit is controlled by the computer using the DMX512 serial protocol 
and can move through an addressable 540° pan angle and 265° in tilt at up to 180° per 
second. The unit can rotate the projector-camera system hardware in two real-world 
dimensions – horizontal (pan) and vertical (tilt), about the approximate centre of 
projection (COP) of the projector. 

The projector is a 2800 Lumen Casio DLP projector with large 2x zoom capability, 
allowing us to maintain relatively high resolution projection on objects at large 
distances.  The firewire camera is a Pixelink 1280x1024 resolution colour CMOS 
camera capable of 27 frames per second (fps) at full resolution and up to 104fps with a 
640x480 region of interest enabled. The camera is used with a 12mm C-Mount lens 
with 40x30° field of view (FOV). 

More information on the steerable projector-camera system is found in Appendix A. 
 
The implementation of the architecture components are described in detail in sections 

6.3.4 to 6.3.3. Each component was implemented in C++ as a stand-alone application on 
the network and use a common messaging format for communication, as described in 
section 6.3.6 below. 

6.3.1 Detection and Tracking 

The detection and tracking service is started with an XML configuration file 
providing four further aspects of information: 

 
1. Name or unique identity (UID) of camera hardware (to address it on the network). 
2. Location in world coordinate system (WCS) if static. 
3. Orientation in WCS if static. 
4. Optical parameters or camera calibration file. 
 
If the camera system is a steerable system, the Pan and Tilt tracking component will 

automatically provide the system with the current hardware location and orientation. 
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The detection system attempts to detect all smart objects in the environment. As this 
would have a significant processing cost with large numbers of objects, the detection 
system first checks to ensure an object is visible. If the object has not been detected yet, 
or the Database Server indicates the object is not currently tracked, then the system 
automatically attempts to detect it.  

If the Database Server stores a location and orientation for the object and indicates it 
is currently tracked, the detection system calculates its viewing frustum in the world 
coordinate system based on its current location and orientation. The location of the 
object is checked against the viewing frustum to see if the object is inside. Only when 
the object is potentially visible does the system attempt to detect it. 

One detection algorithm per cue (colour, texture, shape, features) is implemented in 
the detection system, as described in section 4.2. Algorithms are implemented using 
OpenCV [IntelOpenCV 2007] to benefit from its built-in algorithm optimisations for 
Intel x86 CPUs. Additionally, as many image-processing tasks are inherently 
parallelisable, we also implement components of the detection system on the graphics 
card (GPU). The user can switch between CPU-only and combined CPU-GPU 
implementations by re-compiling the detection system application with different pre-
processor parameters. 

Common tasks such as gaussian blur, absolute difference, background subtraction and 
histogram creation are all implemented on the GPU using NVIDIA’s “Compute Unified 
Device Architecture” (CUDA) language. This allows algorithms to be written in a C 
based language, yet benefit from a typical 10-15% speedup when executed on the GPU. 
For example, a CPU optimised version of the SIFT local feature algorithm takes 
approximately 333ms to detect a single object in a 640x480 pixel image [Lowe 2004], 
whereas a GPU version only takes 100ms [Sinha, Frahm et al. 2006]. As CPU-GPU 
data transfers are typically a bottleneck, each camera image is uploaded to the GPU 
following capture and as much processing as possible is performed on the GPU before 
returning any result data to the CPU.  

 
6.3.1.1 Figure-Ground Segmentation for Object Motion Detection 
The detection method selection is performed for each object based on what 

appearance knowledge the object holds, the object context (which we can obtain from a 
background model) and whether the object contains a movement sensor. 

To generate a motion mask and basic figure-ground segmentation of the target object 
the current system architecture implementation uses a simple absolute difference 
operation between the previous camera frame and the current frame whenever the 
object’s sensors detect motion. This method is fast to compute and works well when the 
camera is static or only moving slowly, increasing the probability of correct detection 
(as demonstrated in section 5.2). 

Another method for mobile or fast moving cameras that are constrained to move in a 
known path (e.g. a steerable projector) is to maintain a background model. To create the 
background model for steerable projectors we implemented a separate application to 
rotate the steerable projector to cover their whole Field Of View (FOV) while capturing 
camera images. For moving head steerable projectors the FOV is typically a full 
hemisphere. The application also requires knowledge of the camera Field Of View 
(FOV) to calculate how many photos are required to achieve full coverage. Each photo 
overlaps with its neighbours by 1/3, allowing automatic stitching and blending of the 
images into a single rectangular texture. An example of a 360x90º FOV background 
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model stitched from 16x4 overlapping images then re-projected into a hemisphere can 
be seen in Figure 6.7. As the capture and stitching process typically takes several 
minutes, we assume it is performed off-line before object detection (for example, the 
environment could be scanned automatically overnight).  

 

 
Figure 6.7 View down into a background model re-projected into a hemisphere, captured by rotating a moving head 

steerable projector through a 360x90º FOV. 

During on-line detection the known pan and tilt unit orientation and camera FOV 
allows us to calculate the area of the background model currently viewed by the 
steerable projector for visual differencing, for use as context information or for update. 
To reduce both memory requirement and the chance of any small inaccuracies in the 
pan and tilt unit orientation affecting the visual differencing we can reduce the 
resolution of the stored background model to 50% or 25% of the original size.  

To increase robustness we could also use visual differences generated between the 
camera image and a Gaussian-mixture model of the background [Stauffer and Grimson 
1999] to provide a basic figure-ground segmentation to the detection algorithms. The 
Gaussian-mixture mode model is calculated independently for each pixel in the stitched 
rectangular texture background model and selectively updated based on the area of the 
background model currently viewed by the steerable projector. 

For mobile, handheld or wearable cameras a background model can be built using 
structure-from-motion SLAM techniques [Davison and Murray 2002; Davison 2003; 
Chekhlov, Gee et al. 2007; Klein and Murray 2007]. 

 
6.3.1.2 Detection Method Selection 
If the object only has knowledge of a single appearance cue we automatically choose 

the respective detection method. However, as explained in section 6.2.1, when an object 
has appearance knowledge for multiple cues we can choose whether to perform a single 
detection method which prioritises an aspect of detection (speed, accuracy or 
robustness), or perform multiple methods and combine the results. The multi-cue 
detection results in Chapter 5 indicated only the best two cues contributed significantly 
to successful object detection, hence when detection metrics are available for multiple 
methods we can choose the top two. 

 
We select multiple algorithms in two cases: 
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1. For first detection of an object, to maximise the chance of detection. Here we 
process the top 2 algorithms sequentially, in order of ranking, and use the 
detection results of the first algorithm as a figure-ground segmentation for the 
second algorithm. 

2. When the average runtimes of the top two ranked algorithms are less than 10% 
different. In this case we execute the algorithms in parallel, either in multiple 
threads on the CPU (taking advantage of multi-core CPUs) or with one on the 
CPU and one on the GPU. This approach retains the benefit of a multi-cue system 
with minimal impact on performance. The cue results are combined at the end of 
the processing step using a binary OR operation on the detection areas in the 
camera image for colour, texture and shape, or by masking the detected local 
features before the pose calculation step.  

 
The detection process aims to maintain between 5 and 60 frames per second for 

interactive system performance. As we process every camera frame, the exact frames 
per second achieved will vary, depending on the user-configurable camera frame rate, 
the execution time of the detection algorithms and the number of objects to be detected. 

To reduce processing time for multiple objects we separate detection algorithms into 
operations which are common for multiple objects (such as the initial difference-of-
Gaussians pyramid creation for the SIFT local feature algorithm) and object specific 
operations (such as matching the object appearance to the processed camera frame). 
While requiring sufficient memory to store all intermediate results, this allows the 
majority of image processing to be performed only once per camera frame, irrespective 
of the number of objects using the detection method.  

 
6.3.1.3 Pose Calculation 
We perform a two-step pose calculation. Firstly, the object pose is calculated either 

directly from matched local feature correspondences or by fitting the 3D model to edges 
detected in the 2D image region from the detection step. The local feature pose 
calculation algorithm calculates a homography matrix for a planar surface and for non-
planar objects the Direct Linear Transform (DLT) algorithm is used. The calculated 
matrix is decomposed to extract the location and orientation of the object with respect to 
the camera. The 3D model fitting initially detects edges in the camera image around the 
location of detection using the Canny algorithm [Canny 1986].  A RAPiD-like 
algorithm [Harris 1993; Armstrong and Zisserman 1995; Gee and Mayol-Cuevas 2006] 
is then used to project lines from the model into the camera image at multiple 
orientations and scales, centred around the detection location and test to see which pose 
has the best fit to the detected edges.  

If the smart object contains 3D accelerometer sensors these can additionally be used 
in the pose computation step when performing the 3D model fitting. In this case the 
sensed gravity vector is directly used to constrain the orientation, and hence the number 
of 3D model poses that must be tested to match the edges detected in the image, as 
explained in section 5.3.4. 

These detection and pose calculation steps requires the camera calibration and use the 
RANSAC algorithm [Fischler and Bolles 1981] for both robust model parameter 
estimation and for eliminating incorrectly matched correspondences. This initial 
calculation is followed by the second step where we perform an iterative pose 
refinement to increase accuracy, using the Gauss-Newton algorithm. An example of the 
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registration of an object with its 3D model using the result of the pose calculation is 
seen for the book object in Figure 6.8 (left). 

 
6.3.1.4 Tracking 
There are three main sources of latency in the implementation – camera frame 

acquisition, image processing for object detection and projection. For a camera running 
at 30Hz the frame acquisition takes up to 33.3ms, while for a 60Hz projector a frame is 
projected every 16.7ms.  Hence, maximum latency before image processing is 50ms 
(assuming unsynchronised cameras and projectors). It was reported by Brooks [Brooks 
1999] that users of projector based interactive systems routinely accept total system 
latencies of 150ms, so we should aim to perform the detection step below 100ms. In 
contrast, the CPU runtime of the natural appearance algorithms we use in the 
architecture is between 288ms and 852ms per 1280x1024 pixel frame (as shown in 
section 5.2.4). 

For the demonstration applications presented in Chapter 7, these natural appearance 
detection algorithms do not perform in real-time, hence, our implementation uses a 
tracking system to speed up the detection process after first detection. A recursive 
tracking approach constrains the area of each camera frame used to detect the object 
based on its previous location, increasing the frame rate to interactive levels (>5fps). An 
example demonstrating tracking of multiple detected objects is seen in Figure 6.8. 

To increase tracking robustness we change the tracking method used to use one of 
two methods, depending on the appearance description in the object. The initial 
detection is performed by the natural appearance cues, then either the 3D model is used 
for RAPID-like tracking [Harris 1993; Armstrong and Zisserman 1995; Gee and Mayol-
Cuevas 2006] and pose calculation, or corner features are extracted on the object’s 
surfaces using FASTcorners [Rosten and Drummond 2005; Rosten and Drummond 
2006] and a CONDENSATION particle filter [Isard and Blake 1998; Pupilli and 
Calway 2006] used for recursive tracking, with Normalised Cross Correlation (NCC) of 
image patches around detected corners on the object. NCC is not scale or rotation-
invariant, hence this tracker fails and must be re-initialised whenever the object is 
scaled or rotated (both in the camera plane and in 3D) significantly from the original 
pose where features were extracted.  

 

   
Figure 6.8 (left) Image of detected of Book object with overlaid 3D model and object coordinate system axes, (right) 

Four detected objects tracked simultaneously - the Chemical Container, the Book , the Card and the Cup (green lines 

denote the maximum extent of the 3D model). 
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Objects with surface texture (texture or local features appearance descriptions) use 
NCC tracking, while the RAPID-like tracker is used for objects with well defined edges 
(for the colour or shape appearance descriptions). If appearance descriptions allowing 
use of both the NCC tracker and RAPID tracker are present, NCC takes precedence. 

A complete detection step is performed again whenever tracking is lost. Loss of 
tracking is determined by a tracking quality figure, dependant either on the number of 
line-segments matched for the RAPID-like tracker, or the number of NCC image patch 
features matched (hence, on the similarity of the extracted features to features seen in 
the current image) in the particle filter. 

 
6.3.1.5 Vision-Based Interaction Detection 
Messages sent from the smart object requesting interaction components (such as 

buttons and sliders) contain the location for virtual interactive areas on the object’s 3D 
model and values to return when activated. For each camera frame, the system 
calculates whether any of the active areas on the set of visible objects are themselves 
visible. If an interactive area is visible it is extracted from the camera image by first 
projecting the 3D corner locations into the image using the known object location, 
orientation and camera calibration. The quadrilateral area in the camera image is un-
warped to a rectangular image of user-specified size, typically 100x100 pixels. 

A finger tracking process is run on the rectangular image which performs a 
normalised cross-correlation of a semi-circular fingertip template image with the image 
area. The maxima locations are found in the result image and if greater than a user-
defined threshold (typically 0.6 or 0.7) the template is considered a match.  

This interactive area is monitored whenever the object is visible and a motion history 
silhouette image created using accumulation of background subtracted images of recent 
frames. This silhouette image enables calculation of the gradient orientation, allowing 
us to check for the “lightening strike” touch of button activation whenever a fingertip 
template is matched inside the interactive area, as explained in section 2.3.5. 

For an interactive button, the first fingertip match inside the area with the correct 
motion profile is considered as button activation and the process returns the value 
requested. We assume the finger is still inside the area while the cross-correlation 
results return a match, so prevent repeat activation of the button if the user’s finger is 
hovering. An interactive slider returns a value depending on the location of the maxima 
along the largest axis of the slider area. This axis is interpolated linearly to return a 
value between the minimum and maximum values specified by the smart object.  

6.3.2 Projection 

In a similar way to the detection service, the projection service is started with an 
XML configuration file providing four further aspects of information: 

 
1. Name or unique identity (UID) of projector hardware (to address it on the 

network). 
2. Location in world coordinate system (WCS) if static. 
3. Orientation in WCS if static. 
4. Optical parameters of the projector. 
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If the projector system is a steerable system, the Pan and Tilt tracking component will 
automatically provide the system with the current hardware location and orientation. 

For the implementation of the projection service we use OpenSG API scenegraph 
[OpenSG 2007], providing an object-oriented approach to building a world model. The 
FreeGLUT and OpenGL APIs are used for windowing and graphics rendering 
respectively. The scenegraph models the real world, with a virtual camera in the 
scenegraph placed at the location of the real-world projector and modelled with the 
same optical characteristics of the real-world projector from the configuration file. Any 
object registering for a projection has their 3D model added directly to the scenegraph 
hierarchy. The object’s surfaces are set to black (invisible) and the model placed at the 
location of the real-world object in the 3D scene when its pose is calculated. 

When the smart object requests a projection its message includes both the content to 
project (which can be images, text or video or a URL where content can be found) and 
the location to project it. We use the OpenCV [IntelOpenCV 2007] API to load the 
content to project, supporting the following image file formats: BMP, DIB, JPEG, JPG, 
JPE, PNG, PBM, PGM, PPM, SR, RAS, TIFF, TIF and AVI video files. 

The system can project onto any object area visible to the projector.  The location 
description refers to the projection location abstractly or specifically. Abstract locations 
refer to faces of the object’s 3D model by their name. For example, a projection can be 
requested on the top or front face if these are declared in the 3D model.  A smaller or 
more specific area can also be specified as coordinates in the 3D model coordinate 
system, allowing exact placement and sizing of the projection on an object. In this case, 
for the duration of the projection a new planar polygon is created with the specified 
coordinates and added to the 3D model.  

To create a projection we texture map the content of the projection either directly 
onto one of the faces of the object in the 3D scene, or onto the newly created polygon. 
This texture image is automatically updated in the case of video content to achieve the 
correct frames-per-second playback speed. 

 
6.3.2.1 Geometric, Photometric and Colorimetric Correction 
Geometric correction is automatic for planar surfaces due to the use of projective 

texture mapping, where the virtual scene arrangement mirrors the real-world object and 
projector relationships. Similarly, we use the calibrated real-world projector intrinsic 
parameters for the optical characteristics of the virtual camera. With curved geometries 
we can use vertex and pixel shaders in NVIDIA’s Cg language for Quadric Image 
Transfer, as described by Bimber and Raskar in  [Bimber and Raskar 2005]. 

We use a colour correction algorithm to change the texture image, correcting for non-
uniform and non-white surface colours. An image of the object without projection can 
also be calculated as part of this process and used for object detection.  

The real-time algorithm by Fujii et al. [Fujii, Grossberg et al. 2005] is used for this 
step, however, the correction has a one camera frame delay cost, to allow the latest 
camera image to be used in the algorithm. Additionally, the algorithm requires an initial 
one-time projection of four colour calibration image frames (red, green, blue and grey) 
to recover the reflectivity response of the surface. The adaptation algorithm allows 
colour correction for each subsequent frame to be projected without projecting the 
calibration frames again. However, the algorithm cannot completely correct very 
saturated surfaces, as the dynamic range of typical projectors is not sufficient to invert 
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the natural surface colour. This effect can be seen in the projection on the red top 
surface of the box object in Figure 6.9 (left). 

 

  
Figure 6.9 (left) 3 surface projection on box object, (right) Sensed temperature projected on the non-planar smart mug 

surface - the blue wire at the right is the antenna of the Smart-Its device 

6.3.2.2 Projector Powered Focus Control 
When a projector-camera system includes a projector with a powered focus the 

architecture can control this to dynamically focus the projector on the objects currently 
“in focus” in the architecture (“focus” as described in 6.2.3). The architecture requires 
calibrated focus data (calibrated as described in section 6.2.2) to be able to calculate the 
correct focus setting for an object distance. The focus setting-distance calibration data is 
loaded from a configuration file and a non-linear function fit to the data.  

Whenever the object “in focus” changes, the architecture outputs focus-near or focus-
far commands, depending on whether the object is closer or more distant than the 
current focus distance.  

If the projector includes a serial port for computer control, the Focus Control can 
output projector-specific control strings. These control codes are loaded from a 
configuration file and consist of a series of bytes for the focus-near and focus-far 
functions. These codes are output on COM2 serial port when required.  

If the projector does not have a serial port, LIRC [Bartelmus 2007] can be used to 
control the projector functions by generating Infrared remote control codes to a 
connected IR transmitter. Here again, the codes are loaded from configuration file and 
consist of a series of bytes for the focus-near and focus-far control functions. The codes 
are sent to a network port where the LIRC API listens and translates the codes to a 
series of pulses to be sent to an attached IR transmitter which converts them to IR light 
pulses. IR transmitters can either be purchased or easily be constructed.  

As there is no focus setting feedback from the IR remote control method the 
architecture outputs a continuous stream of focus-near commands for several seconds 
when the software is first started, to guarantee the focus has moved to the closest focus 
setting. The calibration data can then be used to change focus from this known initial 
focus setting. In this case, focus commands are continuously sent with a pause of 0.5s 
in-between to give the hardware time to react, until the correct focus distance is 
reached. 
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6.3.2.3 Projector Powered Zoom Control 
In a similar way to the dynamic projector focus control, if a projector-camera system 

includes a projector with a powered zoom we can dynamically zoom-in the lens to 
achieve a high resolution projection on distant objects or zoom-out to project on large 
close objects. With dynamic zoom we can trade-off projection resolution for Field Of 
View (FOV).  

However, in addition to changing the projector intrinsic parameters, changing the 
zoom changes the projector-camera transformation (extrinsic) matrix. Hence, projector-
camera calibration must be performed for every zoom step (as described in 6.4) and all 
the intrinsic and extrinsic matrices loaded to be used at the respective zoom setting. We 
additionally require calibrated zoom data (as described in section 6.2.2) which describes 
the projector image FOV and corresponding zoom settings. 

An identical control method to that used for Projector Powered Focus Control is used 
to change the zoom – either by output projector-specific control strings to the serial 
port, or by sending Infrared remote control codes to the LIRC network port. 

6.3.3 Pan and Tilt Control  

The pan and tilt component is used whenever either (or both) projector or camera 
hardware is attached to a pan and tilt unit. In a similar way to the detection and 
projection services, the pan and tilt component is started with an XML configuration 
file providing four further aspects of information: 

 
1. Location of the Centre of Rotation (COR) of the Pan and Tilt platform in the 

world coordinate system. 
2. Unique ID (UID) of Projection hardware and Offset transformation of the 

Projector from COR (if applicable). 
3. Unique ID (UID) of Camera hardware and Offset transformation of the Camera 

from COR (if applicable). 
4. Calibration of the Pan and Tilt unit, to allow control in angles rather than 

hardware units. 
 
The pan and tilt component automatically searches for and tracks mobile smart 

objects in the environment. When only a single object exists in the environment and its 
location is unknown, the pan and tilt component will automatically search for it using 
the creeping line algorithm. When multiple unknown objects exist the component will 
keep searching until it either finds all the objects, or an object requesting a projection 
(in which case it will track this object). If an object being tracked stops requesting a 
projection, the component will return to searching for objects if there are objects with 
unknown locations in the environment and no other objects requesting projection. If 
another object with previously known location requests a projection it will return to this 
location, perform an expanding-box search to locate the object and track this object. 

If multiple objects request projection the tracking is performed using a 3D clustering 
with the K-means algorithm on location information of the objects. This is followed by 
selection of the target objects to be tracked based on recent object interaction history 
(we assume interaction takes the form of change in location, orientation or manipulation 
of the object). We track whichever object in the cluster was last interacted with. This 
aims to track the largest group of objects where interaction has recently occurred.  
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6.3.3.1 Pan and Tilt Hardware Control 
Pan and Tilt hardware control is achieved by outputting value strings via the serial 

port to a serial-to-DMX512 converter. The strings output channel number (relating to 
control channels in the pan and tilt hardware), followed by 8-bit channel value (0-255). 
The Pan and Tilt unit calibration loaded from the configuration file specifies how these 
channels and values map to pan and tilt angles in the real world, allowing the 
architecture to control the unit without knowledge of the hardware. 

The pan and tilt component automatically updates the detection and projection 
services with the location of the camera or projector respectively, based on knowing 
which hardware is attached to the unit and the current location and orientation of the 
pan and tilt unit derived from the motion simulation discussed in section 6.2.3. 

If the projector or camera hardware does not have a static pan and tilt unit (such as 
mobile or handheld projector-camera system) another application is required to 
calculate and update the detection and projection services with the hardware location 
and orientation. 

6.3.4 Object Proxy 

Messages from the Smart-Its device are broadcast on an RF channel to Smart-Its 
bridge hardware, which re-transmits the packets on the local IP subnet as UDP 
messages containing the data in the Smart-Its AwareCon protocol [Decker, Krohn et al. 
2005]. 

To replicate the existence of a discovery service a listener application was 
implemented to automatically start and stop smart object Proxy applications. The 
listener application listens for network traffic generated by Smart-Its devices. If a new 
Unique ID (UID) of a Smart-Its device appears on the network an Object Proxy is 
spawned to automatically handle communications with the object.  

The listener application maintains an internal database of devices active on the 
network. If a device has not been active for a pre-determined period of time it sends a 
query message to the device. If no response is received following a short time-out the 
listener sends a stop message to the respective Object Proxy. 

The Object Proxy is implemented as an application which converts messages between 
the AwareCon protocol and the EiToolkit [Holleis 2005] protocol used for inter-process 
communication in our architecture. There is no direct routing of messages from the 
proxy to services due to the absence of a discovery service; instead all messages are 
simply broadcast as UDP messages on the network. 

 
6.3.4.1 State Machine and Sensor Data Abstraction to Events 
The proxy implementation is generic. Each proxy spawned by the listener application 

is configured by an XML Object Model file either loaded directly from the Smart-Its 
device, or from an accessible network resource. The XML file contains specifications of 
sensor configurations for each state. A sensor configuration is composed of one or more 
sensors and associated sensor ranges which the sensor must be between to enter the 
state. Three separate classes of states are defined in the XML file, for the three 
associated object characteristics of movement, geometry or appearance change, and for 
projected content modification, as discussed in 6.2.2. 
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Abstraction of sensor data to events is performed either in the smart object or in the 
proxy itself, depending on the performance of the smart object hardware. Conversion of 
streamed sensor data in the proxy is implemented using operations performed by the 
Common Sense Toolkit (CSTK) [VanLaerhoven 2006]. CSTK provides type 
independent operations with the support for a variety of mathematical methods, such as 
min, max, mean, median, variance, running variance, standard deviation. The XML 
Object model file specifies the buffer length of raw data samples on which the operation 
should be performed, together the name of the sensor, operation and its associated 
numerical minimum and maximum in ascii text. 

Conversion of sensor data and state evaluation is performed by the proxy at between 
30 and 100 iterations per second (this is user configurable). When the proxy is first 
started, the initial states will be broadcast following filling of the CSTK buffers with 
data to avoid incorrect results from initial operations. The proxy then broadcasts an 
event message for any subsequent change in state.  

On receipt of messages addressed to the smart object, the object proxy caches the 
messages if raw sensor data is being streamed to the Object Proxy. As all important 
operations occur in the proxy, periodic updating of the smart object is sufficient to allow 
state synchronisation while maintaining bandwidth for sensor data streaming. 

6.3.5 Database Server 

When smart objects register a cache of their Object Model is stored in a vector by the 
database server. A registering smart object must provide the following minimum 
information from the Object Model: 

 
1. A name or unique identity (UID). This is usually the IP or MAC address. 
2. A 3D model of the current object shape in VRML format. 
3. An appearance model containing a minimum of one appearance description. 

 
The information is either included in the message as XML, or optionally the 

messages contains the URL of an XML file containing this information on an accessible 
network resource. Similarly, when a detection or projection service registers, this 
information is again stored in a vector by the database server for use in dynamic 
projector and camera pairing. The following configuration information must be 
provided:  

 
1. A name or unique identity (UID) of the hardware (to address it on the network). 
2. The hardware type – either projector or camera.  

 

6.3.6 Networking Protocol Implementation 

The EiToolkit [Holleis 2005] (developed in conjunction with HCILab, Ludwig-
Maximilians-University Munich) was used to provide a common networking 
component for all distributed applications. 

EiToolkit provides support for event-based programming, with mechanisms for 
receiving messages, message decoding and function callback execution. Interface 
querying is also supported, allowing a proxy or application to interrogate the 
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capabilities of others. EiToolkit also supports automatic translation between Smart-Its 
[Decker, Krohn et al. 2005] sensor node AwareCon protocol and the EiToolkit native 
format via a dedicated proxy. 

The message format of EiToolkit is plain text, in the form: 
<senderID>:<msgType>:<message>:<destinationID>. 

The senderID and destinationID are unique identifiers, and can be the IP of the 
hardware running the proxy or application, or a text-based user-defined unique 
identifier (e.g. “Projector1”). Message broadcast is possible by specifying the 
destinationID as ‘*’. The msgType defines the command or interface callback to 
execute on the receiving system. The <message> is the payload or data to be used in the 
executed callback. 

 

ObjectRegistered
RemoveObject
SetObjectLocationOrientation
GetPanTiltLocationOrientation
FocusOnObject
FocusOnObjects
ObjectTracked
ObjectNotTracked
ObjectMoving
ObjectStatic
Reset 

ObjectRegistered
RemoveObject
UpdateObjectModel
SetObjectLocationOrientation
GetObjectLocationOrientation
FocusOnObject
FocusOnObjects
AddVirtualDisplay
AddVirtualButton
AddVirtualSlider
Reset

Database Server

Object Proxy

Detection Projection

Pan & Tilt

Network Listener

RegisterObject
UnRegisterObject
UpdateObjectModel
AddVirtualDisplay
AddVirtualButton
AddVirtualSlider
ObjectMoving
ObjectStatic

UpdateObjectLocationOrientation
SetButtonState
SetSliderState
Reset

StartProxyWithUID
StopProxy

RegisterDetectionService
UnRegisterDetectionService
SetButtonState
SetSliderState
UpdateObjectLocationOrientation

ObjectRegistered
RemoveObject
UpdateObjectModel
SetObjectLocationOrientation
FocusOnObject
FocusOnObjects
AddVirtualDisplay
AddVirtualButton
AddVirtualSlider
DetectionUID
Reset 

GetObjectSurfacesImage

SetObjectSurfacesImage

SetCameraLocationOrientation SetProjectorLocationOrientation

SetPanTiltLocationOrientation

RegisterProjectionService
UnRegisterProjectionService
RequestDetectionUID

 
Figure 6.10 Architecture Message Protocol and Routing. 

We designed a communication protocol based on the conceptual framework in 
Chapter 3. Figure 6.10 illustrates the architecture message protocol and typical routing. 
Red messages are from other components to the Database Server, Blue messages are 
from the Database Server to other components, green messages are Pan and Tilt 
position updates and pink messages are for colour correction. These messages used in 
the system architecture are broadly separated into four groups:  

 
1. Messages between the smart object Proxy and Database Server. 
2. Messages from Database Server, common to multiple applications. 
3. Messages for between Database Server, Detection Application and Projection 

Application for colour correction. 
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4. Messages from Pan and Tilt to either or both Detection and Projection 
Applications. 

These four groups are explained in more detail below. 
 

1. Messages between the smart object Proxy and Database Server are listed below, 
together with the message contents. 

 
RegisterObject Registration request when proxy starts. Message contains 

object ID.
UnRegisterObject UnRegister request sent when proxy stops. Message 

contains object ID
UpdateObjectModel Message contains object ID and updates to either, or 

both, model geometry and object appearance. 
AddVirtualDisplay Projection request message. Message contains object ID, 

content to project (or URL) and location to project on 
object.

AddVirtualButton Interactive user interface request message. Message 
contains object ID and location of button on object and 
sensor values to return when clicked. 

AddVirtualSlider Interactive user interface request message. Message 
contains object ID, location of slider on object and sensor 
values to return when used. 

ObjectMoving Event message when smart object is moving. Message 
contains object ID. 

ObjectStatic Event message when smart object is static. Message 
contains object ID. 

 

2. Architecture Messages Common to Multiple Applications 
 

RegisterDetectionService Registration request when detection service starts. 
Message contains uniqueID of hardware. 

UnRegisterDetectionService UnRegister request sent when service stops. Message 
contains uniqueID of hardware. 

RegisterProjectionService Registration request when projection service starts. 
Message contains uniqueID of hardware. 

UnRegisterProjectionService UnRegister request sent when service stops. Message 
contains uniqueID of hardware. 

ObjectRegistered Sent by Server when object registers. Message contains 
object ID. 

RemoveObject  Sent by Database Server when object unregisters. 
Message contains object ID. 

UpdateObjectLocationOrientation Location and Orientation Hypothesis sent by detection 
application when object is detected. Message contains 
object ID, location as 3 numerical coordinates in world 
coordinate system and orientation as 4 numerical values 
of a quaternion. 

SetButtonState Button state (pressed or not pressed) sent by detection 
application. Message contains object ID and sensor 
values. 

SetSliderState Slider state (in use or not in use) sent by detection 
application. Message contains object ID and sensor 
values. 

SetObjectLocationOrientation Location and Orientation update for smart object sent by 
Database Server. Message contains object ID, location 
as 3 numerical coordinates in world coordinate system 
and orientation as 4 numerical values of a quaternion. 
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GetObjectLocationOrientation Request for location and orientation of single smart 
object to detection application. Message contains object 
ID.  

FocusOnObject Sent by Database Server when it detects interaction with 
object. Message contains object ID. 

FocusOnObjects Sent by Database Server when it detects interaction with 
multiple objects. Message contains multiple object IDs. 

Object Tracked Event message when smart object is detected visually. 
Message contains object ID. 

Object Not Tracked Event message when smart object is not detected 
visually. Message contains object ID. 

Reset Sent by Database Server to reset all applications to their 
initial state. 

 
3. Messages between Database Server, Detection Application and Projection 

Application for colour correction 
 

RequestDetectionUID Sent by the Projection Service to the Database Server 
to determine which detection service to contact when 
requesting images for colour correction. Message 
contains object ID. 

DetectionUID Reply by Database Server. Message contains unique 
ID(UID) of detection service detecting object. 

GetObjectSurfacesImage Request from Projection Service to Detection Service 
for smart object surface image. Message contains 
object ID and surface name in 3Dmodel or 3D surface 
location. 

SetObjectSurfacesImage Reply message from Detection Service. 
Message contains object ID, surface name or surface 
location and encoded image. 

 
4. Messages from Pan and Tilt Application to either, or both Detection and Projection 

Applications (depending on whether the hardware is co-located or separate) 
 

SetCameraLocationOrientation Sent by PanTilt application to detection application 
when orientation of steerable camera changes. 

SetProjectorLocationOrientation Sent by PanTilt application to projection application 
when orientation of steerable projector changes. 

SetPanTiltLocationOrientation Sent by PanTilt application to Database Server when 
orientation of a steerable platform changes. 

 

6.4 Projector-Camera System Calibration 

The architecture incorporates two methods to calibrate steerable projector-camera 
systems. Calibration can be performed at any time by running a calibration application, 
which calculates both the projector intrinsic parameter matrix, and the projector-camera 
transformation matrix (extrinsic parameter matrix). These calculations are identical to 
those used to calibrate the camera in section 2.6.4; however, here we assume the camera 
calibration is known a-priori. Both methods use correspondences between known points 
in the 2D projector image and 3D locations detected in the camera coordinate system 
(i.e. real-world) for calibration. One important characteristic of these methods is that 
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they implicitly calibrate any lens-shift on the projector by calculating an off-axis 
projection frustum in the projector intrinsic parameter matrix.  

 
The first method uses ARToolkit markers as a 3D location system to provide 3D 

point locations during calibration [Kato and Billinghurst 1999]. The method displays a 
series of 10 crosses sequentially on the projector. These crosses are arranged as two 
identical sets of 5 crosses, as shown in Figure 6.11 (left). To perform the calibration we 
align the centre of the ARToolkit 80mm calibration marker with the 5 projected crosses 
at a far distance to the projector (e.g. 3m), then repeat the alignment again at a near 
distance to the projector (e.g. 1m). For each cross location a correspondence between 
the 2D cross location and the detected 3D marker location in the camera coordinate 
system is established. The 10 correspondences and camera intrinsic parameter matrix 
are used to solve the linear system of equations for the 2D-3D projection using SVD. 
The result matrix can then be decomposed into the projector intrinsic parameter matrix, 
and the projector-camera transformation matrix. This calibration method takes about 10 
minutes to perform and requires the user to manually align the marker with the 
projected crosses. 

 
The second method is the automatic calibration method proposed by Park et al. using 

projected structured light [Park, Lee et al. 2006]. This is a modified version of the 
method presented by Zhang for camera calibration [Zhang 2000] using co-planar 3D 
points and their corresponding 2D points. In Zhang’s method the 3D points detected by 
the camera are corners on a printed paper chess-board pattern of known 2D dimensions, 
whereas Park et al. project the chess-board pattern using the projector. A white planar 
surface is required to be placed where the projector and camera viewing frustums 
overlap for this calibration, and a camera-to-surface homography established.  

To calculate this homography, point correspondences between the camera image  and 
surface can be established either by using vision based detection of the corners of the 
planar surface, by detecting fiducial markers on the surface, or by simply by identifying 
the corners pixels manually in the camera image. The homography is calculated using 
the methods described in section 2.3.6. 

As seen in Figure 6.11 (right), in the projector pattern image the corners m(x,y) are 
the 2-D points and the projected points M(X,Y,0) correspond to the 3D points. The 
corners in the projected pattern image are detected using the standard computer vision 
algorithms used to detect the equivalent paper pattern for camera calibration 
[IntelOpenCV 2007]. The actual 3D location of the projected points are then calculated 
with the following formula using the camera-to-surface homography (Hc-o) and the 
homogeneous corner coordinates of the camera image c. 

 
( ) cHYX oc

T
−=1  (6.5) 

 
The relationship between 3-D points (M) and 2-D points (m) is then represented in 

homogeneous coordinates as: 
 

( )T
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where Ho-p is the surface-to-projector homography. Zhang’s method is then used with 
the calculated 2D and 3D correspondences as normal, to recover the projector-camera 
transformation matrix (P). 

 

     
Figure 6.11 (left) Composite image of ARToolkit marker aligned with 5 far calibration locations and handheld for one of 

the near calibration locations, (right) Projector Calibration using projected pattern on planar surface [Park, Lee et al. 

2006] 

For steerable projectors, if the projector Centre of Projection (COP) is at the pan and 
tilt unit Centre Of Rotation (COR), then following calibration we can invert the 
extrinsic parameter matrix to calculate the camera to pan-tilt coordinate system and 
hence (with known mounting location and rotation values) calculate the world 
coordinate system location of objects in the camera field of view. 

Following calibration, the projector-camera transformation will only remain valid in 
systems where the projector-camera relationship is fixed (for example, a static projector 
and camera, or when the camera is attached to the projector in a moving head steerable 
projector system). For moving mirror steerable systems we can use an alternate 
calibration method proposed by Ashdown and Sato [Ashdown and Sato 2005]. 
Similarly, for projector-camera systems where either the camera or projector (or both) is 
mobile, but where both intrinsic parameter matrices are known, we could use the 
imperceptible structured light techniques discussed in section 2.3.6 to continuously 
project a calibration pattern into a scene and hence attempt to recover the projector-
camera transformation. 

6.5 Discussion 

In terms of the efficiency of the implementation, our approach currently does not 
detect objects in real time. Our architecture aims for a tracking-by-detection approach, 
but for the implementation we chose to integrate a particle filter [Pupilli and Calway 
2006] to increase tracking frame rates following the first detection by the natural 
appearance algorithms. The benefit of using a particle filter over a Kalman filter in this 
case is that it allows us to model multiple alternative hypotheses, so it can automatically 
integrate detection results from multiple distributed cameras. It also better suits the non-
linear movement typically seen in handheld objects [VanRhijn and Mulder 2005]. 

Use of a tracking algorithm has the added benefit that we can de-couple the 
projection from the detection step by predicting future object motion from the pose 
history we maintain in the particle filter. The ability to predict object pose can be 
exploited by the projector, with its faster frame rate being used to “fill-in” projection on 
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moving objects between camera frames. This is an issue as the lag of projection is very 
obvious for users during fast movement. For example, with a combined camera 
acquisition (33.3ms) and processing step (100ms) of 133.3ms and a typical human 
walking speed of 5kph the projection location would lag the handheld object by 
maximum of 18cm. However, reliance on prediction too far in the future can lead to 
other artefacts, such as lag in fast movement or swimming of the projected image.  

In the implementation we identified two limitations due to the Smart-Its sensor nodes 
used in smart objects. The first is that the wireless network bandwidth only allows a 
maximum of 2 smart objects to stream sensor data simultaneously while remaining 
synchronised with a 30Hz (33.3ms) camera refresh rate. This limitation is due to the 
fixed 13ms timeslots used for each node with the Smart-Its AwareCon networking 
protocol [Decker, Krohn et al. 2005]. However, this limitation only occurs if the smart 
objects are not powerful enough to process the state model and abstract sensor data to 
events so must stream raw sensor data to the Object Proxy. 

The second limitation is the maximum available 512KB of flash memory in the 
Smart-Its device. This limits the size of the Object Model; hence the amount of 
knowledge and content to project that can be stored in the object itself. We saw in the 
detection method memory experiments in section 6.6, that the amount of storage 
required to embed appearance knowledge already varies between 14.32 and 3223.50KB 
for just a single detection method. Consequently, our solution for larger appearance 
models or objects with large amounts of visual content to project is to assume 
availability of a network. We then either just embed a URL link to the whole Object 
Model in the smart object, or embed just the state definitions part of the Object Model 
in smart object together with URL links pointing to appearance knowledge and content 
to project on the network. 

6.6 Detection Method Memory Experiments 

The Object Model stores trained appearance data for the detection methods, 
descriptive knowledge about the object such as its 3D Model and its sensors. 
Additionally, it contains collections of sensor ranges which represent object states. 
There are 3 sets of states evaluated by the Object Proxy application – at least one 
appearance configuration (which changes the 3D model and appearance knowledge for 
the detection system), an optional movement configuration (which represents the 
moving and non-moving states when an object has movement sensors) and the content 
configuration (effectively the program logic) which is a set of states together with a link 
to URL of content to project and the location to project, for each state (see section 6.2.4, 
Chapter 7 and Appendix B for examples). 

In the framework architecture implementation the body of the Object Model is 
encapsulated in XML. However, the Object Model may also consist of additional files, 
such as the 3D model and appearance representations for the detection system in 
standard file formats (such as Mikolajczyk’s affine-invariant feature file format from 
[Mikolajczyk and Schmid 2002]). Additionally, the Object Model XML file can be split 
into multiple sub-files to allow sharing of commonly used knowledge and configuration 
between objects, such as the sensor information (which is identical for all Smart-Its 
devices), appearance knowledge for identical objects or display model information for 
two objects that project identical content (see the discussion in section 7.1.8). 
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When a smart object enters the environment, the type and amount of appearance 
knowledge stored in the Object Model varies depending on the detection method used to 
train the appearance representation.  

The minimum appearance representation can be created from a single view of the 
object. A more comprehensive representation requires incorporation of multiple-views 
to allow detection of the object in more poses when an object is rotated (as shown in 
section 4.4 experiments). A full appearance model will incorporate views of every 
surface of the object, for example, from the whole viewing hemisphere. The best angle 
between views is dependant on the detection method. Each view adds more information 
to the appearance model, so the angle between views is a trade-off between object 
coverage and memory requirements. We aim to obtain the best coverage with the least 
memory requirement. 

For example, Lowe recommends using 60° increments between training images for 
the SIFT local feature algorithm [Lowe 2004]. Using this increment an object requires a 
total of 10 equally spaced viewpoints for just the upper viewing hemisphere, or 14 for a 
whole sphere. In contrast, as shown in the section 4.4 experiments, the repeatability of 
the colour detection algorithm does not reduce significantly with rotation, so for 3D 
objects, one viewpoint per object surface would suffice. 

This experiment aims to evaluate the average memory requirements to enable 
successful detection of an object with the cooperative framework architecture. 

6.6.1 Design 

The detection method memory requirements were evaluated by averaging the size of 
the whole Object Models (including 3D model and any additional files) used in the 
detection experiments, demonstration applications and over all objects in the training 
library, for each method. The appearance knowledge results were split into minimum 
requirements, where we only hold training data for a single view of the object (such as 
the front surface), and maximum requirement which we define as either a full viewing 
sphere (with 15 viewpoints at 60° increments) or a representation with 6-viewpoints 
(imagine the object inside a cube, where the cube’s 6 surfaces form the viewpoints) for 
the colour detection method. 6 views were chosen, as this would give a single view of 
each surface for 6 of the objects (the cubical objects) in the object appearance library 
(see section 4.3). However, in practice, uniform coloured objects will require less 
viewpoints, as each histogram will be similar, allowing viewpoint combination. 

6.6.2 Results 

The mean average size of 26 VRML format 3D Models is 3.06KB. 
The mean average size of 26 Object Model files (including the 3D Models and all 

display configurations, but excluding appearance knowledge) is 22.65KB. 
The mean average size of 101 JPEG format images (with 95% quality) for projection 

at native projector resolution (1024x768) is 215KB per image. 
 
As can be seen from Table 6.3, the Local Feature appearance description required the 

most storage, followed by the Shape appearance. The Texture appearance required the 
least storage. This ranking is identical for both a single viewpoint and a full viewing 
sphere. 
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Table 6.3 Memory requirements for Appearance Knowledge and the total Object Model with single viewpoint (minimum) 

and full viewing sphere (maximum) 

Method Average Object Model 
Appearance Knowledge Memory 
Requirement (KB) 

Total Object Model Memory 
Requirement (KB) 

Minimum Maximum Minimum Maximum 

Local Features 
(SIFT) 

214.90 3223.50 237.55 3246.15

Texture 
(MagLap 32x32 Histogram) 

14.32
 

210.00 36.97 214.80

Colour 
(LAB 16x16x16 Histogram) 

41.00 246.00
(6- viewpoints) 

63.65 268.65

Shape 
(100 points) 

59.98 899.66 82.63 922.31

 

6.6.3 Discussion 

The results indicate that the largest use of memory for all objects is generally the 
appearance knowledge (between 14.32 and 3323.50KB, compared to an average of just 
22.65KB for the rest of the Object Model). However, the total memory requirement for 
the smart object will vary depending also on the number of projections (hence number 
of content configuration states in the Object Model) and whether the content to project 
is stored in the object with the Object Model. 

For example, the scenario described in section Appendix B.1, where a Chemical 
Container detects rough handling contains only 4 content configuration states and two 
images for projection requests. The Object Model with a single local feature appearance 
viewpoint of the front of the container is 202KB. With two images (430KB) the total 
size is 632KB. This can easily be reduced below 512KB to fit in a Smart-Its device, 
either by storing the images on the network and embedding only a URL link to them in 
the Object Model (as discussed in section 6.5), by storing the images with higher 
compression ratios, or reducing image resolution. 

In contrast, the smart photograph album described in section 7.2 (below) contains 
many content configuration states for different projections, which depend both on the 
state of the light sensor and the projected buttons. The total Object Model size with two 
local feature appearance viewpoints and 3D models (front cover and inside) is already 
898.3KB. The 18 photographs used in the demonstration add 2325KB, for a total size of 
3223.3KB (3.14MB). This size of Object Model cannot be stored in the 512KB memory 
of a Smart-Its device. Consequently, we store only a URL to the Object Model and its 
associated files in the smart object and assume the files are available on the network. 

While this limitation may be overcome in the future with increased memory capacity 
in smart objects, the actual transmission of large Object Models (on the order of 
Megabytes) from the Smart Object is still a big issue. The communication ability of the 
current generation of sensor nodes is typically limited, due to power, processing and 
network synchronisation constraints; hence, the transmission of large files would not be 
reliable, or fast. For example, a particle Smart-Its device using the Awarecon protocol 
transmits 64 bytes every 13.11ms at full throughput (equivalent to 4.88KB/s). Hence a 
3MB Object Model would take a minimum of 10.74 minutes to send to the projector-
camera system, assuming no other devices are also transmitting. Similarly, an 802.15.4 
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node such as the imote2 with TinyOS and default radio parameters has an average 
transmission rate around 250 packets per second, each with 28 bytes (equivalent to 
7.00KB/s). Hence, a 3MB Object Model would take a minimum of 7.49 minutes to 
send, assuming no other nodes are also transmitting. 

6.7 Pose Calculation, Pose Jitter and Projection 
Accuracy Experiments 

These experiments investigate the pose and projection accuracy an operational system 
can expect when a target object has been detected in the image.  These factors are 
especially of interest in Augmented Reality and Mixed Reality systems as the virtual 
image is overlaid either on a view of the physical world, or on the actual physical world 
with projector-based AR. Mis-registration of the image, or movement of the augmenting 
image relative to a static object in the real-world (jitter) is immediately detectable by an 
observer and can distract from the augmentation content itself. 

We perform experiments to answer the following research questions: 
 
R1) How accurately can an object’s location and orientation (pose) be calculated? 
R2) How accurately can a projection be located on a planar object’s surface when it is 

orthogonal to the projector? 
R3) What jitter in the calculated pose and projection can be expected? 
 

6.7.1 Design 

An accuracy and jitter evaluation dataset was created as part of the experimental 
procedure to answer questions R1 to R3. The dataset contains the 5 objects from the 
object appearance library (see Chapter 4) with uniformly planar surfaces. These objects 
were the Book, Product box, Card, Notepad and Cereal box. The objects, were placed at 
6 locations arranged as a grid in X,Y,Z camera coordinate space, with the object front 
surface parallel to the camera sensor as shown in Figure 6.12. The projector-camera 
system was placed in a static location at 3m distance from the grid, orthogonal to the 
object XY plane. The object was moved ± 0.5m from this location in the X and Y axes 
in turn. The grid and movement distance were chosen to maximise the movement size, 
while ensuring even the largest object was completely within the field of view of the 
projector at 3m. At each location 100 images of each object were captured and manually 
annotated with the object bounding box (6*5*100=3,000 images). The camera, lens and 
image capture resolution were identical to those in the object appearance library in 
Chapter 4. We calculate that with a 12mm fixed camera lens, 2/3” camera sensor and 
1280x1024 resolution the 40.27° camera Horizontal Field Of View (HFOV) gives each 
camera pixel has an effective horizontal resolution of 0.03146° (1 arc-minute, 53 arc-
seconds). For a mid-zoom setting (20) of the 1024x768 resolution projector, the HFOV 
is 26.42°, and Vertical Field Of View (VFOV) is 19.32°. Each pixel has a measured size 
of approximately 1mm2 at 3m. 
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Figure 6.12 The location accuracy and jitter experiment object grid locations, orthoganal to the camera. Object test 

locations are the green circles. 

6.7.2 Procedure 

 
6.7.2.1 Research Question R1 
The investigation of question R1 is split into two sub-experiments. 
The first investigates orientation accuracy using the rotation images of the 5 objects 

from the object appearance library. This sub-experiment evaluates both 2D rotation in 
the camera plane (rz) between 0° and 350° and general 3D rotation (rx,ry) – in this case 
around the object’s Y axis between -70° to +70°. Both exclude the 0° orientation as this 
pose closely matches the one used for training.  

The detection system was trained using images of the corresponding object’s front 
surfaces at 3m, from the scale image set. For both the 2D rotation and 3D rotation 
images a local feature detection step was performed on each test image of the objects, 
constrained to detect features only inside the object bounding box (simulating a near 
perfect detection system). The detected features were matched to the training image 
using Sum-of-Squared Distances (SSD) nearest neighbour matching, establishing 
feature correspondences. The pose calculation algorithm was provided with the 
corresponding image and object features and the camera calibration. The pose results 
and error from the manually measured pose was recorded. Failed detections were 
excluded from the error calculation (2D rotation had no failures, while for 3D rotation 
the rate was: Book 33.3%, Box 40%, Card 40%, Notepad 40%, Cereal Box 60% of the -
70° to +70° range, with all failures evenly split between the two rotation extremes).  

The second sub-experiment investigating location accuracy in the pose calculation 
algorithm is part of the following procedure to also answer R2 and R3. 

 
6.7.2.2 Research Questions R2 and R3 
Initially, the projector intrinsic parameters (optical parameters) and the relative 

extrinsic pose between projector and camera were calibrated using the method discussed 
in section 6.4, with the projector lens zoom set to 20 (mid-zoom) and the camera and 
projector image focused at 3m. 

Then, for each of the 5 objects and at each of the 6 object locations in the accuracy 
and jitter evaluation dataset we perform the method described below. 
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The detection system was trained using an image of the corresponding object at 3m 
(the centre of our working range), from the scale images in the object appearance 
library. A local feature detection step was performed on each of the 100 captured test 
images of the object, constrained to detect features only inside the object bounding box 
(simulating a near perfect detection system). The detected features were matched to the 
training image using SSD nearest neighbour matching, establishing feature 
correspondences. The pose calculation algorithm was provided with the corresponding 
image and object features and the camera calibration and the pose results recorded. To 
answer question R1, the median pose over the 100 images was used when calculating 
the pose error for each location, to remove location jitter. The pose error was calculated 
by taking the difference between this median pose and the distance manually measured 
to the object by a tape-measure in the X,Y,Z camera coordinate system. We assume the 
manual measurements are accurate to ±5mm. Failed detections were excluded from the 
error calculation (only the notepad had failures, 6/600=0.01% rate). 

To answer question R2, the median pose calculated over the 100 images at each 
object location was used to also project onto the front surface of the object as the 
accuracy evaluation dataset was being created. The projection image was a 1 pixel line 
bounding box, exactly the size of the object. The 2D (X,Y) offset of the projected image 
corners relative to the physical object front corners was measured with a ruler. We 
assume this measurement is accurate to ±1mm.  

To answer question R3, we use the individual pose results from the 100 images of the 
location accuracy experiment. Pose location jitter is calculated as the difference between 
the individual poses in the 100 images and the median pose for the location. These 
results are averaged over each location, for every object. For projection jitter we project 
the bounding box image for each of the 100 calculated poses in sequence, while 
measuring and recording the 2D (X,Y) offset of the projected image corners relative to 
the physical object with a ruler. We calculate the median error of the offset results. We 
assume this measurement is accurate to ±1mm. 

6.7.3 Apparatus 

A 3.4GHz dual core Pentium-4 computer running Windows XP SP2 was used for all 
experiments. The pose calculation and projection geometry correction algorithms were 
implemented in C++ using Intel OpenCV API for image processing and OpenSG 
scenegraph to create the image for projection (see section 6.3.2 for more 
implementation detail). 

6.7.4 Results 

The 95th percentile measurements in the tables below give the error values at which 
the corresponding cumulative distribution reached 0.95, where 95% of all 
measurements will have an error equal or smaller than that value. 

 
6.7.4.1 Research Question R1 
As can be seen in Table 6.4, the median orientation error and 95th percentile results 

over all objects are similar for both 2D in-plane (Mdn=0.93°, P95=1.26) and general 3D 
rotation (Mdn=1.02°, P95=1.60). 

The most accurately detected 2D in-plane rotation was for the Book object 
(Mdn=0.56°), with the least accurate being the Box (Mdn=1.33°). The most accurately 
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detected 3D rotation was for the Card object (Mdn=0.51°), with the least accurate being 
the Notepad (Mdn=1.60°).  

 
Table 6.4 Median Rotation Error results for each object, over -70° to +70° Out-of-plane  

and 10° to 350° in-plane. 

Object 2D Rotation 
Error (°) 

3D Rotation 
Error (°) 

Book 0.56 1.59 
Box 1.33 1.03 
Card 0.84 0.51 
Notepad 0.93 1.60 
Cereal Box 1.00 0.72 
Median Error 0.93 1.02 
95th Percentile 1.26 1.60 

 
As can be seen in Table 6.5, over all objects the Z-axis (distance to object) errors 

(Mdn=12.13mm) were generally higher than X and Y axis errors (Mdn=4.70 and 
7.15mm respectively). Similarly, the variation in the Z-axis errors between objects was 
greater than both the X and Y axes, as demonstrated by the larger value for the 95th 
Percentile (P95=23.63). The most accurately detected object was the Cereal box 
(Mdn=8.66mm) for 3D error from the true location, while the least accurately detected 
object was the Book (Mdn=26.82mm). The median combined 3D location error of the 
detection and pose calculation system over all the objects was 14.25mm, P95=25.69. 

 
Table 6.5 Median Location Calculation Error in X,Y,Z Camera Coordinate System for each object, averaged over all grid locations 

Object X Error (mm) Y Error (mm) Z Error (mm) Combined 3D 
Error (mm) 

Book 7.22 5.14 25.31 26.82 
Box 4.97 11.76 16.87 21.16 
Card 2.19 7.15 12.13 14.25 
Notepad 2.60 8.11 5.46 10.14 
Cereal Box 4.70 6.12 3.94 8.66 
Median Error 4.70 7.15 12.13 14.25 
95th Percentile 6.77 11.03 23.63 25.69 
 
 
6.7.4.2 Research Question R2 

Table 6.6 Median Projection Location Error on the Object X,Y front surface plane for each object, averaged over all grid locations. 

Object X Error (mm) Y Error (mm) Combined 2D 
Error (mm) 

Book 7.75 9.50 12.26 
Box 18.00 11.00 21.10 
Card 6.25 20.25 21.19 
Notepad 7.50 15.00 16.77 
Cereal Box 3.50 10.25 10.83 
Median Error 7.50 11.00 16.77 
95th Percentile 15.95 19.20 21.17 
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As can be seen in Table 6.6, for projection the error in the X-axis is generally lower 

than in the Y-axis, except for the Box object (Mdn=18.00mm). However, the variation 
in the error in the Y-axis between objects is lower than in the X-axis. The object with 
the most accurate projection was the Cereal Box (Combined 2D Error Mdn=10.83mm), 
while the Card was the least accurate (Mdn=21.19mm). The median 2D location error 
of the projection over all the objects was 16.77mm, P95=21.17. 

 
6.7.4.3 Research Question R3 
As can be seen in Table 6.7, over all objects the 1.64mm median jitter in the Z-axis 

(distance to object) is much greater than both the X and Y axes (Mdn=0.20 and 0.26mm 
respectively). Similarly, the variation in the Z-axis errors between objects was greater 
than both the X and Y axes. The Cereal Box object has the highest jitter (4.15mm 
median 3D Jitter) around the median location, with the Card having the lowest (1.20mm 
median 3D Jitter). Over all objects, the median combined 3D jitter around the median 
object locations was 1.65mm, P95=4.04. 

With the mid-zoom projector setting, the size of 1 pixel was 1mm2 at 3m distance 
from projector. The projection jitter for the Card, Notepad and Cereal Box objects was 
observed at less than 1mm, too small to measure accurately with a ruler. Consequently, 
it was estimated as 0.5mm for the Card, Notepad and Cereal Box X and Y axes. 

 
Table 6.7 Median 3D Object Location Jitter from Median Location for each object, averaged over all grid locations. 

Object X Jitter (mm) Y Jitter (mm) Z Jitter (mm) Combined 3D 
Jitter (mm) 

Book 0.20 0.26 1.60 1.63 
Box 0.98 0.86 3.65 3.87 
Card 0.17 0.07 1.18 1.20 
Notepad 0.13 0.08 1.64 1.65 
Cereal Box 0.98 0.63 3.98 4.15 
Median  Jitter 0.20 0.26 1.64 1.65 
95th Percentile 0.98 0.81 3.92 4.04 
 

Table 6.8 Median Projection Location Jitter from Median Location on the Object front surface plane for each object, 

averaged over all grid locations. 

Object X Jitter (mm) Y Jitter (mm) Combined 2D 
Jitter (mm) 

Book 1.00 1.00 1.41 
Box 11.00 1.00 11.05 
Card 0.50 0.50 0.71 
Notepad 0.50 0.50 0.71 
Cereal Box 0.50 0.50 0.71 
Median  Jitter 0.50 0.50 0.71 
95th Percentile 9.00 1.00 9.12 

 
As can be see in Table 6.8, the median Y-axis projection jitter from the median pose 

is generally equal in the X and Y axes, except for the Box object. Additionally, the 
variation in the jitter in the X-axis between objects is much higher than in the Y-axis, as 
can be seen from the 95th Percentile results (P95=9.00 for X, 1.00 for Y). The objects 



6.7    POSE CALCULATION, POSE JITTER AND PROJECTION 
ACCURACY EXPERIMENTS 

 133

with the least jitter were the Card, Notepad and Cereal Box (all estimated at 0.71mm of 
2D jitter), while the Box had the highest (Mdn=11.05mm). The median combined 2D 
jitter of the projection from the mean object locations, over all the objects was 0.71mm, 
P95=9.12. This is approximately equivalent to 1 projector pixel jitter at 3m. 

 

6.7.5 Discussion 

6.7.5.1 Research Question R1 
To address R1 we performed two sub-experiments measuring location and orientation 

calculation accuracy following object detection. The orientation experiment was split 
into 2D and 3D object rotation, however, the results (Table 6.4) from both parts of the 
experiment were almost identical. This suggests that the magnitude of the orientation 
calculation error is consistent, irrespective of the type of rotation the object undergoes. 
The orientation calculation was on average accurate to 1.02° or better. This does not 
quite meet the rotation aim we set in section 6.3 (a maximum of 1° median error). 

As can be seen in the location experiment results (Table 6.5), the distance to object 
(Z) error is significantly higher than error in the camera X,Y plane. This is due to the 
difficulty involved in monocular camera systems calculating depth. Monocular systems 
rely on the perspective effect caused by a pinhole camera model. In this case, the 
distance of features on the object from each other increases the closer the object is to the 
camera, and decreases when the object moves further away. Due to the finite resolution 
of the camera, the exact pose therefore becomes more uncertain at larger distances to 
the object. Even a single pixel change in the location of features relative to each other 
can make a big difference. Stereoscopic camera systems alleviate this problem (to some 
extent) as they can make use of a known baseline separation between the cameras to 
triangulate the features. However, although increasing the stereo baseline increases the 
Z accuracy, it is a trade-off with the useable tracking volume, as both cameras require 
the same features in their field of view. 

 
6.7.5.2 Research Question R2 
The experiment to address R2 aims to understand how accurately the combined 

system (detection, pose calculation and projection) can project onto objects in the real 
world. Hence, the projection error shown in Table 6.6 is a combination of the accuracy 
of the camera intrinsic parameters calibration, location error from the pose calculation, 
the accuracy of the projector intrinsic parameters calibration and the accuracy of the 
calibrated transformation between the camera and projector (extrinsic parameters). The 
higher error, but lower variation in the Y-axis relative to the X-axis suggests possible 
calibration error, producing a fixed offset in the Y-axis.  

Any error in the Z-axis (distance to object) from the pose calculation will appear as 
scaling errors in the projected image, increasing the measured X,Y errors. 
Consequently, the error in location and projection can be compared best using the 
respective combined 3D and combined 2D error figures. In this case, the results show 
that following an accurate calibration of both projector and camera intrinsic and 
extrinsic parameters, the median combined 2D projection error (16.77mm) is similar to 
the median combined 3D error in the pose calculation step (14.25mm). This suggests 
that the major source of error in the projection is the pose calculation step. The 
16.77mm median projection location error we achieve from the combined system meets 
the original implementation aim in 6.3 (a maximum of 20mm median error). 
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6.7.5.3 Research Question R3 
To address R3 we measured the jitter of individual poses from the median pose for 

both the location pose calculation (Table 6.7) and for projection (Table 6.8). As can be 
seen when comparing Table 6.5 and Table 6.7, (with exception of the card object) 
generally objects with higher combined 3D location errors have higher jitter. 
Additionally, it can be seen when comparing Table 6.7 and Table 6.8 that the Combined 
3D location jitter (Mdn=1.65mm) is much higher than the combined 2D jitter in the 
projection (Mdn=0.71mm). Looking closer at location jitter in Table 6.7 we see that 
(similar to the location error in Table 6.5) the largest component of the 3D jitter is from 
error in the Z-axis (Mdn=1.64mm).  

 

 
Figure 6.13 Error in Z-axis location for objects at a large distance from the camera causes smaller error in the X,Y 

location error of the projection 

The reason this large Z-axis jitter does not translate into large jitter in the projection 
X and Y axes is because error in the Z-axis contributes much less than error in the X,Y 
axis, when objects are at a large distance to the projector. For example, with an object at 
3m, 5° off the camera axis, error of 5mm in the Z-axis leads to only 0.43mm error in 
both the X and Y axes of the projection, as illustrated in Figure 6.13. 

The results from the experiments are representative of the average accuracy 
obtainable with planar objects and the current camera and projector optical 
characteristics. Varying the camera lens or projector optical parameters will vary the 
results. For example, increasing the focal length lens (zooming-in) of the camera allows 
a higher accuracy in the pose calculation due to the higher spatial resolution, however, it 
trades-off field of view so large objects may no longer fit in the camera image.  

6.8 Conclusion 

In this chapter we presented an architecture design and implementation validating the 
concept of cooperative augmentation. The implementation is a working system which 
enables us to investigate different aspects of the architecture and Cooperative 
Augmentation concept. 

The implementation enables augmentation of smart objects with a display capability 
without changing their natural appearance, using projector-camera systems. Our 
approach can locate and track mobile objects in the environment, align the projection 
with the object’s surfaces and correct for surface colour so the display appears 
undistorted and visible to a user. The main challenges in our approach are visual 
detection of smart objects, keeping the projection synchronised when the object is 
moved or manipulated and correcting the projection for non-ideal surface colours and 
textures.  



6.8    CONCLUSION 

 135

Our system implementation is currently geared more towards accuracy in detection 
and pose calculation, for example, we use a high resolution machine vision camera with 
1280x1024 pixel resolution. However there is a trade-off between accuracy and 
detection runtime, hence our system does not currently achieve real-time detection or 
tracking. We will never achieve good accuracy from a poor camera image (e.g. from a 
320x240 pixel web-camera), however we can eventually achieve real-time detection 
with high resolution cameras either through hardware improvements or implementation 
improvements. One major improvement can be readily made by converting more of the 
detection processing to use the GPU. 

From the pose calculation and projection experiment we determined that our system 
calculates the pose of planar objects with a median 3D error of 14.25mm from the 
correct position. The combined system can also project onto a planar object with a 
median 2D error in the location of the projection around 16.77mm.  

While this accuracy is sufficient for large objects such as the chemical container (see 
section 4.3), this might be more problematic with small objects due to their size. Here, a 
large error on a small object such as the cup can potentially offset the projection enough 
that part of the display is not visible, hence the importance of projection accuracy 
depends to some extent on object size. To help in detecting small objects, it may be 
useful to further characterise the detection algorithms and incorporate prioritisation of 
algorithms which have a higher detection performance with small objects into the 
method selection, as object size can be determined from the 3D model. 

The jitter experiments showed that although the median 3D pose jitter was 1.65mm, 
in the combined system projection only a median of 0.71mm jitter was observed, due to 
error in the Z-axis (distance to object) contributing significantly less to the projection 
jitter than error in the X and Y axes. While small, this jitter is visible in active 
projections when observing at close range. Jitter is also visible when objects are static 
for the reasons discussed in section 2.6.5. However, if smart objects possess movement 
sensing capability it is possible to smooth the pose to remove jitter only when we know 
the object is static. This avoids the lag on instantaneous movement typically associated 
with continuous smoothing. 

In section 6.5 we found that smart objects are typically limited in memory. Hence we 
studied the memory requirements for storing the Object Model. For the memory 
requirement we determined that the largest component was either the object appearance 
description or content for projection (e.g. images and video), but this was application 
specific. These findings are important, as the network transmission time is typically 
prohibitive for large Object Models. Hence, full appearance models with large or 
complex amounts of content to project must be stored outside the smart object on the 
network. This is not a problem as long as the object maintains a link to the location of 
the content on the external network resource and the external resource remains valid. 
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Chapter 7 Demonstration Applications 

Three applications were developed to demonstrate the capability of the system 
architecture. These demonstrate three distinctly different areas of the architecture and 
discuss some of the issues involved in developing applications with our architecture: 

 
1. A smart chemical container demonstrator, illustrating the dynamics of the whole 

cooperative process from initial object registration to knowledge updating. This 
uses pose results from the vision-based detection system to infer whether the 
smart container object is stored in the correct location, and with the correct 
chemicals. A warning projection is requested if detected in an incorrect location. 

2. A smart photograph album demonstrator, illustrating interaction methods in the 
architecture. Here we concentrate on three interaction methods, allowing 
manipulation of the object location, object geometry and interaction with 
projected buttons to browse photographs. 

3. A smart cooking scenario, illustrating multiple projector-camera systems 
augmenting multiple cooperating smart objects in order to provide the user with 
context-dependant recipe instructions to accomplish a cooking task. 

7.1 Smart Cooperative Chemical Containers 

This demonstrator aims to illustrate the dynamics of the whole Cooperative 
Augmentation process by following a smart chemical container object from registration 
on initial entry into the environment, to first detection, use of embedded sensing, 
projection, interaction, knowledge updating then final exit from the environment. 

To motivate this demonstrator we use an industrial goods warehouse scenario where 
two smart chemical containers enter a warehouse and we would like the containers to 
warn the employee visually when a container is stored outside the correct storage area. 
We use an identical approach to that presented by Strohbach, Gellersen et al., where 
safety-critical storage areas are monitored by the smart chemical containers themselves 
[Strohbach, Gellersen et al. 2004]. Here rules for the safe handling of objects and 
materials are embedded in the objects and objects cooperate to detect hazardous 
situations (such as being stored next to reactive chemicals) using embedded sensing. 

7.1.1 Object Model 

The Object Model appearance knowledge is initially trained with images of the 
Chemical Container at 3m, from the scale images in the object appearance library (see 
Chapter 4). The LAB Colour detection algorithm is run on the image in the annotated 
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area containing the object, to extract a 16x16x16 bin LAB histogram. For this 
demonstrator we designate a 1m2 and 0.5m high 3D volume in the environment as being 
an approved storage area (X=1 to 2m, Y=0 to 0.5m, Z=1 to 2m). States are defined for 
when the object is in the correct storage area, and the incorrect area, as shown in Figure 
7.3. An identical object model is embedded in all Chemical Container objects. 

7.1.2 Registration 

As shown in Figure 7.1 (left), an employee enters the environment with two chemical 
container smart objects. The objects enter proximity of the projector-camera system; 
detect the presence of a display service and register.  This process transfers Object 
Model from the object to the projector-camera system. 

The projector-camera system registers the objects, and returns a confirmation 
message to the containers. On receipt of this message the containers begin sending 
sensor events to the projector-camera system. In this case, they are being carried by the 
employee so embedded accelerometer sensors generate movement events. 

7.1.3 Detection  

The registering objects trigger the detection process in the projector-camera system. 
Here the challenge is to simultaneously detect mobile or static objects and distinguish 
between objects with similar appearances. 

 

           
Figure 7.1 (left) New objects arrives in environment, (centre) An employee walks with containers, (right) The employee 

places one object on the floor 

The steerable projector now rotates from its current position to search the 
environment. As the objects have just entered, the system does not know their location. 
Consequently, the projector system uses a creeping line search pattern with a horizontal 
major axis to thoroughly search the whole environment. 

The projector uses the appearance knowledge embedded in the Object Model and the 
sensor events to configure its detection process. In this case the containers store 
knowledge of a colour histogram, and sense they are moving. This knowledge triggers 
the method selection step to choose colour and movement detection processes. The 
movement process generates a motion mask which is used by the colour detection 
process to constrain its search for the object by masking the back-projection result of 
the object’s colour histogram. 

As the two chemical containers look identical, two possible objects are identified in 
the image.  It is not currently possible for the camera to distinguish between the objects. 
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Consequently the steerable projector tracks the moving areas in the camera image by 
centring their centre of gravity. 

Both objects generate movement event messages while they are being carried by the 
employee. However, when an employee places one of the containers on the floor, as 
shown in Figure 7.1 (right), the container‘s movement sensors stop sending movement 
events. The projector-camera system now only detects one moving area and the system 
can differentiate between the objects directly based on sensing. A 3D location and 
orientation is now calculated (for an example see Figure 7.2) and sent wirelessly to the 
containers, completing the Object Model. 

7.1.4 Projection 

Once an object’s 3D location and orientation is calculated by the projector-camera 
system, objects can request projection of content on their surfaces. Here the challenge is 
to correct the projection for the orientation of the object, and variations in its surface 
colour to ensure the most undistorted and visible projection. 

In this case, the container detects it was put down in the wrong storage area based on 
the location it was sent and requests a warning message is projected (see Figure 7.2). 
The projector-camera system projects the warning message on the front surface of the 
container objects with geometrical correction, to appear undistorted. 

 

        
Figure 7.2 (left) Detected container with green wireframe 3D Model superimposed on the camera view using calculated 

pose, (right) A warning message projection on two chemical containers 

7.1.5 Manipulating the Object 

When projecting onto objects, the object can respond to sensed manipulation or 
network events by dynamically modifying the projected content. The challenge here is 
to keep the projection aligned with the object as it is manipulated or moved. 

The employee sees the projected message and picks up the object. The detection 
process continues to track it and generate 3D location and pose information. 
Consequently, the message appears to remain fixed to its surface as long as the surface 
is visible to the projector system. When the object is in the correct area it requests the 
projection stops. The employee puts down the container and sees the message 
disappear. The projector-camera system keeps tracking the objects. 
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7.1.6 Knowledge Updating 

If objects enter the environment with only partial knowledge of their appearance, 
their knowledge can be increased over time by performing extra detection processes and 
re-embedding the result into the Object Model.  The challenge here is how to make the 
knowledge extraction accurate, given that the initial knowledge was incomplete. 

The two containers entered the environment only with knowledge of their colour, so 
the projector-camera system extracts more appearance knowledge over time.  In this 
case, the SIFT algorithm [Lowe 2004] is used to detect scale and rotation-invariant 
features on the object just put down, as shown in Figure 7.2. The SIFT descriptors are 
calculated on small image patches around the detected interest points. The resulting 128 
value feature vectors are mapped from the image to locations on the object’s 3D model 
using the known 3D location and orientation of the container.  

If the object is manipulated so it is rotated from its original pose new features will be 
detected as they come into view. The projector-camera system manages the Object 
Model local feature database to add new features or update the database if the object 
appearance is changed. The new local feature appearance knowledge is sent to the smart 
containers to be embedded in the Object Model and used for faster, more accurate 
detection in future. 

7.1.7 Objects Departing the Environment 

When objects depart the proximity of the projector-camera system, their virtual object 
representation is removed by the projector system and the projector is free to track other 
objects. Here, the employee moves to the exit with the container that was never put 
down. This container continues to generate motion events. As there are no other moving 
objects or projections active, the projector system tracks the carried object, as shown in 
Figure 7.4.  

As the employee exits through the door with the object, the system looses sight of the 
object and it no longer responds to messages from the projector-camera system. The 
system assumes it has departed the environment after a short time-out. 

The projector-camera system then returns to the last-known position of the other 
container objects. If no objects are detected the projector system begins an expanding 
square search pattern centred on their former locations. 

 

  
Figure 7.4 (left) Scale and rotation invariant local features detected on chemical containers, (right) A container leaves 

the environment with the employee 
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7.1.8 Discussion  

The chemical container demonstrator provides important validation for our 
architecture and approach. Firstly, it successfully illustrates visual display on an object 
both while moving and when static. In both cases the projection appears fixed to the 
display location on the object. Secondly, it illustrates the interactivity of our approach, 
as the projected display changes automatically based on the states defined in the Object 
Model when the user moves the object to the correct location. Thirdly, it illustrates the 
benefit of embedded sensing in the detection process. Here movement sensing make the 
detection more robust when there are two identical objects by constraining the detection 
and masking the distracting object. Fourthly, we demonstrate the knowledge extraction 
and updating process by detecting local features and re-embedding this appearance 
knowledge into the object after initial detection with the colour cue. Fifthly, we show 
that the combined system detection, pose calculation and projection output is accurate 
enough to be visible on the barrel, both when it is mobile and when static. 

 
7.1.8.1 Projection Resolution 
On a chemical container with an area of size 200x130mm suitable for projection, the 

achievable projector resolution with a fixed mid-zoom setting (20) and object at 3m is 
around 1 pixel per millimetre. This allows a resolution of 200x130 pixels on the barrel 
when it is orthogonal to the projector. A typical font can be created from a minimum of 
8x8 pixels, allowing a maximum of around 25x16 text characters to be displayed. 
However, any geometric correction required due to the relative pose of the container 
surface will reduce this resolution further. Consequently, the projection is more suitable 
for large text warning messages, images and video than for large blocks of text. 
Changing the focal length of the projector (by zooming) to achieve a higher resolution 
projection is possible, but has the trade-off of reducing the field of view. 

 
7.1.8.2 Object Cooperation to Overcome Occlusion 
A safety-critical system requires certain attributes such as guaranteed availability, 

reliability, integrity and dependability. The scenario presented by Strohbach, Gellersen 
et al. [Strohbach, Gellersen et al. 2004] relies on the containers themselves to sense 
when hazard situations occur using only ultrasound sensors on the objects and 
cooperation with other objects via a wireless network. 

Interactive projection in a safety-critical storage scenario faces the problem of 
guaranteed availability, as projector-camera systems rely on direct line of sight to the 
object. Occlusion of the object prevents both detection and augmentation with displays. 
However, in this case, it would be possible for objects to cooperate and achieve a 
display. For example, if we imagine a scenario where two identical objects exist in the 
same environment; the first object senses it has been stored outside an approved area, 
but is occluded from the projector-camera system by the other object, which is stored in 
front of it. In this case the framework is aware of the object, but cannot detect or project 
a warning message on it; it is only able to detect and project on the second object. 

To enable the first object to use the second as a display surface, we introduce an 
abstraction to our framework of an Object Class. This allows smart objects to share 
common attributes (similar to the Object-Oriented Programming (OOP) paradigm) in 
their Object Model. Shared attributes could be shape and appearance (such as the smart 
chemical containers), common functionality (such as two smart cups with different 
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appearances), or be part of a common task (such as individual smart ingredients in a 
recipe task).   

 
7.1.8.3 Object Knowledge Sharing 
We allow objects in the same class to share knowledge using the same mechanism 

with which objects share sensor data. This would allow a brand-new object to enter the 
environment, query the network to see if any other objects of the same class exist. If an 
object of the same appearance is present the object can request parts of the Object 
Model (or the URL), such as recently trained appearance knowledge, to help overcome 
the hurdle of initial detection. 

The smart object is now composed of public and private data. Public data is the 
Object Model components shared with the projector-camera system. Private data 
consists of the raw sensor values and program logic encoded in the Object Model to 
change the content model, the movement model and the geometry model. The private 
data remains with the physical object or Object Proxy. 

The occluded chemical container object in our scenario now queries the network to 
see if any objects of the same class exist. The visible smart object responds, and the 
object can query the object location. If an object knows its current location, it is visible 
to the projector-camera system and can support projection. We allow objects in the 
same class to modify each other’s projections only if they have the same geometry and 
no other projection is currently active. In this case, the two objects are identical, so the 
occluded chemical container requests a warning projection on the visible container. The 
occluded container monitors its location and as soon as it is visible, or in the correct 
storage area, it removes the projection from the visible object. 

Allowing objects to query other object’s locations and sensors allows flexibility in 
application design. For example, it allows modelling of spatial relationships between 
objects (such as distance or angle between two objects, whether the object is left, right, 
in-front or behind, etc..) as described by Kortuem et al. [Kortuem, Kray et al. 2005]. 
These relationships form context in the environment containing the objects. This 
context allows us to dynamically adapt our projection, for example, it enables 
applications such as a game which is only projected on a set of objects when they are all 
brought together into the same location. 

7.2 Smart Photograph Album 

The Photograph Album is a manufactured object designed specifically to demonstrate 
three interaction methods in the cooperative augmentation framework: 

 
1. Manipulation of object location 
2. Interaction by object geometry manipulation 
3. Interaction with projected user interfaces 
 
The object itself is a physical book, but is given a new appearance using a dustcover 

on the outside, and a new appearance inside with a pasted-in page. A Smart-Its device 
attached to the album detects when it is moving with accelerometers, and detects when 
it is opened with a light sensor. This scenario involves two users, one of whom has just 
returned from a recent holiday and would like to show the second user their 
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photographs. Similar to the Magic Book demonstrator developed by Billinghurst et al. 
with fiducial-marker based AR [Billinghurst, Kato et al. 2001], when the book object is 
detected by the projector-camera system it becomes automatically augmented with the 
photograph display.  

7.2.1 Object Model 

The Object Model appearance knowledge is initially trained with images of the 
Photograph Album captured with the object placed orthogonal to the camera at 3m 
distance, and manually annotated with an object bounding box. Two images are 
captured – the front cover and inside when opened, representing two possible object 
geometries (closed and open). See Figure 7.5 for an example of the front and inside. 
Local features are extracted from the annotated bounding box regions using the SIFT 
detection algorithm. 3D Model and appearance states are defined for when the object is 
open and closed, as shown in Figure 7.6.  

The object uses interactive projected buttons to browse left and right through images 
in the album. We constrain the interface so users cannot press left and right 
simultaneously, which allows us to model both buttons with a single button state. The 
projected left and right buttons now simply return the number of the next image to 
change to. The buttons are modelled as interactive areas, in which the user’s finger is 
detected and matched to a fingertip template by the detection application. The location 
of the interactive areas is specified as surfaces defined in the object’s 3D Model. 

The “Content Model” is a hierarchy of albums, images and buttons which defines the 
image to project, based on the button state and whether the object is open or closed. We 
consider each projection a separate state with its own “Display Model” stored in the 
Content Model. Each Display Model stores the button locations and button state value, 
together with the state value the buttons return when pressed, as shown in Figure 7.7.  

There are 3 albums, each with an image for the front cover, with the name of the 
album superimposed on the top. Each album has 5 images for projection inside when 
the album is opened, representing individual button states (see the numbers in Figure 
7.7). For each projection, the left buttons are defined in the Display Model to return the 
value of the image to the left of the current image. Similarly, the right buttons return the 
value of the image to the right. The values wrap around, so pressing right from image 5 
returns to image 1 and pressing left from image 1 goes to image 5.  

 

   
Figure 7.5 Photograph Album smart object with Projection (left) front cover, button state 10 (centre) being opened, 

(right) inside, button state 5 
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7.2.2 Registration and Detection 

Two users enter the environment with the first carrying the smart Photo Album. The 
object registers and transmits its Object Model to the projector-camera system. The 
smart object detects it is moving with accelerometers, and detects it is closed with the 
light sensor. The object evaluates its 3D Model configuration states and broadcasts it is 
in state 1 – Book Closed, sending the projector-camera system a 3D Model of the closed 
object and a the appearance description of the cover of the album.  

The projector-camera system uses the appearance description to search for the object 
in the camera image. The first user places the object down on a table and it detects it has 
stopped moving. The camera detects the closed object on the table and calculates its 
location and orientation.  

7.2.3 Projection and Manipulation 

The object requests projection of the first album image (image 0 in Figure 7.7) on the 
album cover. The first user touches the right button. The user’s finger is detected in the 
interactive area by the camera system, activating the button and changing the button 
state to 10. The Object receives the new button state and requests projection of the 
second album image (image 10 in Figure 7.7) on the album cover. 

The first user opens the cover of the album, which appears to the object as a change 
in light level value. The object evaluates its 3D Model configuration states and changes 
to state 2 – Book Open, updating the projector-camera system with a new 3D Model of 
the open object and a new appearance model of the inside of the album. The updating of 
3D Model geometry automatically removes the projection on the cover. The object 
requests projection of image 11 on the inside of the album. The first user passes the 
album to the second user, sat around the corner of the table. The projection follows the 
object movement, so it appears attached to the object. The second user browses through 
the images using the left and right buttons and then closes the object. The close action is 
again detected by the change in light levels and the 3D Model configuration state 
returned to 1- Book Closed. The projection returns to image 10. The first user picks up 
the album and exits the environment. 

7.2.4 Discussion 

The photograph album application demonstrates projection on the surface of the 
smart object. Users can interact directly with the projected buttons on the object to 
change the projected content. The object senses physical changes such as movement and 
manipulation of its articulated geometry, such as opening the book. Both factors have an 
impact on the detection process. In a vision-only approach any change in appearance or 
form of the object can cause detection failure. In our approach the object updates the 
projector-camera system with new appearance knowledge when it detects it has been 
opened, enabling tracking to continue uninterrupted. Hence, sensor information 
supports detection robustness. 

In the demonstration implementation there are 3 albums and each album has 5 images 
for projection inside when the album is opened. However, as each image requires its 
own button state in the Photograph Album model, the number of albums and images is 
only limited by the storage requirements (of both Object Model and images) and the 16-
bit integer used for representing individual button states (a total of 65,535 images). 
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This application demonstrated that a user can interact with an object while being 
detected, tracked and projected. However, several practical issues emerged from the 
finger detection method. It was found both the accuracy of pose calculation and jitter 
has a large effect on the finger detection method. For button activation our fingertip 
detection method requires a motion gradient towards then followed by away from the 
button location, combined with a matched semi-circular fingertip template within the 
button area. However, when extracting images of the active button detection area any 
jitter or incorrect pose calculation causes an offset area to be extracted. When used in 
background subtraction this image easily causes a motion gradient to be established. If 
the area extracted also contains either projection or the object’s surface contains texture 
which appears rounded like a finger, then a false positive occurs. Similarly, if the image 
extracted is offset too far from the correct detection area it can cause a real finger 
interaction to be missed (a false negative). 

In the photo album demonstrator we initially projected a rounded arrow into each of 
the button areas, but this was found to give too many false positives and the projection 
had to be changed to a different triangular arrow appearance. This has important 
implications for this interaction method in the architecture, as it suggests either this 
method is not suitable for use in conditions with high jitter or high chance of incorrect 
pose calculation (such as with moving objects), or a new more robust method for finger 
detection is required (one possibility would be the pattern oriented detectors proposed 
by Borkowski et al. [Borkowski, Crowley et al. 2006]).  
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7.3 Smart Cooking 

This demonstrator is designed to illustrate multiple objects augmented with displays 
from multiple projector-camera systems. Here we use a task based cooking scenario 
where smart objects cooperate in order to provide the user with context-dependant 
recipe instructions to boil an egg. 

 We motivate this demonstrator with an scenario similar to the MIT Smart Kitchen 
project CounterIntelligence [Bonanni, Lee et al. 2005], which distributed the recipe 
instructions into the environment, with an interactive projection of a recipe book onto 
the work-surface. The user followed the recipe and instructions would be projected at 
the correct time on the work-surface, using a smart-environment approach with cameras 
and sensors to detect interaction distributed in the kitchen.  

In our approach we focus on projection directly on the objects, rather than projection 
at a central location in the environment. This is one of the main characteristics of the 
Cooperative Augmentation approach, as it allows revealing of hidden knowledge inside 
the object (such as its temperature) or direct feedback to user interaction with the object, 
where it belongs spatially in the real-world. 

Hence, instead of taking a smart-environment approach we take a smart object 
approach, by making use of sensors embedded in the individual objects themselves 
(specifically a smart recipe book, smart egg-box, smart pan, smart salt, and smart 
stove). These sensors are used to infer the current context and project the next 
instruction step onto both the recipe book and on the objects themselves.  

 
The smart recipe book contains a series of recipes, each with printed photos of how 

the meal looks. The user can move around the environment (with the book being 
tracked with the steerable projector) and select a recipe by turning the pages of the book 
(similar to the scenario described in section B.2). Each recipe states only the ingredients 
required and the average time it takes to cook. To select a recipe, the user touches a 
projected interactive “cook” button on the smart recipe book.  

Instead of the smart environment approach, with a single object (the recipe book, or 
the environment) controlling the interaction, we break down the cooking task into 
sequential sub tasks and distribute the tasks to the smart objects in the environment. 
When a recipe is selected in the book, each object involved in the recipe is dynamically 
programmed with the sub-tasks by the recipe book. Task distribution and object 
programming can be performed automatically from the task description using the 
RuleCaster approach by Bischoff and Kortuem [Bischoff and Kortuem 2006].  

7.3.1 Hard-Boiled Egg Recipe  

The task we chose to illustrate the kitchen scenario was to hard-boil an egg. The 
recipe can be split into 3 parts: ingredients, equipment required and the method. As it is 
challenging to augment an individual egg due to its size, we instead augment the egg-
box with a sensor node. 

 
Ingredients 

1. Eggs (inside egg-box) 
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2. Salt 
3. Water 

Equipment 
1. Pan 
2. Stove 
3. Sink 

Method 
1. Add egg from box to saucepan 
2. Add cold water from sink to pan, covering the egg 
3. Place pan on stove 
4. Add a pinch of salt to water 
5. Turn on stove, to highest temperature setting 
6. Wait until water is boiling. 
7. Turn down stove to simmer for 7 minutes 
8. Turn off stove 
9. Empty hot water in sink 

 

7.3.2 Object Model  

In this demonstrator implementation we simulate the RuleCaster dynamic 
programming by developing Object Models for the chosen task and embedding them in 
each object by hand. The sequential sub-tasks of the recipe are considered as individual 
states of the overall recipe. These states are numbered and used to synchronise the 
recipe across the smart objects. Initially, the recipe book broadcasts recipe state value of 
0. Objects assigned sub-tasks sense the recipe state on the network and begin their sub-
task when the state variable is the correct value. Each object completing a sub-task 
increments, then re-broadcasts the state variable on the network. We develop a set of 
rules which form the application logic for each task. These are represented in the Object 
Models as the Content Models (Content Models are described in 7.2.1).  

Note: The complete content models of the egg-box, pan, salt and stove objects can be 
seen in Figure B.4 to Figure B.8, grouped by recipe state variable and arranged 
sequentially in recipe state order 0-12. We present only excerpts from these figures 
suitable for understanding our demonstrator in the task procedure description below. 

7.3.3 Task Procedure 

We assume the egg-box, pan, salt and stove are all present in the environment with 
the recipe book.  

The egg-box uses a light sensor to detect when it is open (high light level) and closed 
(low light level). The pan uses a force sensor to detect the weight of the contents, when 
it is placed on a surface (high force value) and when it is picked up (0 or very low force 
value). Additionally, the pan uses a temperature sensor to detect when the pan is at the 
correct temperature for cooking the egg. The salt uses a force sensor to detect when it is 
picked up. The stove uses a gas knob position sensor (simple variable resistor voltage 
value converted 0-100% with the Smart-It’s A-to-D converter). 
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We use one steerable projector-camera system centrally mounted in the environment 
and one fixed projector-camera system with a view down onto the work-surface to 
detect the objects. When the user stands in front the work-surface they occlude the 
steerable projector, hence we use the fixed projector-camera system for detection and 
projection in this location. Objects moving between the two systems experience a short 
loss in tracking when moving between the two projector-camera systems, as the user 
typically occludes the steerable projector before the object enters the work-surface 
projector’s field of view. 

 

Recipe State 0 
When the initial state is broadcast by the Recipe Book, the egg-box requests a 

projection of “Add egg to pan”, whether it is open or closed, as shown in Figure 7.8.  
We use the pan’s force sensor to sense when an egg is added to the pan. We assume 

eggs weigh over 30g (typically eggs weigh 35-75g). Consequently, the pan requests a 
projection of “Add egg to pan”, until the force detected increases over 30g. When this 
occurs the projection is removed and the new recipe state 1 is broadcast. 

State
Sensor Operation Min Max

Action
Combination Method

State
Sensor Operation Min Max

Action
Combination Method

State
Sensor Operation Min Max

Action
Combination Method

State
Sensor Operation Min Max

Action
Combination Method

0
Egg Box Pan
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2 - Open 2 – Egg Added

1 – Empty

Project “Add egg to pan”

Project “Add egg to pan” Project “Add egg to pan”
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Recipe           Value        0            0

Recipe           Value        0            0

Recipe           Value        0            0

Recipe           Value        0            0

AND AND

ANDAND

Light              Value        0            2

Light              Value        2          9999 Force             Value        30g     9999

Force             Value        2            29g

 
Figure 7.8 (left) Recipe State 0, (right) Add Egg Projection inside pan 

Recipe State 1 
The projection on the egg-box is removed automatically when state 1 is broadcast. 

The egg-box plays no further part in this scenario. 
The pan now requests a projection asking the user to “Add cold water to the pan, to 

cover the egg”. When the force decreases, we infer the object has been picked up. When 
the pan detects the temperature has decreased significantly below ambient (20º is 
assumed as ambient) we infer the user has added cold water to the pan. The pan projects 
“Place pan on stove” and the new recipe state 2 is broadcast. 

Recipe State 2 
The pan monitors the force sensor and the distance to the stove. When it detects a 

high force value again and the distance to the smart stove object is less than 0.25m, it 
infers it must have been placed on the stove. The pan removes the projection and the 
new recipe state 3 is broadcast. 
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Recipe State 3 
The pan requests the projection “Add a pinch of salt” throughout this state, while it is 

on the stove. 
The salt object requests the projection “Add a pinch of salt” if it detects it is put down 

(static), distant from the pan. When the salt detects it has been picked up (low force 
value) and is within 0.25m of the pan the new recipe state 4 is broadcast. 

Recipe State 4 
The salt removes the projection when it detects it has been put back down and the 

new recipe state 5 is broadcast. 

Recipe State 5 
The “Add a pinch of salt” projection on the pan is automatically removed. 
The stove object requests a projection “Turn On Stove, to 100% setting” if the stove 

setting is less than 100%. When the stove setting is turned to 100%, the projection is 
removed and the new recipe state 6 is broadcast. 

Recipe State 6 
The pan object projects the temperature from the temperature sensor and a “Wait until 

water boils” message as long as  the pan is on the stove and the temperature is below 
100º. When the temperature reaches 100º the new recipe state 7 is broadcast. 

Recipe State 7 
The stove object requests a projection “Turn Down Stove to Simmer (40% setting)” if 

the stove setting is outside the value range 31 to 49%. When the stove setting is within 
the value range 31 to 49% the projection is removed and the new recipe state 8 is 
broadcast. 

Stove Pan
8

State
Sensor Operation Min Max

Action
Combination Method

State
Sensor Operation Min Max

Action
Combination Method

Recipe         Value          8           8
Object Pan    Temp          99       9999

Project Pan too hot, adjust to simmer

6 – Pan Too Hot

AND

State
Sensor Operation Min Max

Action
Combination Method

Recipe         Value          8           8
Object Pan    Temp         91         98º

Remove Projection

7 – Pan Correct Temp

AND

10 – Simmering 7 mins
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Recipe         Value         8           8

AND

Force            Value        30g     9999
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Time             Value        7min    7min
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Action
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Recipe         Value         8           8

AND

Force            Value        30g     9999
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Time             Value          0       7min

Recipe         Value          8           8
Object Pan    Temp          0          90º

Project Pan too cold, adjust to simmer

5 – Pan Too Cold

AND

 
Figure 7.9 Recipe State 8 

Recipe State 8 
The stove regulates the pan temperature by requesting the temperature from the pan 

object. If the temperature value reduces below 91º the simmering will stop, so the stove 
requests a projection “Pan too cold – turn up stove to simmer”. If the temperature value 
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increases above 98º the pan is boiling, so the stove requests a projection “Pan too hot – 
turn down stove to simmer”. When the temperature is between 91 and 98º any 
projection is removed, as shown in Figure 7.9. 

The pan object requests projection of a countdown timer for 7 minutes while the pan 
is simmering on the stove. The timer can take the form of a 7minute video of a 
countdown. When the timer ends the projection is removed and the new recipe state 9 is 
broadcast. 

Recipe State 9 
The stove object requests a projection “Turn Off stove” while the stove setting is 

above 0%. When the stove is turned to 0% (off) the projection is removed and the new 
recipe state 10 is broadcast. 

Recipe State 10 
The pan object requests a projection “Empty hot water into sink” while the object is 

static on the stove and not near the sink. When the pan detects it has been picked up, is 
over 0.25m from the stove and closer than 0.25m to the sink the new recipe state 11 is 
broadcast. 

Recipe State 11 
When the object detects it is picked up and the temperature has decrease significantly 

below the simmering temperature, it infers the water has been emptied. The pan 
requests a projection “Enjoy your meal!” and the new recipe state 12 is broadcast. 

Recipe State 12 
When the pan object is placed down on a surface the projection is removed. This 

completes the recipe. 
 

7.3.4 Discussion 

The CounterIntelligence project [Bonanni, Lee et al. 2005] used a centralised 
projection approach in their smart environment, where the projected recipe appeared at 
one location on the work-surface in the kitchen environment. This provides a single 
point of focus for the user, who always knows where the current recipe instruction is 
located. Similarly, we can mechanically align our projector to the fixed projection 
surface to eliminate any geometrical distortion. However, we can illustrate one of the 
downsides of this and the smart environment approach if we imagine a hot pan on the 
stove. We want to warn the user that the pan is hot (as shown in the CounterIntelligence 
project), but because the temperature sensor and projector is located over the 
stove/work-surface area we can only project the temperature onto the pan when the pan 
is on the stove. If we take the pan off the stove it is still hot, but we can no longer sense 
this or project the warning onto the pan. 

In contrast, the approach taken in this thesis by the Cooperative Augmentation 
framework is to project directly onto the objects and use their sensing capability. One 
major benefit of our approach is that we obtain knowledge of the object’s geometry 
from the smart object. This is significant as it allows us to ignore surrounding surfaces 
and use projection whenever the object is visible to the projector, in any environment in 
which a projector-camera system is located - not just those with nearby surfaces suitable 
to projection. In the smart cooking scenario this approach allows us to provide visual 
feedback directly on the objects, where it belongs, whenever they are in view of a 
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projector-camera system. In this case a hot smart pan senses its own temperature 
continuously and can request a warning projection whenever it is hot enough to burn. 
This projection will appear fixed to the object as it is moved around the environment by 
using different projector-camera systems to detect, track and project on it. 

 
7.3.4.1 Coping with Objects Unsuitable for Projection 
A number of the objects in the smart cooking scenario are physically small, such as 

the eggs and the salt. As described in section 5.3, small objects are challenging to detect 
and track accurately. Similarly, small objects have little space for projection. One 
solution supported by our architecture is to project onto other nearby smart objects (as 
described in section 7.1.8).  

 
Figure 7.10 (left) Example salt 3D model, (right) 3D model with added base projection area 

It is also possible to extend an object’s 3D model by making assumptions. For 
example, we can extend the 3D model of the salt to include a large rectangular area next 
to, or centred at the base of the cylinder, as shown in Figure 7.10. This would allow 
projection around the cylinder of the salt itself, but assumes the salt is stood with its 
base on a flat surface and there are no other objects occluding the projection area. 
Similarly, the methods for geometry recovery discussed in section 2.3.6 could be used 
to dynamically model surfaces around the object to allow projection. 

However, displays created next to the object have the drawback that the display is no 
longer seamlessly integrated with the object. Hence, the user may find the display 
projected on the surface of random objects in the environment. This breaks the 
association with the original smart object which is implicit when projecting on its 
surfaces, and could cause users to become confused when displays appear in an 
unexpected spatial location, as reported by Sukaviriya et al. [Sukaviriya, Podlaseck et 
al. 2003]. 

 
7.3.4.2 Implications of Dealing with Multiple Objects 
The most challenging aspect of dealing with multiple objects in this scenario was 

their synchronisation, so that each object was aware of what to sense, which states it 
could change to, and what to project at any point in time. This has an important 
implication for our framework, as any scenarios with multiple objects and involving an 
aspect of time will face the same problem.  

Here we introduced a relatively naïve solution to synchronisation by having each 
object broadcast a shared global variable, updating the sequential recipe state in all 
objects. However, this method can only be used in scenarios where the objects are 
known and fixed a-priori; it does not allow another object to be spontaneously 
incorporated in the recipe without a global re-programming.  
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There is great scope for failure in this demonstrator, as we consider the recipe as a 
series of states. Any failure to sense a particular state correctly, such as false negatives 
where an event is not detected (e.g. adding the egg to the pan), or false positives where 
an event is detected even though it didn’t happen (e.g. the salt weight sensor detects it is 
picked up due to a low weight reading, but in reality it is just empty) will cause a failure 
in the recipe. The user may be able to proceed from a false positive, as the recipe should 
wait for the objects to enter the next state, however if an event is never sensed (false 
negative) due to incorrect Object Model sensor threshold values, incorrect object 
programming or a hardware failure, then the recipe will stall and the user will not be 
able to proceed. In practice, the current smart cooking demonstrator is not particularly 
robust, but still serves as a good concept illustration. 

 
7.3.4.3 Time 
Our architecture currently does not address the concept of time, hence in this scenario 

when the smart pan object has to wait until the egg is cooked we project a video which 
lasts for the required length. This method has a disadvantage in our scenario; due to our 
current implementation of video playing in the architecture it cannot be paused if the 
pan is taken off the stove (so that cooking stops) and then re-started from the same 
position when the pan is replaced on the stove. Instead, in the current implementation 
the video would be re-started from the beginning. 

To explicitly support time a specific timer capability would have to be implemented 
either in the smart object, running in parallel with the Object Model processing, or on 
the network. The timer could be modelled to stop and start by event messages sent from 
the content model states and its state queried as a normal sensor in the framework. 

 
7.3.4.4 Dynamic Object Programming of Multi-Purpose Objects 
The physical form and external appearance of the majority of smart objects will 

typically remain constant over time. Similarly, the number and type of sensors 
physically embedded in the object will remain constant. However, the use of an object 
may change frequently. For example, the salt can be used in a variety of ways in 
cooking (added to water to increase boiling temperature, added to sauces, on fish and 
chips, etc…) or possibly outside the home to spread on the ground to stop ice forming 
on paths. Hence, we need a method to allow multi-purpose smart objects to be 
automatically included in different scenarios. 

The cooperative augmentation framework provides a method for updating an object’s 
Object Model dynamically, for example, in response to new appearance knowledge 
extracted by the detection process. However, we are not restricted to just updating 
appearance knowledge. Multi-purpose objects can be dynamically programmed by 
updating the Content Models in the Object Model. Each of the ingredients and pieces of 
equipment in the kitchen scenario are multi-purpose objects. Hence we use automatic 
task distribution and object programming directly from the task description using the 
RuleCaster approach by Bischoff and Kortuem [Bischoff and Kortuem 2006]. 

However, as this re-programs the whole content model, this approach only allows 
objects to be part of a single scenario at time. To allow an object to be truly shared 
dynamically among a number of uses would require a method of fusing content models 
that avoided conflicts, such as content models from two scenarios requesting different 
projections on the same surface at the same time. 
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7.4 Conclusion 

In this chapter we presented three demonstration applications to evaluate the 
Cooperative Augmentation architecture implementation described in Chapter 6.  

A feature shared by all three demonstrators was that the knowledge was distributed in 
the objects, not in the environment. Our Cooperative Augmentation approach uses smart 
objects rather than smart environments to achieve projected displays on object’s 
surfaces. In the smart cooking scenario this meant all the objects cooperated to monitor 
the cooking process, rather than a single controlling object or the environment. The 
smart chemical container actively increased its knowledge by extracting more 
appearance information, demonstrating re-embedding of knowledge into the object. 

Additionally, the smart chemical container objects supported direct interaction via our 
architecture, while simultaneously monitoring their workflow. For example, the 
projection was displayed when the user misplaced the object and stopped when the user 
corrected the container’s position. Here the object actively controls the projection based 
on the states pre-defined in its Object Model.  

In contrast, the smart photograph album changed the photograph displayed when user 
interaction was detected via finger sensing, demonstrating another interaction modality 
of our architecture. 

The use of sensing was shown to greatly benefit the detection process. In the smart 
chemical container demonstrator, movement sensing constrained the detection process 
when detecting moving objects and discriminated between objects with identical 
appearances. In the smart photograph album sensing detected user manipulation of the 
object geometry and allowed the object to update the projector-camera system with new 
appearance and geometry knowledge for uninterrupted tracking. 

We identified limitations in projection due to low resolution projection achievable on 
the smart chemical container. Hence, we suggest objects should incorporate an 
adaptation mechanism to adjust what they project based on the achievable display 
resolution. For example, if only a low resolution is available then detailed text could be 
replaced with successively more abstract information with larger font size, or a 
pictogram or symbol. 

From the smart cooking demonstration we also found that some objects that are very 
difficult to augment with embedded sensing and computation either due to their size, 
shape, their use or their nature. For example, the eggs in the smart cooking demonstrator 
are disposable objects, hence it would not likely be economically feasible to augment 
every egg with embedded sensing and computation. 

Similarly, we found that some object surfaces are not suitable for projection (such as 
very small, transparent or reflective surfaces). For example, the eggs in the smart 
cooking demonstrator cannot easily support projection of complex information due to 
their size. In the case of reflective surfaces a coping method has been proposed using 
multiple projectors [Park, Lee et al. 2005], however this requires known surface 
geometry and explicitly tracked users to calculate the projection required to minimise 
reflection. 

These last two findings are very significant for our approach, as they suggest there is 
likely to be a class of everyday real-world objects which cannot be used with 
Cooperative Augmentation. 
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Chapter 8 Conclusion 

The primary objective of this thesis has been to develop a means for smart objects to 
cooperate with projector-camera systems to achieve a display capability without adding 
dedicated tracking hardware to every object or changing the natural appearance, purpose 
and function of the object. 

Displays allow any smart object to deliver visual feedback to users from implicit and 
explicit interaction with information represented or sensed by the physical object. This 
feedback has the potential to provide a balanced interface, as we support physical 
objects as both input and output medium simultaneously. This contributes to the central 
vision of Ubiquitous Computing by enabling users to address tasks in physical space 
with direct manipulation and have feedback on the objects themselves, where it belongs 
in the real world. 

8.1 Contributions and Conclusions 

The core contribution of this thesis is the development of a new approach called 
Cooperative Augmentation which enables smart objects to cooperate with projector-
camera systems to achieve a display capability. This framework formalises a 
mechanism for smart objects and multiple distributed projector-camera systems to 
cooperate to solve the object’s output problem and achieve interactive projected 
displays on their surfaces.  

The Cooperative Augmentation framework describes the role of the smart object, 
projector-camera system and the cooperative process. Specifically, the approach embeds 
the knowledge required for detection and projection in the smart object. This allows us 
to assume projector-camera systems offer generic projection services for all smart 
objects. 

 To program the smart object we develop a state-machine programming method. The 
smart objects were modelled to give the projector-camera system enough information 
about their appearance, form and capabilities to be able to detect and track them 
visually. Object sensors are modelled to allow the projector-camera system to make use 
of movement sensors for constraining the detection process and to make use of other 
sensors for interaction detection. In Chapter 5 we show that use of this sensing in 
detection provides a significant improvement in detection performance. 

While low-level, our programming method is lightweight, easily conceptualised and 
requires little information beyond which sensors we want to use, how to combine them 
and what sensor ranges we want to assign to a particular state. This allows smart objects 
to change projections in response to sensor events either sensed directly by the object, 
or remotely (for example, the movement of another associated object). 
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An architecture for the Cooperative Augmentation framework was implemented and 
experimentally evaluated in Chapter 6 to validate the concept. We present three 
demonstration applications using the architecture in Chapter 7, developed to 
demonstrate three different aspects of the architecture. The applications showed that 
smart objects with different sizes, shapes and appearances could be successfully 
detected and tracked by the projector camera system. Additionally, they demonstrated 
that using our framework the different geometries and surface colours could be 
corrected so the projection appeared undistorted and visible to an observer. Hence, we 
conclude that we achieved our original goal of enabling interactive projected displays 
on smart objects. 

 
A central problem to achieving displays on smart objects is their detection and 

tracking. We investigated vision-based object detection by performing the two 
experimental studies presented in Chapter 4 and Chapter 5.  We present seven insights 
from these chapters: 

 
1. When investigating natural appearance vision-based detection algorithms we found 

that the use of scale and rotation invariant algorithms provides performance benefits 
over single scale and rotation-variant algorithms, without loss of discrimination. 
Hence we use them in our example framework implementation in Chapter 6.  

2. We also learned that detection performance varies when the algorithm is trained at 
different distances and found the best training distances for each algorithm based on 
our object appearance library dataset. This is important, as this knowledge allows us 
both to help determine the best algorithm to use when detecting the object at 
runtime, and informs us of the best distances to extract extra appearance knowledge 
in the learning process for maximising detection performance. 

3. When investigating rotation we found that an object’s appearance changes when it is 
rotated in 3D (i.e. not in the camera plane), but this change can be much greater than 
with scaling, as whole surfaces can appear or disappear. Hence, to robustly detect an 
object in any 3D pose we found that we need to train our detection algorithms with 
multiple viewpoints. 

4. The results of the cooperative detection experiment in Chapter 5 show a very clear 
performance gain for all four natural appearance detection cues when we added 
movement sensing in the object, indicating the combination of different sensing 
modalities is important in detection. The use of movement sensing constrained the 
search space, which translates to increased robustness to clutter and distractions in 
the real-world environment, and helped to discriminate between objects with 
identical appearances. The improvement was seen for all algorithms, suggesting this 
can be generalised to other detection algorithms. 

5. We found that with the use of movement sensing, simple algorithms achieve similar 
or better detection performance to complex detection algorithms and that the 
runtime of the majority of algorithms was reduced. This has important implications 
as it means performance can be maintained or improved while reducing the amount 
of processing power required for detection, or that overall detection speed can be 
increased. 

6. The results of the cooperative detection experiment confirms that different objects 
require different appearance representations and detection methods, validating our 
proposed multi-cue approach.  



8.2    BENEFITS OF OUR APPROACH 

 158

7. The use of multiple cues improved detection performance for all objects; however, 
little performance improvement was seen when using more than the best 2 cues. The 
percentage improvement in detection performance was also generally greater when 
using movement sensing. 

 
These findings indicate that any environment using vision detection would greatly 

benefit from the fact that smart objects cooperate, by both informing the environment 
about object-specific knowledge (such as the object’s appearance) and embedded sensor 
readings. 

Appendix A provides an additional contribution by analysing the benefits and 
drawbacks to different designs of steerable projector and illustrating the construction of 
both a moving-head and moving-mirror prototype. The two prototypes were built from 
components, which involved both the choice of the appropriate technology and the 
subsequent integration of the technology with the computer system. The objective was 
to develop a system enabling detection and tracking of mobile objects and interactive 
display of graphical user interfaces anywhere in the environment. Of the available 
technologies presented in Chapter 2, we consider computer vision detection combined 
with steerable projection best able to satisfy this objective.  

While our steerable projector-camera systems have similar abilities to related projects 
with steerable-projectors [Pinhanez 2001; Borkowski, Riff et al. 2003; Butz, Schneider 
et al. 2004; Ehnes, Hirota et al. 2004], the equipment design is original. Specifically, for 
our moving head steerable projector we use a single arm yoke for pan and tilt, rather 
than twin-arms, allowing easier calibration of video projectors which have horizontally 
offset lenses (i.e. the majority), as the projector can be attached so the projector’s centre 
of projection is close to the centre of rotation of the pan and tilt unit. 

8.2 Benefits of our approach 

With the Cooperative Augmentation approach we aim to make life easier for both the 
user and the smart object. By displaying information on objects, where it belongs in the 
real world, we can make use of human spatial memory to aid interaction [Butz and 
Krüger 2003]. Similarly, interfaces tightly coupled to an artefact’s surfaces can allow a 
direct mapping for interaction, which may reduce the level of indirection and hence the 
cognitive load.  For example, the orientation of an artefact could be used as a direct 
input method while the projected display provides the user with instant feedback to 
manipulation of the object itself, such as the change of a highlighted option. 

With projected displays users are no longer constrained to single static location 
displaying information about smart objects. Instead, objects are tracked and the displays 
follow the objects. Steerable and mobile projector-camera systems further enhance and 
encourage the mobility of the objects, so users no longer have to sit in a specific 
location to read an interactive projected book. The use of projected displays also allows 
multiple people to see the display and interact simultaneously. 

Objects can be more descriptive themselves, either directly or indirectly. For 
example, they can directly label themselves with their names in a foreign language to 
help students learn [Intille, Lee et al. 2003], or project assembly instructions directly 
onto pieces of furniture to decrease difficulty and reduce errors in the assembly task 
easier for novice users, as described in section B.3.  
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This approach provides a possible solution to one of the typical problems for users in 
Ubiquitous Computing environments – knowing which objects are smart and can be 
interacted with. As objects can label themselves, projected displays support easy 
discovery for users. One example application would be a searchlight application, which 
would detect all smart objects in the environment and reveal information about their 
status or supported interaction methods on their surfaces. 

In addition to making inherent object properties explicit (where the invisible becomes 
visible) we can use the displays to reveal or visualise state changes in the object. For 
example, a smart object configuration and debugging display that allows programmers 
real-time modification of the smart object’s state configurations. 

 Similarly, displays can be used for inspection, to reveal hidden contents or 
relationships. For example, two objects without a built-in location system can be 
associated and display content linked to a particular state where they are in proximity. 
These displays can also visualise information stored in the object such as a record of 
use, for example, how a wine bottle was stored while maturing.  

Our approach also has potential benefits for employers and employees as it could 
replace steps in work processes. For example, it has been demonstrated that smart 
objects can embed rules from the large rulebooks for safe handling of chemical 
containers [Strohbach, Gellersen et al. 2004]. Employees are currently responsible for 
safe handling, but may not remember all the rules in detail. By using smart containers 
and projection services, there is the potential to either remove some of the responsibility 
from the employees or make the interaction faster and simpler for the employee. Safety 
critical storage locations could be monitored by the chemical containers themselves and 
warn the employees by visual notification when a container is stored outside the 
approved storage area or near to reactive chemicals. In this case the job of the employee 
is made much easier if the container can identify itself to the employee visually and 
guide the employee to the correct location. 

8.3 Limitations 

While our work provides a proof of concept for the Cooperative Augmentation 
framework, there are a number of technical limitations which would make its direct 
deployment in the real-world infeasible. We aim to identify some of these limitations in 
this section and suggest possible solutions. 

 
Robust vision-based object detection in the real-world is a hard problem and the 

visual detection system we implemented is not a perfect detection system. 
Consequently, many objects achieve less than 100% detection performance with our 
natural appearance methods due to problems with scale, rotation, defocus blur, fast 
motion blur, partial or total occlusion, lighting and shadows or distracting objects. 
Practically, this means an object may not be immediately detected on entry to an 
environment (if at all). However, as we demonstrate with the cooperative detection 
experiment in Chapter 5, there are ways to improve the detection performance without 
writing new improved detection algorithms, by making use of embedded movement 
sensing in the object.  

However, there are some limitations to an approach only involving movement. To 
detect static objects, the only way we can use movement sensing is to exclude moving 
areas in the image from the detection process. While this confers some similarities to 
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the scenario where there is a moving object and static background, the detection 
performance will vary between performance without sensing and with sensing, 
depending on the size of the moving area in the image.  

In this case, greater knowledge of the object’s context from other sensors may help us 
detect the object, for example, using an embedded electronic compass or any other 
available location system. Similarly, if the object has external light sensors a structured 
light approach would also be possible, as discussed in section 2.7.2. 

The smart chemical container demonstration application in Chapter 7 raised another 
limitation of our system, which was the resolution of the projection on the chemical 
containers. The projector we used was an XGA (1024x768 pixel) projector, and it 
created a relatively low resolution 200x130 pixel display with 1mm2 pixels at a distance 
of 3m when set to mid-zoom. To increase this resolution either a higher resolution 
projector can be purchased (High Definition 1920x1080 pixel projectors are now 
common), or the projector zoom can be used dynamically to zoom-in, with the trade-off 
of reducing the field of view 

From the smart cooking demonstration application we found that some objects are 
very difficult to augment with embedded sensing and computation either due to their 
size, shape, their use or their nature. Similarly, we found that some object surfaces are 
not suitable for projection (such as very small, transparent or reflective surfaces). These 
two findings illustrate a significant limitation of our approach, as they suggest there is 
likely to be a class of everyday real-world objects which cannot be used with 
Cooperative Augmentation. 

8.4 Future Work 

The three main challenges in our framework implementation are robust visual 
detection of smart objects, correcting the projection for non-planar geometry and non-
ideal surface colour, and keeping the projection synchronised when the object is moved 
or manipulated. These are the areas where improvements to the implementation would 
bring the most benefit.  

For detection specifically, more research is required on how different combinations of 
training knowledge and sensing change the detection performance, which computer 
vision algorithms are best suited to detecting the objects and to characterise what impact 
different movement sensor types have on robustness of detection. 

The question is also how to make it more robust? We have seen that movement 
sensors embedded in smart objects can provide a significant increase in performance, so 
perhaps this can be generalised to other types of sensors. In this case the question would 
be which sensors, and how many more sensors would help? As section 2.7 illustrated, it 
has been shown that both inertial and light sensors are valuable in the detection and 
pose-calculation process, but there should be a comprehensive study of which sensors 
add the most value and which sensors could be best combined. For example, if the 
object has embedded inclinometer or 3D accelerometers, we know this can help in pose 
calculation, but only if we know our camera orientation relative to gravity vector (as 
discussed in section 5.3.4). 

The detection system in the framework implementation can optionally make use of 
the graphics card GPU for speeding up complex image processing tasks. Typically the 
performance increase of 10-15% is seen over the CPU algorithms. However, the CPU-
GPU transfer time is currently a major bottleneck, especially for small amounts of data 
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such as results to reduction operations or control data for the image processing 
algorithms on the GPU. Ideally, the solution is to move as much processing as possible 
to the GPU to optimise performance, while only performing initial upload of a camera 
image and download of the final detection result. However, only relatively few of the 
complex computer vision algorithms we use have been transferred to the GPU 
[Strzodka, Ihrke et al. 2003; Montemayor, Pantrigo et al. 2004; Cabido, Montemayor et 
al. 2005; Fung and Mann 2005; Klein and Murray 2006; Sinha, Frahm et al. 2006; 
Leiva, Sanz et al. 2007] and many must still be written or further optimised to best 
make use of the parallel stream processing paradigm. 

Both the detection approach and projective texturing geometric distortion correction 
method we use rely on a known 3D model of the object. While it is not a stretch to 
assume that ‘newly purchased’ smart objects brought into the environment would 
automatically have knowledge of their appearance and form, it does not address the 
problem of smart object prototyping or of legacy objects which we may possess and 
make smart ourselves by adding computation. These objects have no 3D or appearance 
models. While one possible solution would be to purchase commercial 3D object 
scanning equipment, this is an expensive option. In contrast, by using computer vision 
two approaches are readily available – firstly by using structured light with a projector-
camera system, for example, the approach proposed by Borkowski et al.to detect planar 
surfaces in the environment with a steerable projector [Borkowski, Riff et al. 2003], or 
the approaches discussed in section 2.3.6. Secondly by using structure-from-motion 
techniques, either with direct affine-invariant local feature modelling [Rothganger, 
Lazebnik et al. 2006], or by using a SLAM approach [Davison and Murray 2002; 
Davison 2003; Chekhlov, Gee et al. 2007; Klein and Murray 2007]. Here we can 
imagine a user would only need to hold the object up to the camera and rotate it for a 
3D and appearance model to be dynamically created. 

Open questions also remain in the area concerning location of projections on an 
object. Specifically, if an object does not care about the exact projection location, or 
would always like the most visible, readable and useable projection, this would involve 
the framework automatically changing the location of the projection based on object 
visibility or orientation.  The challenge here is how to determine the best strategy to 
ensure the most visible location on an object’s surfaces for the user is used? We would 
likely either need to track the user, or make assumptions about the user’s location. 

We address scalability in our architecture by using a concept of an “environment” 
which is equivalent to a defined group of projectors and cameras contained in a 
constrained spatial area, such as a room. Similarly, for steerable projector-camera 
systems we introduce a concept of “system focus” to determine which object to track 
when multiple objects are present. However, it is still unclear how scalable these 
approaches are and how many objects can be seamlessly detected, tracked and 
augmented as they travel through space. 

Finally, we have achieved a realisation of the Cooperative Augmentation concept that 
is flexible and efficient enough that user studies to evaluate the user experience become 
feasible. We believe the benefit of our approach can be seen best when directly 
comparing traditional AR displays (e.g. traditional monitors, HMD, handheld or mobile 
computers) against projected displays on the surfaces of objects. 
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Appendix A Steerable Projector-Camera 
     System Construction 

This appendix describes the design and assembly of two steerable projector-camera 
systems. We provide an overview of design characteristics of typical systems and 
present recommendations for those wanting to build similar equipment.  

The hardware design used in this research is inspired by four closely related projects: 
the Everywhere Display by Pinhanez et al., the FLUIDbeam project by Butz et al. the 
Projected Augmentation projector by Ehnes et al. and the PRIMA project by Borkowski 
et al. [Pinhanez 2001; Borkowski, Riff et al. 2003; Butz, Schneider et al. 2004; Ehnes, 
Hirota et al. 2004]. Consequently, we present an example characterisation of one of the 
steerable projector systems and compare it to other commercial and research systems. 

A.1 Steerable Projector-Camera System Design 

Steerable Projector-Camera systems share three common classes of components from 
which the system is constructed: 

 
1. Steering Mechanism 
2. Video Projector 
3. Camera 

 
These major characteristics of these components are identified in the sections below 

to allow objective measurement of the performance of steerable projectors and to allow 
comparison of strengths and weaknesses in different approaches and implementations.   

A.2 Steering Mechanism 

The two most popular methods to create a steerable projector from a fixed projector 
are to use either a moving mirror in front of the projector lens, or by mounting the 
projector in a moving head yoke. 

The steering mechanisms currently used in steerable projectors have their roots in the 
display lighting industry.  The mechanisms are usually contained in moving head lights  
and moving mirror scanners used for dynamic lighting on stage, in discos, or in retail 
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and entertainment environments. These lights are typically controlled by the uni-
directional DMX512/1990 serial protocol (often shortened to DMX). 

 

   
Figure A.1 (left) Moving mirror display light, (right) Moving head display light [SteinigkeShowtechnicGmbH 2005] 

Both types of steering mechanism provide two degrees of freedom – pan and tilt.  
This freedom is implemented in both systems as rotation of an object (mirror or 
projector) around the respective axes.  The world axis around which this rotation occurs 
changes depending on the orientation of device mounting, so when referring to pan and 
tilt in this document we assume it is relative to the local steering mechanism mounting. 
Typically the steering mechanism is mounted so pan is movement in the horizontal 
direction and tilt is movement in the vertical plane. 

The moving mirror approach was first implemented by IBM for their Everywhere 
Display prototype in 2000 [Pinhanez 2001] and later by UNC in their PixelFlex 
reconfigurable multi-projector display [Yang, Gotz et al. 2001]. 

The moving head approach is used by the majority of steerable projector 
implementations.  First proposed by Nakamura and Hiraike [Nakamura and Hiraike 
2002], this steering method is implemented in the FLUIDbeam project by Butz et al. the 
Projected Augmentation projector by Ehnes et al. and the PRIMA project by Borkowski 
et al. [Pinhanez 2001; Borkowski, Riff et al. 2003; Butz, Schneider et al. 2004; Ehnes, 
Hirota et al. 2004]. 

Purely optical beam steering mechanisms, such as lenses, spatial light modulators or 
Holographic Optical Elements (HOE) are all possible. However, unlike the mechanical 
steering methods, such systems are generally not commercially available, hence, will 
not be discussed further. 

A.2.1 Steering Mechanism Characteristics 

We identified 12 important characteristics of steering mechanisms: 
 
1. Mechanism Rotation Speed 
Faster rotation capability is better, allowing for rapid tracking of objects at close 

range and fast movement between spatially distant objects.  However, high speed is not 
an absolute requirement, as continuous small movements in different directions once 
actively tracking an object may never achieve full speed rotation due to the acceleration 
and deceleration time required.  These types of movements would be governed more by 
the mechanism acceleration and inertia characteristics. We measure both moving mirror 
and moving head angular rotation speed in degrees per second. 
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2. Mechanism Acceleration and Inertia 
System inertia is dependant on the mass that needs to be rotated – in the case of 

moving head systems a projector is much more massive than a mirror, so will have 
higher inertia.  High inertia systems are more likely to exhibit control problems such as 
overshoot when attempting to position accurately. Lower inertia systems are more 
responsive as they allow faster acceleration and more rapid changes in direction. 

We measure angular acceleration in terms of degrees per second squared, but this is a 
difficult quantity to practically measure, without accurate position feedback from the 
steering mechanism or accelerometers mounted on the steering mechanism. 

 
3. Mechanism Field of View  
From a fixed location, many moving head systems are capable of panning and tilting 

to cover an area greater than a hemisphere. However, moving mirror systems have a 
more limited field of view due to optical arrangement of the mirror and projector, as 
shown in Figure A.2 (left). Here, the rotation in pan is relatively unconstrained except 
for physical obstruction of the mechanism mounting bracket.  Rotation in tilt is much 
more limited - both by the requirement to keep the reflective mirror surface towards the 
projection beam when tilting up, and by the projector body itself occluding the light 
when tilted down. 

Field Of View (FOV) is measured in degrees of coverage for each axis separately 
(pan and tilt). A larger field of view is preferable as it allows the flexibility for a single 
steerable projector system to create displays in a larger spatial area. 

 

  
Figure A.2 (left) The IBM Everywhere Display Steerable Projector Design, (right) Everywhere Display Projection Cone 

[Pinhanez 2001] 

4. Mechanism Positioning Accuracy  
The Steering mechanism will have a mechanical accuracy determined by the 

mechanism FOV angles in pan and tilt and the control interface resolution. On display 
lighting the DMX control interface is either 8-bit or 16-bit, allowing either 256 or 65536 
discrete positions to be resolved respectively. These discrete positions are the number of 
possible angular positions the pan and tilt unit can be commanded to occupy in each 
axis. For systems with a high mechanical FOV and low resolution control interface the 
angle between discrete positions will be large, and small movements between the 
commanded positions will appear jerky.  Conversely with a low mechanical FOV and 
high control resolution, the angular resolution is much higher; hence changes in display 
position will look smooth. 

We measure the angular positioning resolution in degrees by dividing the mechanical 
FOV by the number of addressable control positions (e.g. 360º FOV / 256 steps = 1.4º 
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per step). High accuracy positioning (a lower numerical figure) is recommended, as it 
allows displays to be located more accurately and less jerky display movement when 
projecting at distance.  

 
5. Mechanism Positioning Repeatability 
While the positioning accuracy measures how accurate a position is, the repeatability 

measures how close the mechanism returns to the same commanded position following 
a movement. Over time mechanical systems exhibit wear, hence repeatability is 
determined both by the mechanical properties of the steering mechanism and the ability 
of the built-in position feedback sensing system to correctly measure its rotation.   

The control interface uses a closed-loop control method, so will command the 
mechanism to move to a specific position and monitor the movement until it reaches the 
correct position as determined by the position feedback sensors. These sensors are 
typically optical break-beam sensors for moving head and resistive sensors for servos in 
moving mirror systems. The optical sensors use a circular disk with cut holes to create 
pulses as they pass through the break-beam sensor.  By dividing the number of detected 
holes by the known angular range (or required numerical control range) between the end 
stops, the yoke system can move to an absolute position by simply moving until it 
reaches the correct number of holes from the end stop. The resistive sensors are 
typically potentiometers attached to the rotating spindle which encode position by 
change in resistance. This is converted to a change in voltage using a voltage divider 
circuit and compared with the input voltage used to control the servos. 

For a repeatable position the mechanism rotation motors and position feedback 
sensors need to be accurate enough to resolve to the same accuracy as the control 
system.  The control system must also be able to dynamically manage under and 
overshoot as rotation stops; otherwise it exhibits oscillation around the required position 
(hunting). A steering mechanism with high repeatability is preferable, as it allows 
displays to return to the same spatial locations consistently. 

 
6. Position Stability 
Positional stability measures how well a system can hold an exact position without 

un-commanded movement occurring.  This characteristic is determined partly by the 
torque characteristics of the positioning motors, partly by the mass of the load the 
motors must hold (projector or mirror) and whether any other external forces are 
applied.  For stability, any jitter in the control and position feedback systems must be 
eliminated. However, using this definition, stability is difficult to measure quantitatively 
– a steering mechanism is generally either stable or not (for example, if a projector is 
too heavy for a moving head steering mechanism).  Any useful system is required to 
have positional stability in all possible orientations. 

Positional stability could also be defined as the steering mechanism and mounting 
method’s response to rotational movement – for example, whether a panning projector 
using the moving head method causes unwanted structural response when it starts and 
stops due to its inertia. Again this is difficult to quantify except as the magnitude of 
structural response (which would require mounting accelerometers), or possibly as the 
time taken for the response to settle. 

 
7. Size 
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The size of a steerable projector is determined mainly by the size of a projector for a 
moving mirror mechanism. Smaller projectors have smaller lenses, allowing 
correspondingly smaller mirrors and mechanisms to steer the beam. Moving head 
systems are necessarily larger than the projector themselves due to their design, which 
encapsulates the projector at the centre of rotation. Smaller is generally better, as it 
allows easier mounting and better portability. Size is best measured as the volume 
occupied by the system in metres cubed. 

 
8. Weight 
The weight of a steering mechanism, measured in kilograms (kg), will determine how 

it can be mounted, and how portable it will be. Due to their small size, moving mirror 
systems can be very light (hundreds of grams), whereas moving head systems are 
generally in the tens of kilograms range. Lighter is better, as it increases the portability 
and mounting options. 

 
9. Mounting Options 
For fixed steerable projectors, the type of mounting required will depend heavily on 

the size, weight and portability of the steering mechanism and projector.  The 
environment will also play a large role, as there is a big structural difference between 
mounting direct to a concrete ceiling, and mounting to a false ceiling. Generally, a 
lighter weight system will be more flexible in mounting location than a heavier one. 

 
10. Portability 
Although current steerable projectors generally have fixed mountings, portable 

steerable projector systems would share characteristics with handheld projectors and 
wearable projectors described in related work section 2.3.2. 

 
11. Image Distortion 
Although not easily quantifiable, different beam steering methods cause different 

amounts and types of distortion in a projected image. For example, moving mirror 
systems will exhibit more rotation distortion of the uncorrected image than moving head 
systems, due to optical arrangement caused by the fixed projector and moving mirror, as 
seen in Figure A.2 (right). Less distortion is always preferred, which is accomplished by 
projecting as orthogonal to the display surface as possible. 

 
12. Cost 
There is a price-performance trade-off as more expensive systems generally have 

better positioning accuracy, stability, repeatability and build quality. An acceptable 
balance must always be found between these specifications and price. 

A.2.2 Moving Mirror and Moving Head comparison 

Moving Mirror 
Benefits 

• Very fast rotation speed possible with fast acceleration due to low inertia 
• Small size and volume 
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• Lightweight unit, easily mounted  - possible to “bolt-on” to the projector 
• Can be used with a portable stand or with new generation of small portable 

projectors as mirror size scales with projector lens size. 
• Low cost 
• Camera has separate pan and tilt unit, allowing multitasking (e.g. object 

searching) while not required for interaction or calibration 
 

Problems 
• Restricted field of view (Typically around 230° pan, 50° tilt [Pinhanez 2001]), 

requiring location high in a corner or high along the centre of a wall for largest 
coverage. 

• Only limited 8-bit accuracy pan/tilt positioning units available  
• Increased image distortion due to angled mirror surface in light path (primarily 

causing image rotation distortion) 
• Camera requires separate pan and tilt unit, leading to calibration, registration and 

coordination problems with projector 
 
Moving Head 

Benefits 
• Fast Rotation speed is possible 
• Good for central location in large environments, as many pan and tilt units 

coverage greater than a hemisphere (e.g. 360° coverage in pan and 270° in tilt) 
• Less distortion than moving mirror due to direct projection on surfaces. 
• Camera can be directly attached to the projector, so projector-camera calibration 

can be performed once, with no further registration and coordination problems 
 
Problems 

• High inertia can cause poor acceleration, precluding very fast object tracking 
• Large Steering mechanism volume  
• Heavy unit, requiring professional installation on a wall or ceiling 
• No portability 
• High Cost 
• Camera is attached to projector, so cannot be used for anything else (e.g. 

searching) while projector static 

A.3 Video Projector 

The video projector is required to display information on the surfaces of objects as 
visibly as possible. We identified 10 projector characteristics to take into account: 

 
1. Brightness 
The brightness of a projector is typically measured in American National Standards 

Institute (ANSI) Lumens – which is a measurement of the total amount of light a 
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projector can produce when projecting a white image. To be clearly visible in ambient 
light the projector must output a greater amount of light to a given surface area than the 
ambient lighting. 

The perceived brightness of a projected image will vary depending on the size of the 
projection and the reflective properties of the projection surface. The larger the 
projected image, the darker it will appear, as the fixed lamp light output is spread over 
the increasingly larger area of projection surface.   

The reflectivity of the projection surface will also have an impact, as projection on 
low reflectivity surfaces (dark, diffusing, matt surfaces) will appear substantially darker 
than surfaces with higher reflectivity (bright, reflecting, glossy surfaces). However, 
there is a trade-off, as very reflective surfaces will also increase the probability of 
“hotspots”, where the projector and other light sources are clearly visible as bright 
reflection spots on the surface. This reflectivity measurement is expressed as “gain” for 
commercial projection screens; however, as steerable projectors just use everyday 
surfaces in the environment, no surface gain measurements are typically available. 

 
2. Contrast 
Contrast (also known as dynamic range) is the apparent difference between projected 

white light and the absence of projected light (black).  In the presence of normal office 
or home illumination an absolute black (i.e. total darkness) cannot be attained by front 
projection, as there is always ambient light reflecting from the display surface.  Ambient 
light reduces the difference between the projector’s maximum white and black (i.e. no 
projection), reducing its contrast and making the image look “washed out”.  Higher 
contrast ratios are preferable for better the readability of the display. 

One method of increasing both the brightness and contrast of projected displays was 
demonstrated by Majumder and Welch [Majumder and Welch 2001], who 
superimposed two identical projector displays to double the maximum brightness.  By 
changing the display addressing system this also allowed high dynamic range colour 
images to be displayed. 

 
3. Resolution 
As steerable projectors are frequently projecting off-axis or on rotated objects, there 

can be significant amounts of geometric distortion in the projected image.  The 
correction methods discussed in related work section 2.3.6 distort the projected image, 
which reduces the effective resolution we are projecting. 

Pinhanez et al. claimed their effective resolution was typically reduced from 
1024x768 pixels to 640x480 pixels following geometric correction [Pinhanez, Kjeldsen 
et al. 2002] in their moving mirror Everywhere Display system.  Consequently, the 
greater the resolution of the projector we start with, the better the final image will look. 

 
4. Projector Technology – LCD versus DLP 
Liquid Crystal Displays (LCD) are the traditional technology used in projectors – 

they are relatively cheap, widely available and create a stable image. Projectors 
typically contain three LCD panels - one for each colour (Red, Green, Blue), each 
around 1-2 inches in size.  

Texas Instruments developed a single chip Digital Light Processor (DLP) engine for 
projectors using a chip less than an inch square with the surface covered in millions of 
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miniature reflecting mirrors, allowing projector size to be reduced substantially.  
Without the need for three separate colour panels and integrating optics, smaller and 
more lightweight projectors are possible with the equivalent brightness as an LCD 
projector. However, there is one major drawback with consumer DLP projectors – they 
possess only a single DLP chip, so a rotating colour wheel must be used to time 
sequentially display frames of red, green and blue colour, as shown in Figure A.3 (left).  
In many models a fourth transparent area is also used on the colour wheel to boost light 
output at the cost of colour resolution, as humans are more sensitive to changes in 
luminance than colour. These frames are integrated and seen as a full colour image by a 
human eye.  

 

  
Figure A.3 (left) Single chip DLP projector optics [TexasInstruments 2005], (right) Mitsubishi Pocket Projector 

[MitsubishiElectricCorporation 2008] 

However, cameras can have an exposure shorter than the integration period, so may 
see only a single colour frame or partial frame.  To see the whole frame a camera must 
either be explicitly synchronised with the projector, or the exposure increased to 
integrate all the colour components (16.7ms for a 60Hz projector refresh).  This 
problem mainly exists when the camera auto exposes to the projector illumination – 
typically in darker environments where the projector illumination is brighter than 
ambient illumination, or where the projected image fills the majority of the camera 
frame.  Hence, the problem can be reduced by manually setting the camera exposure 
rather than relying on auto-exposure. 

 
5. Lamp Life 
The use of a traditional video projector in steerable projectors raises issues with the 

limited lamp life (generally in the region of a few thousand hours), the high replacement 
cost and large size. Companies are now producing Light Emitting Diode (LED) 
projectors and LASER based projectors small enough to fit in the palm of a hand, with 
light sources that last over 20,000 hours (i.e. the design lifetime of the projector). 
Although the current projectors are only low brightness and resolution, this technology 
should be expected to replace metal halide lamps in video projectors. An example LED 
projector can be seen in Figure A.3 (right). 

 
6. Lens Location 
Lens location is another consideration for steerable projector systems.  If using a 

moving head system then the optical Centre of Projection (COP) should ideally be at the 
Centre Of Rotation (COR) of the pan and tilt unit to make calibration easier. In this 
spatial arrangement only the rotation component of the projector to world coordinate 
system transformation changes with the rotation of the projector, rather than a combined 
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rotation and translation for offset lenses. Consequently, a centre lens projector design 
should use a dual fork yoke, and an offset lens projector should ideally use a single arm 
yoke so the COP is always at the COR. 

 
7. Powered Focus 
Projectors generally exhibit a good depth of field, with Pinhanez finding that surfaces 

up to 30° inclination relative to the projector axis generally remaining in focus 
[Pinhanez, Kjeldsen et al. 2002]. However, computer controlled powered focus allows 
projection at dynamically varying depths, which is useful when tracking mobile objects.   

When available, LASER based projectors will not require any focus control. Their 
coherent and collimated light output remains in focus at all depths, allowing projected 
displays completely in focus on objects at extremely oblique angles and simultaneous 
projection on foreground and background objects with large differences in distance. 

 
8. Powered Zoom 
Computer controlled powered zoom allows different sized diaplays to be projected at 

different distances.  Projector zoom is measured as a ratio between the largest and 
smallest image produced with the zoom at wide and telephoto respectively. For 
example, 1:1.3 indicates the image can be resized by 30%. Higher zoom ratios enable 
projection of smaller images at longer distances (giving higher resolution) or larger 
images at close distances (but with lower resolution). 

It is useful to know what display size and resolution can be expected from a projector 
at each distance, as this will determine what size objects can be projected on. The actual 
achieved display resolution will vary with the projector FOV, projector zoom, distance 
to the display surface, its size and orientation (due to geometric correction), but can be 
calculated with known object geometry, pose and projector intrinsic parameters. 

 
9. Weight 
The weight of a projector is generally proportional to its brightness and cost. 

Projectors over 3500 Lumens typically cost significantly more and weight more, as they 
are designed for large displays and may incorporate two lamps. 

The projector weight will partly determine which steering method is used - heavier 
projectors are difficult to use with moving head steering mechanism, as they have a high 
mass and hence a high inertia. Conversely, high weight is not a problem for moving 
mirror systems, as the projector itself is statically mounted and only the mirror moves.  

 
10. Cost 
The cost of consumer projectors is generally proportional to their resolution and 

brightness. All other things being equal, a lower cost projector is preferable. 

A.4 Camera 

We identified 7 relevant characteristics of typical cameras: 
1. Camera Type and Mounting 
Steerable projector-camera systems use the camera for display calibration and to 

detect user interaction, hence the steerable projector camera requires a view of the 



APPENDICES 

 185

display surface. An identical view can be provided by making the projector and camera 
co-axial using a partially reflective optical beam-splitter, as discussed by Fuji et al. 
[Fujii, Grossberg et al. 2005] and seen in Figure A.4 (left). However, use of a beam-
splitter reduces the light output from the projector and the co-axial optics prevent use of 
the camera with structured light geometry calibration methods, which require an offset 
camera to recover the surface geometry, as discussed in related work section 2.3.6 and 
section 6.4.  

Instead, moving head steering systems can have a camera mounted directly to the 
projector, close to the projector lens. This location gives an on-axis view similar to that 
from a co-axial camera, but avoids the requirement for additional optical elements. The 
lens offset also typically provides a large enough baseline to be used in structured light 
calibration. As it is difficult to mount a camera to a moving mirror without adversely 
affecting the steering performance, in this case a separate pan and tilt camera must be 
used. This has the additional benefit of allowing the camera to be used separately from 
the projector, for example, by scanning an environment for objects or for activity 
detection. However, this approach does introduce registration and coordination 
problems between the projector display and camera view. 

 
2. Camera Resolution 
The spatial resolution of a camera is dependent upon the resolving power of the lens, 

the Field Of View (FOV) of the lens and the pixel resolution of the image sensor. 
Traditionally, the measure of resolution is described by the cameras resolving power, 
expressed in line pairs per millimetre (lp/mm). This is evaluated as the ability to 
distinguish distinct line patterns from standard test charts, such as that shown in Figure 
A.4 (centre). 

 

   
Figure A.4 (left) A Co-axial projector-camera system [Fujii, Grossberg et al. 2005] (centre) Camera Resolution Test 

Chart [Geoffrion 2005], (right) Bayer Pattern Colour Filter Array [Geoffrion 2005] 

A higher resolution camera (i.e. higher quality lens, smaller lens FOV, or higher pixel 
resolution sensor) will allow detection of objects at greater distances and a generally 
“clearer” picture of the environment. However, large objects may be too big to fit in the 
frame when close to the camera with a smaller lens FOV, and increasing resolution with 
a higher pixel resolution sensor incurs an increased processing cost. For steerable 
projectors a pixel resolution of 640x480 pixels or higher is recommended, while the 
lens FOV required is dependant on the environment dimensions and detection scenario. 

 
3. Video Frame Rates 
Typical video frame rates are either 25fps for PAL video in Europe or 30fps for 

NTSC video in the USA and Canada. The use of cameras capable of video frame rates 
is important in dynamic environments, as it allows applications such as object tracking 
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and interaction detection based on movement. However, the actual frame rate achieved 
is both a function of the exposure length (long exposures for darker environments cause 
low frame-rates) and data transfer time to the computer. Similarly, while it is possible to 
purchase very high resolution machine vision cameras, due to bandwidth restrictions 
most are either only capable of very low frame-rates at full resolution or very low 
resolution at video frame rates. For example, interfaces such as USB 2.0 (480MB/s) and 
IEEE-1394 Firewire 400MB/s can only capture a resolution of 1280x1024 at a 
maximum of 27fps. 

Commercial machine vision cameras present another solution to increase frame rates 
through binning pixels or region of interest limiting.  Binning achieves a higher frame 
rate by allowing a sensor to capture information at full resolution then typically halving 
the resolution transferred to the computer by spatially averaging 4 pixels into one.  
Despite the averaging, this approach still gives a higher quality result than using a lower 
resolution sensor camera. In contrast, region of interest limiting allows a small 
rectangular sub-area of a CMOS camera sensor to be chosen for transfer to the 
computer, again limiting the final image resolution, but increasing the frame rate.  The 
chosen area can also be dynamically shifted around on the sensor, allowing the potential 
for very high speed object tracking using small detection windows within the camera’s 
field of view (e.g. 100fps for a 100x100 window). However, both these solutions 
typically require use of a camera manufacturer’s proprietary software API. 

 
4. Colour or Grayscale 
Photodiodes in camera sensors are not sensitive to colour, only luminance. To enable 

colour sensitivity either one image sensor per colour is used or for single sensor 
cameras a colour filter array (CFA) is placed over the pixel array of the sensor. The 
most common CFA uses the Bayer pattern, which uses twice as many green filters as 
red or blue (as the human eye is more sensitive to green light), as shown in Figure A.4 
(right). When processing the raw information provided by each photodiode, the camera 
analyzes each pixel colour value in a neighbourhood, spatially interpolates to create an 
approximation of the original full-colour image.  However, due to this interpolation 
colour errors can be introduced and the effective image resolution reduced.  

The use of a colour sensor is recommended though, as it allows object detection and 
tracking based on colour (which is a very useful cue, as shown in Chapter 5). 

 
5. Dynamic Range 
Photodiodes are only sensitive to a certain range of luminance, called the dynamic 

range (or contrast range). Anything outside this range is clipped to either pure black or 
pure white. Hence, a camera sensor capable of resolving a higher dynamic range will 
capture more information in an image. One factor affecting the dynamic range is the 
size of the camera sensor, as larger photodiodes can integrate light over a greater area 
and hence, capture greater differences in the total amount of light reaching the sensor.  
Consequently, cameras with small ¼ inch square sensors (such as cheap web cameras) 
will not exhibit as high a dynamic range as digital SLR cameras with one inch square 
sensors. Some commercial CMOS machine vision cameras also allow programmable 
sensitivity, where the camera has a non-linear response to light. Here a camera can be 
set to have a linear response in darker areas (or even a boosted response to increase 
shadow brightness) and a reduced response in highlight areas, allowing detail to be 
captured in a much larger dynamic range.  
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6. Optical Distortion 
All optical imaging systems introduce distortion into a captured image.  The most 

common distortions in lenses are barrel distortion or pincushion distortion (where 
straight lines appear curved) and chromatic aberration (where light of different colours 
converges at different spatial locations). Vignetting is possible in wider angle lenses, 
causing a noticeable darkening of the image towards its corners. Similarly, in colour 
digital imaging systems there is also the possibility a purple fringing of objects against 
high contrast backgrounds which is a combination of chromatic aberration and 
blooming on the camera sensor where the photodiodes are overloaded. 

Many of these distortions can be modelled mathematically and corrections applied to 
the image, as discussed in related work section 2.6.4. Although higher quality optics 
cost more, they generally exhibit less distortion, hence require less calibration, 
modelling and correction. 

 
7. Lens Field of View and Zoom 
The Field Of View (FOV) of a camera lens will partially determine its spatial 

resolution, as described above. A larger FOV from wide-angle lenses allows a system to 
detect and track objects over a greater area, but at the cost of a lower spatial resolution. 

Many cameras have fixed focal length lenses, requiring the lens to be physically 
replaced to change the FOV to fit the requirement of the environment – for example, 
using a wide-angle in small environments or telephoto lens when the steerable projector 
is located far from the objects of interest. One solution is to use a computer controlled 
zoom lens to extend its useful range. Zoom is beneficial as it allows a single lens to be 
used for both wide field of view, low spatial resolution applications (tracking of objects 
close to the camera), and small field of view, high spatial resolution applications 
(tracking objects at great distances). However, although flexible, typical powered zoom 
lenses are much larger and heavier than their fixed-focal length counterparts. 

A.5 Commercial Steerable Projectors  

Although there is a range of thousands of moving display lights, there are currently 
only four commercial steerable projector systems known to be in production. 

These systems are all designed to be used as display lights; hence the majority do not 
include a camera with the system. 

 
Table A.1 Four commercial steerable projectors 

 

Publitec Beammover  
£9,500 for a 4100 Lumen steerable projector. 
(Based on the Sanyo XP-46 projector.) 
Publitec are based in Germany. 
http://www.beamover.com/ 
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High-end Digital Light Range DL.1 to DL.3 
£15,000 for a 4100 Lumen steerable projector. 
(Based on the Sanyo XP-46 projector) 
DL.2 and DL.3 projectors include an attached camera  
(768x494 pixel resolution with powered focus and zoom) 
High-end are based in the USA. 
http://www.highend.com/products/digital_lighting/ 

 

High-end “Orbital One” 
$14,000 Steerable Mirror Head 
A “bolt-on” moving mirror attachment for projectors. 
http://www.highend.com/products/digital_lighting/orbitalhead.asp 

 

Active Vision System AV-4 
Based on a 3000 Lumen projector. 
Active Vision are based in Japan. 
http://www.activevision.jp/english/index.html 

A.6 Construction of Steerable Projector Systems 

An explicit list of goals and constraints for steerable projector systems was 
developed, based on the dimensions of the lab environment described in section 6.3 and 
the important characteristics identified in A2-A4: 

 
• Fixed mounting location with field of view at least equivalent to a hemisphere 

around the steerable projector, able to project an interface on any surface 
specified in the area’s volume.   

• Fast positioning system, able to move a projected interface 180° in both pan and 
tilt axes in 1 second, or less. 

• Stable positioning system 
• Angular positioning accuracy of 0.2° or higher. 
• Accurately and repeatably position projected interfaces to within 1cm of 

specified location in the area, at a range of 2.8m (the average distance from the 
centre of the area to the walls). 

• Able to project a focussed image to all locations in the area, visible under 
normal room illumination levels. 

• Able to capture colour images of the projected image at a minimum of 640x480 
pixel resolution and video frame rates. 

• Cost under £10,000. 
 
These goals are a combination of hardware and software characteristics, which when 

combined were hoped would create a viable steerable projector system. 
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A.7 Steerable Projector Hardware 

To achieve the goal, steerable projector components meeting the criteria above were 
specified and purchased. As part of the specification process, we used the characteristics 
identified in A2-A4: 

A.7.1 Projector Selection 

We required the projectors to be visible with typical office fluorescent lighting.  A 
average brightness around 3000 Lumens was found to work well in everyday room 
environments by related work [Butz, Schneider et al. 2004; Ehnes, Hirota et al. 2004], 
however, due to the ambient light levels that would be encountered, only projectors with 
a contrast of 500:1 or greater were short-listed.  

XGA projectors (1024x768 pixels) were selected as they are the most common 
resolution for business graphics and available at 3000 Lumens.  Higher resolution 
projectors are much more expensive, and lower end models generally exhibit less than 
2000 Lumens brightness. 

Computer controlled focus and zoom capability was specified as a requirement due to 
the limited depth distance in which a projector image appears in focus. This allows 
projection on varying sizes of objects and at different distances. 

The lens location was a major consideration, as it impacts the selection of the type of 
pan and tilt yoke for the moving head steerable projector system. There was only one 
projector with a centre lens and the required brightness and resolution specifications - 
the Sanyo PLC-XP45 projector.  Whereas the choice of projectors with the lens offset 
was much greater, hence these were short-listed. 

For moving head steerable projectors the projector weight is a major concern, as pan 
and tilt platforms have a limited maximum mass they can rotate. Current LCD projector 
optical designs trade-off between brightness and weight, however, DLP technology 
enables a smaller optical path, hence bright projectors in a small, light form factor. 

The cost of a projector was limited to a maximum of £4,000 to allow for the purchase 
of other items such as the pan and tilt yoke and cabling. 

At the time of purchase, two projectors met the specifications defined above. These 
specifications are summarised in Table A.2. 

 
Table A.2 Projector Specifications 

Projector LCD / 
DLP 

Brightness 
(Lumens) 

Contrast Resolution Powered 
Zoom 
and  
Focus 

Weight 
(kg) 

Cost 

NEC 
MT1065 

LCD 3200 800:1 XGA Yes 5.9 £3,500 

Casio XJ-
450   

DLP 2800 1000:1 XGA Yes 2.7 £3,000 

  
Both projectors were eventually purchased, with the heavier NEC MT1065 used for a 

moving mirror steerable projector and the Casio XJ-450 used for a moving head design.  
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A.7.2 Steering Mechanism Selection 

Both single and dual fork yokes (as shown in Figure A.5) have built in stepper motors 
to pan and tilt the moving head. The yokes are capable of absolute positioning via the 
DMX control protocol. The centre of rotation with a dual fork yoke is the centre of the 
yoke arms, whereas for the single arm yoke it is in-line with the central bearing. 
Borkowski et al. provide construction details for a dual fork pan and tilt mounting with 
an offset pan rotation location [Borkowski 2006], allowing offset lens projectors to be 
used. However, this requires workshop facilities and Borkowski admits with hindsight 
he would recommend purchasing off-the-shelf rather than building himself. 

In contrast, while the single arm moving head solution allows offset lens projectors to 
be mounted, the single mounting point places a greater mechanical strain on the arm and 
tilt stepper motor. Consequently, the projector must be kept as light as possible. 

    
Figure A.5 (left) Futurelight PHS150 Single arm Yoke, (right) Compulite “Luna” dual fork Yoke 

The specifications of the single-arm Futurelight PHS-150 (purchased to be used with 
the Casio XJ-450 projector) are summarised in Table A.3. 

 
Table A.3 Yoke Selection Specifications 

Yoke Field of 
View/ 
Coverage 

Rotation 
Speed 

Control 
Resolution 

Angular 
Resolution 

Size,  
Weight 

Cost 

Future-light 
PHS-150 

540° Pan 
265° Tilt 

Not 
published 

16-bit  0.008° Pan 
0.004° Tilt 

0.051m3 

13kg 
£570 

 

A.7.3 Camera Selection 

Industrial machine vision cameras offer a good performance and high quality output 
due to large sensors which gather a lot of light and high quality lenses with low optical 
distortion. For the moving head steerable projector we selected a PixeLink A742 colour 
CMOS camera with 1280x1024 pixel resolution, capable of 27 frames per second (fps) 
at full resolution and up to 104fps with a 640x480 region of interest enabled. The 
camera uses firewire for data transfer and has a fixed focal-length 12mm C-Mount lens 
with 40x30° field of view (FOV). For the demonstration applications in this work, the 
camera is used near its maximum aperture (f1.8) with the focus fixed at 2.5m. This 
gives an acceptable focus between 1.5m and 5m from the camera, while typically 
allowing exposure lengths under 40ms with the office lighting. 
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Additionally, a Logitech Sphere pan and tilt web camera was selected for use with a 
moving mirror system. This has 320x240 pixel resolution with a built-in lens, and is 
capable of 30fps. The computer controlled mechanical pan and tilt design has a 180° 
pan Field Of View (FOV) and 60° tilt FOV. No aperture or focus control is available. 

A.8 Moving Head Steerable Projector Construction 

Following purchase of the steerable projector hardware components, there were six 
steps required to create an operational moving-head steerable projector system: 

1. Remove disco light head from the pan and tilt yoke 
2. Remove the light control circuitry and wiring from the yoke arm and base 
3. Re-wire the yoke with power, data and camera cables 
4. Fabricate a bracket to attach the Projector and camera to the yoke 
5. Attach the bracket and connect the cabling. 
6. Mount the whole system in the space where it is intended to be used. 
 
Re-wiring the Yoke 

 
Figure A.6 The pan and tilt yoke uncovered 

When purchased, the yoke had control wiring up from the base, through the arm, to 
the head for controlling the disco light lamp, colour filters and motors. 

All control wiring for the head was removed with the exception of five wires, retained 
for controlling the projector.  Power and data cables for the projector and the camera 
firewire cable were cut then threaded through the yoke body and arm in the place of the 
removed wiring. The cut cables were then re-soldered inside the yoke base. As there are 
no slip-rings for transferring the power and data through the rotating bearings, the 
cables pass through central holes in the bearings to the projector attachment point. 
Consequently, as the cables will twist as the yoke pans and tilts, a loose loop of each 
cable was left in the base of the unit to reduce the strain on large movements (i.e. 
winding-up). An overview of the steerable projector cabling can be seen in Figure A.7 
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Figure A.7 Steerable Projector Cabling Layout 

Projector Bracket Manufacture 
The original pan and tilt yoke had the moving lamp head attached by five machine 

screws.  When this was removed, a bracket was required to be fabricated to attach the 
projector in place of the light. Firstly a paper template of the underside of the projector 
was created, which had the projector mounting screw holes and cooling air intake holes 
marked.  Then 3mm thick aluminium sheet was purchased and cut to size based on the 
template.  Small holes were drilled in the bracket to aid airflow to the ventilation holes 
on the underside of the projector.  The bracket side was then folded to an exact 90° 
angle using a metal forming machine in the Lancaster University Engineering 
Department. 

Finally the bracket was attached to the pan and tilt yoke and the projector mounted to 
the bracket in its upside down ceiling project mode.  An extra strip of aluminium was 
added running around and below the projector on which to mount the camera, and give 
the bracket more strength. 

During mounted trials of the bracket and projector, the bracket appeared more 
flexible along the 90° fold line than was envisioned, so a second bracket was designed 
with a back plate to ensure the length of the bracket stayed at a 90° angle.  The rear lip 
of the bracket was further turned up to provide increased stiffness and reduce the 
possibility of the projector weight bending the bracket down along its length. 

This redesigned bracket performs better, however, the projector still appears to 
“droop” slightly, with the side of the projector furthest from the yoke attachment point a 
couple of millimetres below the attachment side.  In practice, the slightly rotated 
projector image this causes is not particularly visible and this rotation does not affect 
object detection or projection accuracy due to the rigidly attached camera.  A dual fork 
system would remove this problem altogether by supporting both ends of the projector 
equally. 
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Figure A.8 (left) The fabricated projector bracket attached to the yoke, (centre) FLUIDUM room projector mounting direct 

to concrete [Butz, Schneider et al. 2004], (right)  Wooden Bracing of the four threaded rods from which the projector is 

hung 

Installation Site Constraints 
As the projector was required to have a full 360 degree view of the lab environment, 

ceiling mounting in the centre of the area was the best mounting location. Two 
mounting possibilities for the Steerable Projector system presented themselves: 

 
1. Mount the system directly on the concrete ceiling - which would be the most 

stable option,  
2. Mount the system hung lower, so that only the moving arm hangs below the 

false ceiling. 
 
The first option (while preferable for stability) would have caused the projector to be 

above the false ceiling, requiring a very large hole be cut in the ceiling to allow the 
projector clear line of site to the walls, so it was decided to mount with the body of the 
Pan and Tilt yoke just above the false ceiling, and cut a small neat hole in the tiles for 
the arm to hang down. 

Typical mounting methods for pipes and ducting above false ceilings relies on 
attachments to threaded rods hanging down from the concrete ceiling, attached with 
shield anchors into the concrete, into which the threaded rod screws. This mounting 
method was also chosen for the steerable projector, with four rods – one at each corner 
of the pan/tilt base. The completed and mounted steerable projector can be seen in 
Figure A.9 (left). 

 
Bracing 
The projector and yoke are a dynamic system when the projector is moving, with 

projector inertia exerting a lot of force via the arm and stepper motor on the mountings. 
The steerable projector system approximates a heavy object on the end of long thin 
rods, acting similar to a pendulum.  As the projector was mounted horizontally in 
landscape mode, when moving in the Pan axis a large torsional force is applied to the 
mountings due to a large portion of the projector weight being off-centre. Replacing the 
rods with a metal box-like structure with diagonal bracing struts would make the 
mounting more stable, but would require a commercial fabrication (most likely at great 
expense). Consequently, an attempt was made to brace the whole structure with wood to 
provide more stability and reduce movement of the mounting structure in response to 
projector movement, as shown in Figure A.8 (right). 

A.8.1 Moving Head Control 

The pan and tilt unit is controlled with the DMX512/1990 protocol.  Up to 512 8-bit 
channels can be controlled from one DMX interface, or multiple channels can be 
combined for higher bit accuracy. 

An RS-232 serial to DMX interface converter was purchased from Milford 
Instruments, which accepts two sequential byte values from the PC’s serial port (i.e. 
channel number 0 to 255, channel value 0 to 255) for conversion to DMX. Data is sent 
over DMX using RS-485 signalling and cabling. DMX is transmitted serially at 
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250kbps and is grouped into packets of up to 513 bytes. A full packet takes 
approximately 23ms to send, corresponding to a 44Hz update rate. The purchased yoke 
has four 8-bit channels for controlling the pan and tilt, with one 8-bit channel for 
movement speed control.  The positioning channels are split into high and low byte 
values, and re-combined at yoke to form an absolute 16-bit position value.  

The DMX interface is a uni-directional control interface, hence there is no accurate 
position feedback or confirmation of commanded actions.  This open-loop control 
system affects how software is written on the controlling PC, as it is not possible to 
simply issue a move command and assume the pan and tilt unit has moved 
instantaneously to the commanded position.  Instead either an incremental approach 
must be made, with a timed control loop continuously sending small movement 
increments to try and reduce the commanded movement to physical position disparity, 
or the projector motion simulated in software using equations of motion, as discussed in 
section 6.2.3. 

It would be very useful to have exact position feedback when performing large 
manoeuvres of the unit, during high speed manoeuvring or for better performance when 
tracking objects with the camera. This can be accomplished by adding rotary optical 
position encoders to the stepper motor spindles.  

. 

   
Figure A.9 (left) The operational moving head steerable projector system, (centre) The tripod-mounted moving mirror 

steerable projector system, (right) Close-up of operational moving mirror yoke and pan-tilt camera 

A.9 Moving Mirror Steerable Projector Construction 

A moving mirror steerable projector has a more limited optical design than moving 
head projectors, with a smaller Field Of View (FOV) and increased optical distortion 
caused by rotation in the plane of the image when the mirror is panned. 

The closer to the projector lens, the smaller the mirror can be while still reflecting a 
full image. However, the closer to the projector lens the smaller the field of view as the 
projector itself blocks large areas that the mirror can point to. Hence, a balance must be 
found between mirror size, distance to projector and attainable field of view.  

The motion mechanism used to move the mirror is required to rotate the mirror in the 
two dimensions of pan and tilt independently. Consequently, systems similar to the 
design of the dual fork yoke (above) are often used. By mounting a mirror inside the 
yoke, these designs typically reach 180° pan and 60° tilt FOV. 

A first surface mirror (with silvering on the front, glass on the rear) can also be used 
for less distortion and to avoid the ghost images seen when using ordinary rear-surface 
mirrors. However, the front surfaces are extremely fragile as any contact with other 
objects can easily scratch the silvering (even when cleaning with a lens cloth). 
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The construction of the moving mirror steerable projector required seven steps: 
 
1. Fabricate a bracket to attach the mirror pan and tilt yoke to the projector. 
2. Fabricate a dual fork pan and tilt yoke incorporating pan and tilt servos. 
3. Cut first-surface mirror to size, to allow pan rotation without fouling. 
4. Mount mirror onto yoke. 
5. Connect the projector, servo control and USB camera cables, as shown in Figure 

A.10. 
6. Mount camera on projector. 
7. Mount the whole system in the space where it is intended to be used. 
 
The constructed system was mounted on a display light tripod, with the projector 

1.8m from the ground, as seen in Figure A.9 (centre). This allows some portability, as 
the tripod can be easily moved around in the environment.  

 

Controlling PC

Servo
Controller
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Projector
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Servos

NEC
MT-1065

Projector

Logitech
Sphere

Camera

RS-232
Serial
Cable

Servo
Cable

Analogue VGA cable, 60Hz XGA Image

USB2.0 cable, 30Hz 320x240 Image

 
Figure A.10 Moving Mirror Steerable Projector Cabling 

A.10 Characterisation of Moving Head Mechanism 

The basic specifications of the moving head steerable projector components were 
known from published literature.  However, following construction, the mechanical 
performance of the combined system was unknown. We use the moving head steerable 
projector for the experiments and demonstration applications presented in this thesis, 
hence, the steering mechanism and projector characteristics (A2-A3) are evaluated. 

To characterise the moving head system a series of six experiments was performed to 
evaluate movement speed, field of view, positioning accuracy, positioning repeatability, 
positional stability and mechanism acceleration response. 

A.10.1 Design 

The Movement Speed evaluation consists of two experiments. 
The yoke purchased has a possible 220 rotational speed settings, however, no 

published information could be found on the corresponding angular speed of rotation.  
Five separate maximum speed 360° rotations in the Pan axis and five separate 180° 
rotations in the Tilt axis were timed and mean averaged.  
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This experiment was repeated, but with the yoke set to minimum speed.  The five 
recorded times were again mean averaged. 

The addressable Field of View (FOV) was measured by moving the projector at 
minimum speed through five separate 360° rotations in the Pan axis and five separate 
180° rotations in the Tilt axis, while measuring the difference in DMX control values.   

The formula used to calculate addressable field of view is: 
 

moved Angle* 
 valuescontrol DMXin  difference Measured

range control DMX decimal Total
)( ⎟

⎠

⎞
⎜
⎝

⎛=°RangeFOV  (A.1) 

 
The Positioning Accuracy of the yoke was measured as angular resolution, 

calculated using the angular field of view measurements from above divided by the 
addressable DMX range. 

To measure Positioning Repeatability three separate pan and tilt values were 
chosen, equivalent to aiming the projector at the centre of the North, East and South 
walls in the Experimental Systems Lab.  A white cross was projected in the centre of the 
projectors image and lines drawn on the three walls equivalent to the cross. 

The projector was then moved five times  90° in a random pan direction and tilted 
180° down (could not tilt up, as the yoke cannot physically move this far), then returned 
to the original values aimed at the centre of the wall. 

The Positional Stability was measured as the time it took for the whole steerable 
projector image to cease moving following arrival of the yoke at the commanded 
position after a 180° rotation (chosen to allow the yoke time to reach full speed). Ideally 
this figure would be close to zero, which would indicate a stable system with stiff 
mountings. 

Five 180° pans were performed at the yoke’s slowest movement speed, and the time 
taken for movement to cease on arrival at a pre-marked location was recorded. 
Similarly, five 180° tilt movements were performed at the yoke’s slowest speed. 

The Mechanism Acceleration Response is difficult to measure without position 
feedback or mounting accelerometers on the hardware. Similarly, inertia is difficult to 
calculate, due to the difficulties integrating the masses of the projector, bracket and arm 
in three dimensions. Hence, the projector movement and structural response was 
observed visually during 90°, 180° and 360° pan rotations and 180° tilt rotation for the 
characterisations above. 

A.10.2 Procedure  

For measurements of 90°, 180° or 360° rotations around the Pan axis, the following 
procedure was used: 

 
1. The projector was used to project a large cross 1 pixel wide in the centre of its 

display. 
2. The projector was rotated until horizontal, and perpendicular to centre of the 

South wall for 180 and 360° movements, or East wall for 90° moves. 
3. The initial DMX setting was noted 
4. The wall was marked in pencil with a line at the location of the vertical line of 

the projected cross. 
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5. A destination line was drawn in the centre of another wall at the required 
rotation. No mark was required for 360° movements. 

6. The projector was rotated until the projected line was aligned with the 
destination mark 

7. The final DMX setting was noted. 
 

For measurements of 180° rotations around the Tilt axis, the following procedure was 
used: 

 
1. The projector was used to project a large cross 1 pixel wide in the centre of its 

display. 
2. The projector was rotated until horizontal, and perpendicular to the South wall. 
3. The initial DMX setting was noted. 
4. The height from the ceiling to the horizontal line of the cross was measured. 
5. The North wall opposite was marked with a pencil line at the same height below 

the ceiling (we assume the ceiling is horizontal). 
6. The projector was rotated until it had moved though a full 180° and the 

projected line was aligned with the mark on the North wall. 
7. The final DMX setting was noted. 

A.10.3 Results  

Table A.4 Moving Head Steerable Projector Characterisation 

Characteristic Result 
Minimum Movement Speed 19°/s Pan 

13°/s Tilt 
Maximum Movement  Speed 180°/s Pan 

180°/s Tilt 
Field of View 539.5° Pan 

253° Tilt 
Positioning Accuracy  
(Angular Resolution) 

0.016° Pan 
0.004° Tilt 

Positioning Repeatability <1mm error 
at 2.84m 

Positional Stability For Pan 6s at min speed 
5s at mid-speed 
5s at max speed 

Positional Stability For Tilt <1s at min speed 
<1s at mid-speed 
1s at max speed 

A.10.4 Discussion 

 
Field of View / Coverage 
Although the published FOV values were 540° Pan and 265° Tilt, the mean average 

of these calculated values was: 539.5° and 253.0° respectively (to the nearest 0.5°), as 
can be seen in Table A.4. 
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Positioning Accuracy  
The yoke control system maps a 0° rotation to a 16-bit DMX control value of 0 high 

byte, 0 low byte.  In the pan axis the measured 539.5° FOV is mapped to values of 255 
high byte, 255 low byte, while in the tilt axis it is the measured 253.0° mapped to values 
of 255 high byte, 255 low byte. 

While performing this characterisation of the positioning accuracy, it was discovered 
that, in reality, the claimed 16-bit Pan positioning accuracy of the yoke only resolved 
physically to 15-bits. On the low byte values, a decimal value greater than 131 overlaps 
into the next high byte range.  For example, the position of the yoke effectively moves 
from 0,131 to 1,0 instead of 0,132.  

 
Positional Stability 
As shown in Table A.4, the slowest pan speed this was found to be an average of 6 

seconds, due to the projector inertia causing oscillation in the steering arm and 
mountings. However, interestingly, the time required for stabilisation decreased if the 
yoke was panned faster. This suggests there may be either some structural resonance 
created with the slower speed pans, or the pan stepper motor is having trouble with 
overshoot and is hunting for the correct position. However, for tilt there was little 
oscillation at any movement speed. In fact, at the slowest and half tilt speeds the 
stabilisation time could not be accurately measured as it was less than a second. 

  
Mechanism Acceleration, Inertia and Response Time 
By subjective observation of the system, the current mounting of the projector 

appears to exhibit high inertia, as there is a large structural response exhibited to start 
and stop movement events in pan. This is reflected in the positional stability results as 
the long time taken for the projector to stop oscillating following a pan movement. 

A.11 Characterisation of Projector 

Although the published specifications give most relevant detail about a model of 
projector, it is possible for individual projectors to vary due to manufacturing 
tolerances. Consequently the purchased projector was characterised. 

 
Useful zoom range 
Printed text typically has a resolution between 150 and 600 dots per inch (dpi), 

whereas a computer monitor is around 72 dpi.  With a 1024x768 pixel resolution 
projector, to project a 72dpi image the final image size would be a tiny 14.7 by 10.7 
inch image.  However, projectors are used primarily for their ability to display large 
images, rather than high resolution images. 

Acceptable resolution depends on viewing distance, with displays viewed from larger 
distances subtending a smaller angle in the eye, hence subjectively appearing higher 
resolution than if the same display was viewed at close range.  Ways to boost resolution 
of projected displays (apart from using a higher resolution projector) by using multiple 
superimposed projected displays and super-resolution techniques are demonstrated by 
Majumder and Welch [Majumder and Welch 2001]. 
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The Casio XJ-450 projector has power zoom range settings of 0-40.  When projecting 
perpendicular to a display surface at a distance of 2.89m, zoom settings above 20 
produced images larger than 1.3 by 1m, but at low resolution with pixel sizes greater 
than 1mm2.  This pixelation was very visible and occasionally distracting when viewed 
from 5m distance. As the majority of displays would be viewed from less than 5m 
distance in the demonstrations in Chapter 7, it was decided to limit the projector to 
zoom settings of 20 and below for interactive use. This provides a reasonable balance in 
the trade-off of keeping projected pixel sizes as small as possible (hence, display dpi as 
high as possible) with maximising projection area. 

 
 
Display Size versus Distance 
It is useful to know what size and resolution can be expected from a display at what 

distance, as this will determine what size objects can be projected on. Two zoom 
settings were measured – zoom 0 (smallest image possible) and zoom 20 (largest 
image).  The width and height of an image displayed on a planar surface perpendicular 
to the projector was measured at a number of distances for both zoom settings. The 
results shown in Figure A.11 can be used in our Cooperative Augmentation architecture 
to calculate which objects are in the projector FOV, as discussed in section 6.3. 
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Figure A.11 (left) Image Size versus Distance at Zoom 0, (right) Image Size versus Distance at Zoom 20 (mid-zoom) 

Image Resolution at the centre of a display perpendicular to the projector was also 
measured at varying distances for both the zoom settings, as shown in Figure A.12. 
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Figure A.12 (left) Display resolution versus distance to projection surface at Zoom 0, (right) Display resolution versus 

distance to projection surface at Zoom 20 
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Focus versus Distance 
Most video projectors have a good depth of field. It was found empirically that the 

Casio XJ-450 has an approximate 1m depth of field, within which an acceptably 
focussed display will appear.   

For display on the walls of the eastern end of the experimental systems lab the focus 
can be set to a distance of 3m and it will appear acceptably in focus everywhere except 
in the very corners of the area.  However, for applications which are required to track 
moving objects or project on very oblique surfaces in front of the walls, dynamic 
focussing is required.  

The projector focus settings were measured, again at the two zoom settings (zoom 0 
and 20). The results shown in Figure A.13 are used in our Cooperative Augmentation 
architecture for dynamic focus control, as discussed in section 6.3.2. 
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Figure A.13 (left) Focus steps versus distance to display surface at Zoom 0, (right) Focus steps versus distance to 

display surface at Zoom 20 

A.12 Steerable Projector System Comparison 

The constructed moving head steerable projector system was compared to other 
steerable projector-camera systems known to exist [Pinhanez 2001; Yang, Gotz et al. 
2001; Borkowski, Riff et al. 2003; Butz, Schneider et al. 2004; Ehnes, Hirota et al. 
2004]. However, many steerable projector systems do not have published performance 
measurements; hence characteristics have only been compared where there is data 
available on a minimum of two systems. As can be seen in comparison Table A.5 to 
Table A.7, the three aspects of steering mechanism, projector and camera were all 
compared. 

For the steering mechanism, our pan and tilt yoke compares favourably with other 
systems.  The greater pan FOV has benefits, as it potentially allows object tracking 
beyond the 360° position without the requirement for “unwinding”.  However, it is this 
large range combined with the reduced 15-bit Pan positioning accuracy (discussed in 
A.9.5) which gives a much lower pan angular resolution than the FLUIDUM and Hirose 
Lab systems. 
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Table A.5 Steerable Projector Steering Mechanism Comparison 

 Lancaster IBM 
FLUIDUM, 
Saarland + 
Munich 

INRIA, 
Grenoble 

Hirose Lab, 
Japan 

PixelFlex, 
UNC  

Steering  
Method 

Moving 
Head 

Moving 
Mirror Moving Head Moving 

Head Moving Head Moving 
Mirror 

Construction DIY DIY 
Purchased 
Publitec 
Beammover 

DIY 
Purchased 
Active Vision 
AV-4 

DIY 

Field of View 540° Pan 
265° Tilt 

230° Pan 
50° Tilt 

333° Pan 
270° Tilt 

354° Pan 
90° Tilt 

360° Pan 
240° Tilt 

Not 
published 

Maximum  
Speed 

180°/s Pan 
180°/s Tilt 

Not 
published Not published 146°/s Pan 

80°/s Tilt 
80°/s Pan 
80°/s Tilt 

Not 
published 

Positioning 
Accuracy 
(Angular 
Resolution) 

0.016° Pan 
0.004° Tilt 

Not 
published 

0.005° Pan 
0.004° Tilt 

0.11° Pan 
0.18° Tilt 

0.01° Pan 
0.01° Tilt 

Not 
published 

Mounting Fixed, 
Ceiling 

Portable or 
Fixed Fixed, Ceiling Fixed, 

Ceiling 
Portable, 
Desktop 

Fixed, 
Ceiling 

Size (Volume) 0.051m3 Not 
published Not published Not 

published 0.13 m3 Not 
published 

Weight 13kg Not 
published Not published Not 

published 32kg Not 
published 

 
On paper the INRIA steering system does not appear particularly impressive, with its 

relatively low speed and effective 12-bit pan and 9-bit tilt positioning accuracy. 
However, the applications demonstrated by Borkowski et al. [Borkowski 2006] and 
associated videos show it to be a very capable system.  This suggests that a viable 
steerable mechanism need not be faster or more accurate than the INRIA system when 
used for relatively close range projection applications. 

The Hirose Lab AV-4 system was classified as portable as Ehnes et al. demonstrated 
applications with the steerable projector sat on the desktop [Ehnes, Hirota et al. 2004], 
despite this, their system is more than twice as heavy as the Lancaster system, so 
portability is subjective in this case. 

 
Table A.6 Steerable Projector Video Projector Comparison 

 Lancaster IBM 
FLUIDUM, 
Saarland + 
Munich 

INRIA, 
Grenoble 

Hirose 
Lab, 
Japan 

PixelFlex, 
UNC  

Projector Casio XJ-450 Sharp 
XG-P10 

Sanyo PLC-
XP45 

Epson 
Powerlite 
730c 

Not 
published 

Proxima 
DP6850 

Brightness 2800 3000 3300 2000  3000 1500 

Contrast 1000:1 250:1 800:1 400:1 Not 
published 100:1 

Resolution XGA XGA XGA XGA XGA XGA 

Weight 2.4kg 7.6kg 8.4kg 2.0kg Not 
published 6.0kg 

Auto Focus 
and Zoom Yes Yes Yes No Yes Yes 

 
It can be seen in Table A.6 that the projector brightness, contrast and weight in 

steerable systems varies considerably. All systems have been built and installed in 
relatively small room-sized environments with (theoretically) controllable or limited 
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natural light. Consequently the INRIA and PixelFlex systems should not be 
handicapped at all by their lower brightness. In contrast, while the Lancaster projector is 
suitable for use, it could still benefit from higher brightness, as sunny days cause the 
projector display to be washed-out and difficult to read in the lab environment. 

However, increasing brightness would increase projector weight and require a new 
pan and tilt yoke, or a change to a Moving Mirror steering mechanism. 

 
When comparing the camera characteristics in Table A.7, it can be seen that while the 

Lancaster camera system offers a higher resolution to other systems, it is limited to a 
maximum frame rate of 27fps.  All other systems are capable of 30fps with exception of 
the INRIA system which uses a 25fps PAL camera. Although the FLUIDUM camera is 
capable of very high resolution still images, it is handicapped for dynamic applications 
by the low 320x240 video resolution. However, this low resolution is offset somewhat 
by the 3x optical zoom present on the camera, which allows dynamic zooming to 
achieve reasonable video performance for small field of view applications (such as 
projected button interaction detection). 

The PixelFlex camera was only used as a room camera, with no steerability.  
However, it was positioned so that it had a full view of the possible projection cones of 
all the steerable projectors in the multi-projector array [Yang, Gotz et al. 2001]. 

 
Table A.7 Steerable Projector Camera Comparison 

 Lancaster IBM 
FLUIDUM, 
Saarland + 
Munich 

INRIA, 
Grenoble 

Hirose 
Lab, 
Japan 

PixelFlex, 
UNC North 
Carolina 

Camera PixeLink 
A742 

Sony EVI-
D100 

Canon S40 
Digital Camera 

Not 
published 

Sony 
DFW-
VL500 

Not 
published 

Resolution 1280x1024 768x494 
NTSC 4 Megapixel 720x576 

PAL 640x480 720x480 
NTSC 

Zoom No Yes Yes Yes Yes No 
Video 
Capable Max 27fps Yes Only at 

320x240 Yes Yes Yes 

Steerable 
Projector 
Mounted 

Yes No, pan and 
tilt camera Yes Yes Yes No 

Used with 
Room 
Cameras 

No 
Yes (User 
following 
displays) 

No Yes No This was a 
room camera 

 
A zoom capability on the Lancaster camera would also increase flexibility, allowing 

both a close-up view for interaction detection with projected images, and a large FOV 
for tracking of large objects in the lab area.  Currently the projector image only covers a 
small portion of the whole image, further reducing the useable resolution of the image. 

 

A.13 Conclusion 

Two steerable projector-camera systems were successfully constructed – a moving 
mirror and a moving head system. In this chapter we identified characteristics important 
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to consider when purchasing or constructing a steerable projector-camera system. 
Finally, we evaluated the characteristics of the steering mechanism and projector in the 
constructed moving head system. This hardware and steerable system is used for the 
experiments and demonstration applications presented in this thesis. 
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Appendix B Smart Object Programming 
     Examples 

The state machine model used in the smart object enables a developer to define both 
relationships between objects and the states of objects in which events should occur.  
The three examples below illustrate the consideration required when programming the 
state machine to use object input modalities defined in section 6.2.4 for interaction:  

B.1 Rough Handling Detection 

Objects in a warehouse use embedded accelerometers to detect rough handling and 
warn employees of possible damage. If rough handling is detected they request a 
projection on their surfaces asking an employee to check them for damage. In this case 
objects can use either the 1st input modality (location and orientation) or 4th modality 
(other physical manipulation of object) to determine when to project the message. The 
programmer must decide here whether to use camera based location information which 
may less accurately detect rough handling and is only available when the object is 
visible, or embedded sensors such as accelerometers which may be more accurate at 
detecting rough handling, but consume more power. 

Figure B.1 shows a diagrammatical representation of this program, designed using 4 
states, an embedded accelerometer to detect rough handling and 2 projections. An 
employee is required to confirm they have seen the warning message and checked the 
object for damage in the second projection by clicking an interactive button. The typical 
state transition sequence is shown by the arrows; however, the state can change to 
“During Rough Handling” at any point as the limits are set to include all possible values 
for the button and projection variables. To test for state transition, in this application the 
result of all sensor operations are combined using boolean AND. 
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Start
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None

Accelerometer Variance 0 800

Button Equals 0 0

Projection Equals 0 0

During Rough Handling
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Accelerometer Variance 801 1000

Button Equals 0 1
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Employee Checks and Confirms

Remove Projections

Rough Handling Stops

Request “Check Me” Projection #2 
With Interactive Confirmation Button

State

Action

Sensor Operation Min Max

State

Action

Sensor Operation Min Max

State

Action

Sensor Operation Min Max

Accelerometer Variance 0 800

Button Equals 0 0

Projection Equals 1 1

State

Action

Sensor Operation Min Max

Accelerometer Variance 0 800

Button Equals 1 1

Projection Equals 2 2

 
Figure B.1 State Machine Program for Detecting Rough Handling of a smart object 

B.2 Smart Book 

A smart book object allows mixing of traditional fixed printed media with dynamic 
projected content augmentations at runtime. The book itself is articulated and can be 
physically opened. Either force sensors or simple binary contact sensors (modelled as a 
switch) on each page sense when it is opened and which page is open.  In this case, 
when the book is opened, it changes in both appearance and geometry. Tracking while 
object geometries change is a significant challenge for traditional vision based detection 
systems. However, using the 2nd input modality (manipulating the geometry) the object 
detects each page opening event and automatically updates the projector-camera system 
with a new appearance and geometry, so that tracking can continue uninterrupted.  

Figure B.2 shows a diagrammatical representation of this simple program. In this case 
force sensors are used on each page, and a simple boolean AND combines the sensor 
information and decides which state to enter. For a book the typical state transitions are 
either being opened or closed at a random page, or flipping forwards or backwards 
through the pages. These typical transitions are again shown by the arrows. 

 This type of smart book program is typical of many other objects which either have a 
single sensor, or large number of the same sensor. For example, the smart cup 
[Gellersen, Beigl et al. 1999] contains a single temperature sensor. If we want to display 
this temperature on the cup itself we could use a similar program, where each value 
range of temperature (for example, each degree) is a separate state. 
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Start
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None

Force Sensor1 Mean 1 100

Force Sensor2 Mean 1 100

Force Sensor3 Mean 1 100
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Request Projection Page #1

State

Action
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Action
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Force Sensor n Mean 1 100
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Force Sensor3 Mean 1 100

Force Sensor n Mean 1 100

Book Open Page 2

Request Projection Page #2

State

Action

Sensor Operation Min Max

Force Sensor1 Mean 1 100

Force Sensor2 Mean 0 0.999
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Force Sensor n Mean 1 100

Book Open Page 3

Request Projection Page #3

State

Action

Sensor Operation Min Max

Force Sensor1 Mean 1 100

Force Sensor2 Mean 1 100

Force Sensor3 Mean 0 0.999

Force Sensor n Mean 1 100

Book Open Page n

Request Projection Page #n

State

Action

Sensor Operation Min Max

Force Sensor1 Mean 1 100

Force Sensor2 Mean 1 100

Force Sensor3 Mean 1 100

Force Sensor n Mean 0 0.999

 
Figure B.2 State Machine Program for Articulated Smart Book with Force Sensors on Each Page 

 

B.3 Smart Furniture Assembly 

The smart furniture described in section 2.2.2 has embedded sensing to guide the 
purchaser with the task of assembly[Antifakos, Michahelles et al. 2002; Holmquist, 
Gellersen et al. 2004]. For this example we replace the signalling LEDs with projected 
displays to notify the user of the next task in the assembly sequence. A message about 
how to assemble each piece is projected in the right order when they are moved together 
into the same location. Binary contact sensors (modelled as a switch) detect when each 
part is correctly assembled. In this example each object uses the 1st (location and 
orientation) 4th (other sensors on an object) and 7th input modalities (requesting 
information about other objects) to calculate its location and orientation relative to other 
objects and determine with its sensors whether it is correctly assembled. Relative 
location detection is possible as all object share the common world coordinate system. 

The objects request projections to guide the user in sequential assembly based on the 
pre-defined series of states shown in Figure B.3. The program requires that the later 
assembled objects have explicit knowledge of the identity and sensor values of earlier 
objects, to ensure correct assembly sequence by monitoring their sensors. For example, 
object 3 can monitor the switch states on object 1 and 2 to know when they are 
assembled and hence, when to project its display. However, in constrained scenarios 
such as this the identity and capabilities of each part are fixed and known a-priori by a 
designer; hence this requirement is not a limitation. 

In this case our furniture consists of three separate pieces which need to be assembled 
in sequential order. These separate pieces are each a smart object and use a simple 
boolean AND to combine the sensor information when deciding which state to enter. 
The typical state transitions are again shown by the arrows. 

 



A
PP

EN
D

IC
ES

 

 2
07

N
ot

 A
ss

em
bl

ed
, O

bj
ec

t 1
&2

 N
ot

 in
 P

ro
xi

m
ity

R
eq

ue
st

 P
ro

je
ct

io
n 

#1
: 

A
rro

w
 to

w
ar

d 
O

bj
ec

t 1

St
at

e

A
ct

io
n

Se
ns

or
O

pe
ra

tio
n

M
in

M
ax

N
ot

 A
ss

em
bl

ed
, O

bj
ec

t 1
&2

 in
 P

ro
xi

m
ity

R
eq

ue
st

 P
ro

je
ct

io
n 

#2
: D

et
ai

le
d 

A
rro

w
s

an
d 

A
ss

em
bl

y 
In

st
ru

ct
io

ns

St
at

e

A
ct

io
n

Se
ns

or
O

pe
ra

tio
n

M
in

M
ax

O
bj

ec
t 1

&2
 A

ss
em

bl
ed

, 
O

bj
ec

t 3
 N

ot
 in

 P
ro

xi
m

ity

R
eq

ue
st

 P
ro

je
ct

io
n 

#1
: 

A
rro

w
 to

w
ar

d 
O

bj
ec

t 3

St
at

e

A
ct

io
n

Se
ns

or
O

pe
ra

tio
n

M
in

M
ax

O
bj

ec
t 1

&2
 A

ss
em

bl
ed

, 
O

bj
ec

t 3
 In

 P
ro

xi
m

ity

R
eq

ue
st

 P
ro

je
ct

io
n 

#2
: D

et
ai

le
d 

A
rro

w
s

an
d 

A
ss

em
bl

y 
In

st
ru

ct
io

ns

St
at

e

A
ct

io
n

Se
ns

or
O

pe
ra

tio
n

M
in

M
ax

O
bj

ec
t 1

&2
&3

 A
ss

em
bl

ed
 

R
em

ov
e 

Pr
oj

ec
tio

ns

St
at

e

A
ct

io
n

Se
ns

or
O

pe
ra

tio
n

M
in

M
ax

O
bj

ec
t 1

St
ar

t

O
bj

ec
t 2

St
ar

t

O
bj

ec
t 3

St
ar

t

N
ot

 A
ss

em
bl

ed
, O

bj
ec

t 1
&2

 N
ot

 in
 P

ro
xi

m
ity

 

R
eq

ue
st

 P
ro

je
ct

io
n 

#1
: 

Ar
ro

w
 to

w
ar

d 
O

bj
ec

t 2

St
at

e

A
ct

io
n

Se
ns

or
O

pe
ra

tio
n

M
in

M
ax

O
bj

ec
t2

R
an

ge
0.

5
99

9

S
w

itc
h

Eq
ua

ls
0

0

R
eq

ue
st

 P
ro

je
ct

io
n 

#2
: D

et
ai

le
d 

A
rro

w
s

an
d 

A
ss

em
bl

y 
In

st
ru

ct
io

ns

St
at

e

A
ct

io
n

Se
ns

or
O

pe
ra

tio
n

M
in

M
ax

O
bj

ec
t 1

&
2 

As
se

m
bl

ed

R
em

ov
e 

Pr
oj

ec
tio

ns

St
at

e

A
ct

io
n

Se
ns

or
O

pe
ra

tio
n

M
in

M
ax

N
ot

 A
ss

em
bl

ed
, O

bj
ec

t 1
&2

 in
 P

ro
xi

m
ity

 

O
bj

ec
t2

R
an

ge
0

0.
49

9

S
w

itc
h

Eq
ua

ls
0

0

O
bj

ec
t2

R
an

ge
0

0.
49

9

Sw
itc

h
Eq

ua
ls

1
1

O
bj

ec
t1

R
an

ge
0.

5
99

9

S
w

itc
h1

Eq
ua

ls
0

0

O
bj

ec
t3

R
an

ge
0

99
9

S
w

itc
h2

Eq
ua

ls
0

0

O
bj

ec
t1

R
an

ge
0

0.
49

9

Sw
itc

h1
E

qu
al

s
0

0

O
bj

ec
t3

R
an

ge
0

99
9

Sw
itc

h2
Eq

ua
ls

0
0

O
bj

ec
t1

R
an

ge
0

0.
49

9

Sw
itc

h1
E

qu
al

s
1

1

O
bj

ec
t3

R
an

ge
0

99
9

S
w

itc
h2

Eq
ua

ls
0

0

O
bj

ec
t1

R
an

ge
0

0.
49

9

Sw
itc

h1
E

qu
al

s
1

1

O
bj

ec
t3

R
an

ge
0

0.
49

9

S
w

itc
h2

Eq
ua

ls
0

0

O
bj

ec
t1

R
an

ge
0

0.
49

9

Sw
itc

h1
E

qu
al

s
1

1

O
bj

ec
t3

R
an

ge
0

0.
49

9

Sw
itc

h2
Eq

ua
ls

1
1

N
ot

 A
ss

em
bl

ed
, O

bj
ec

t 2
&3

 N
ot

 in
 P

ro
xi

m
ity

 

R
eq

ue
st

 P
ro

je
ct

io
n 

#1
: 

A
rro

w
 to

w
ar

d 
O

bj
ec

t 2

St
at

e

A
ct

io
n

Se
ns

or
O

pe
ra

tio
n

M
in

M
ax

O
bj

ec
t2

R
an

ge
0.

5
99

9

Sw
itc

h
Eq

ua
ls

0
0

R
eq

ue
st

 P
ro

je
ct

io
n 

#2
: D

et
ai

le
d 

A
rro

w
s

an
d 

As
se

m
bl

y 
In

st
ru

ct
io

ns

St
at

e

A
ct

io
n

Se
ns

or
O

pe
ra

tio
n

M
in

M
ax

O
bj

ec
t 2

&3
 A

ss
em

bl
ed

R
em

ov
e 

Pr
oj

ec
tio

ns

St
at

e

A
ct

io
n

Se
ns

or
O

pe
ra

tio
n

M
in

M
ax

N
ot

 A
ss

em
bl

ed
, O

bj
ec

t 2
&3

 in
 P

ro
xi

m
ity

 

O
bj

ec
t2

R
an

ge
0

0.
49

9

S
w

itc
h

E
qu

al
s

0
0

O
bj

ec
t2

R
an

ge
0

0.
49

9

Sw
itc

h
Eq

ua
ls

1
1

O
bj

ec
t1

R
an

ge
0.

5
O

bj
ec

t1
R

an
ge

0
0.

49
9

O
bj

ec
t1

R
an

ge
0

0.
49

9
99

9

 
Fi

gu
re

 B
.3

 S
m

ar
t F

ur
ni
tu

re
 A

ss
em

bl
y 

Pr
og

ra
m

 fo
r 
3 

In
di
vi
du

al
 P

ie
ce

s 



APPENDICES 

 208

B.4 Smart Cooking Object Model 

This section accompanies the Smart Cooking demonstration presented in Chapter 7. 
Here we present the content model states for each of the objects (egg box, pan, salt and 
stove) grouped by the recipe state variable and arranged in recipe state order 0-12. 

State
Sensor Operation Min Max

Action
Combination Method

State
Sensor Operation Min Max

Action
Combination Method

State
Sensor Operation Min Max

Action
Combination Method

State
Sensor Operation Min Max

Action
Combination Method

State
Sensor Operation Min Max

Action
Combination Method

State
Sensor Operation Min Max

Action
Combination Method

0

1

2

Egg Box Pan

State
Sensor Operation Min Max

Combination Method
Action

State
Sensor Operation Min Max

Combination Method

Action

1 - Closed

2 - Open 2 – Egg Added

1 – Empty

3 – Finished with Eggs 3 – Add water to pan

4 – Place on stove

5 – On Stove

Remove Projection, Send 3

Remove Projection

Project place on stove, Send 2

Project “Add water to pan”

Project “Add egg to pan”

Project “Add egg to pan” Project “Add egg to pan”

Remove Projection, Send 1

Recipe           Value        0            0

Recipe           Value        0            0

Recipe           Value        0            0

Recipe           Value        0            0

Recipe           Value        1            1Recipe           Value        1            1

Recipe           Value        1            1

Recipe           Value        2            2

AND AND

AND AND

AND

AND

ANDAND

Light              Value        0            2

Light              Value        2          9999 Force             Value        30g     9999

Force             Value        2            29g

Force             Value        30g     9999

Force             Value        0            1
Temp             Value        0            15º

Force             Value        30g     9999
Object Stove  Distance       0       0.25m

 
Figure B.4 Hard-Boiled Egg Recipe States 0-2 
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Salt

3

5

State
Sensor Operation Min Max

Action
Combination Method

State
Sensor Operation Min Max

Action
Combination Method

Stove

Pan

State
Sensor Operation Min Max

Combination Method
Action

6 – Add Salt to Pan

Project “Add Pinch of Salt”

Recipe           Value        3            3

AND

Force             Value        30g     9999
Object Stove  Distance       0       0.25m

Project “Add Pinch of Salt”
AND

1 – Add Salt, Salt Static 

Recipe           Value        3            3
Force             Value        10       250g

Object Pan    Distance   0.25m    9999

State
Sensor Operation Min Max

Combination Method
Action

State
Sensor Operation Min Max

Combination Method
Action Project “Add Pinch of Salt”, Send 4

AND

2 – Add Salt, Salt Mobile 

Recipe           Value        3            3
Force             Value        0            1

Object Pan    Distance      0        0.25m

4 State
Sensor Operation Min Max

Action
Combination Method

Remove Projection, Send 5

AND

3 – Salt Added, Salt Static 

Recipe           Value        4            4
Force             Value        10       250g

Recipe         Value         5           5

Recipe         Value         5           5

Gas              Value         0          99%

Gas              Value      100%    100%

Project Turn on, 100% setting

AND

Remove Projection, Send 6

AND

1 – Turn to 100% setting

2 – At 100% setting

State
Sensor Operation Min Max

Action
Combination Method

7 – Salt Added

Remove Projection
AND

Recipe         Value         5           5

 
 

Figure B.5 Hard-Boiled Egg Recipe States 3-5 
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State
Sensor Operation Min Max

Combination Method
Action

8 – Boil Water

Project Temp X, Wait for Boil

Recipe         Value         6           6

AND

Force             Value        30g     9999
Object Stove  Distance       0       0.25m

Pan

State
Sensor Operation Min Max

Action
Combination Method

6

9 – Boiling Water

Project Temp X, Send 7

Recipe         Value         6           6

AND

Force            Value        30g     9999

Object Stove  Distance       0       0.25m
Temp             Value       100      100ºStove

7

State
Sensor Operation Min Max

Action
Combination Method

8 State
Sensor Operation Min Max

Action
Combination Method

State
Sensor Operation Min Max

Combination Method
Action

State
Sensor Operation Min Max

Action
Combination Method

Recipe         Value         7           7
Gas              Value         0          30%

Project Turn to simmer (40%)

Gas              Value         50       100%
(1 AND 2) OR 3

3 – Turn to 40% setting

Recipe         Value          7           7
Gas              Value         31         49%

Remove Projection, Send 8

4 – Around 40% setting

AND

10 – Simmering 7 mins

Project countdown timer

Recipe         Value         8           8

AND

Force            Value        30g     9999

Object Stove  Distance       0       0.25m
Time             Value          0       7min

Recipe         Value          8           8
Object Pan    Temp          0          90º

Project Pan too cold, adjust to simmer

5 – Pan Too Cold

AND

 
 

Figure B.6 Hard-Boiled Egg Recipe States 6-8 
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Stove Pan
8(continued)

State
Sensor Operation Min Max

Action
Combination Method

9

10 State
Sensor Operation Min Max

Combination Method
Action

State
Sensor Operation Min Max

Action
Combination Method

Recipe         Value          8           8
Object Pan    Temp          99       9999

Project Pan too hot, adjust to simmer

6 – Pan Too Hot

AND

State
Sensor Operation Min Max

Action
Combination Method

Recipe         Value          8           8
Object Pan    Temp         91         98º

Remove Projection

7 – Pan Correct Temp

AND

11 – Simmering 7 mins

Remove Projection, Send 9

Recipe         Value         8           8

AND

Force            Value        30g     9999

Object Stove  Distance       0       0.25m
Time             Value        7min    7min

State
Sensor Operation Min Max

Action
Combination Method

State
Sensor Operation Min Max

Action
Combination Method

Recipe         Value         9           9

Recipe         Value         9           9

Gas              Value         1        100%

Gas              Value        0            0%

Project Turn Off Stove

AND

Remove Projection, Send 10

AND

8 – Turn Off Stove

9 – Stove Off

12 – Empty Water In Sink

Project Empty Water In Sink

Recipe         Value        10         10

AND

Force            Value        30g     9999
Object Stove  Distance       0       0.25m

 
 

Figure B.7 Hard-Boiled Egg Recipe States 8-10 
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Pan

11 State
Sensor Operation Min Max

Action
Combination Method

12 State
Sensor Operation Min Max

Action
Combination Method

State
Sensor Operation Min Max

Action
Combination Method

10(continued)

13 – Emptying Water

Project Empty Water In Sink, Send 11

Recipe         Value        10         10

AND

Force            Value         0          1

Object Stove  Distance     0.25m  9999

Object Sink    Distance       0       0.25m

14 – Water Emptied

Project “Enjoy Your Meal”, Send 12

Recipe         Value        11         11

AND

Force            Value         0          1

Object Sink    Distance       0       0.25m

Temp            Value         0         70º

15 – End

Recipe         Value        12         12

AND

Force            Value        30       9999

Remove Projection

 

Figure B.8 Hard-Boiled Egg Recipe States 10-12 
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