
 1

Designing and Constructing Modifiable Middleware using

Component Frameworks

Nikos Parlavantzas, Geoff Coulson

Computing Department,

Lancaster University, UK

[parlavan, geoff]@comp.lancs.ac.uk

Abstract

Because of the increasingly diverse and dynamic environments in which they must operate,

modern middleware platforms need to explicitly support modifiability. Modifiability should

encompass change that is both static and dynamic; small scale and large scale. Also, the

process of modification should be flexible, easy to perform, and consistency-preserving. To

address these needs, this paper proposes a generic component-based modifiability approach,

and then uses this approach to build a highly-modifiable middleware framework. The

modifiability approach provides design support for building component frameworks—i.e.,

reusable and extensible component architectures that are targeted at specific domains. In the

approach, component frameworks build upon a minimal, technology-independent component

model, and can be recursively assembled into more complex frameworks. Our middleware

framework—an instantiation of our proposed approach—takes the form of a specific

assembly of component frameworks, each of which addresses a distinct middleware-related

concern. Our middleware framework supports two styles of modification: First, ‘architectural

modification’ enables large-scale, static, changes, such as customizing the framework to a

new application domain or underlying infrastructure. Second, ‘system modification’ enables

changes that are based on specific customisations of the framework; these changes are

 2

smaller in scope (e.g. replacing protocol implementations) but are applicable at both deploy-

time and run-time. A prototype implementation demonstrates the feasibility of our approach

and framework, and demonstrates a sufficient degree of supported modifiability.

1. Introduction

Middleware platforms are well established as an essential element of large-scale distributed

software systems. But increasing the applicability, and lengthening the lifespan, of platforms

requires that they accommodate the vast diversity and fluidity that increasingly characterises

their deployment environments. Environmental variations that need to be accommodated

range from large-scale, slow-rate variations (e.g. supporting diverse application domains like

real-time, mobile, or multimedia applications in varied deployment environments like desktop

computers, PDAs, or mobile phones), to small-scale, fast-rate variations (e.g. applying

patches, requesting different qualities in transferring continuous media, or adapting to

dynamic fluctuations in resource availability).

To achieve such accommodation, middleware platforms must explicitly support modifiability.

The modifiability requirement can be refined into three lower-level requirements: flexibility,

ease of modification, and consistency maintenance. Flexibility relates to the range of possible

changes that can be supported by a platform. Flexibility can in turn be refined into the

requirements that the platform supports: i) static and dynamic modification; ii) extension with

new functionality; and iii) large-scale modification (i.e., support for changes affecting large

areas of functionality). Ease of modification relates to the effort of performing required

changes; and consistency maintenance relates to the possibility that modifications may

introduce inconsistency. As well as being modifiable1, middleware platforms must also be

efficient. This relates to the resource overhead induced by the platform—that is, any resource

1 We use the term ‘modifiable middleware’ rather than ‘adaptive middleware’ because it is a more general term;
in particular, it covers large-scale, static modification, not typically addressed by adaptive middleware.

 3

usage that does not contribute directly to meeting the needs of middleware users.

Unfortunately, efficiency typically conflicts with, and must be balanced against, modifiability.

No existing middleware platform satisfies all these requirements in a balanced way. Large-

scale modification, in particular, remains largely unaddressed, thus making it difficult or

impossible to customise platforms to different application domains and underlying

infrastructures. Mainstream platforms, such as CORBA and Java EE, suffer from serious

limitations in terms of flexibility [Kon02, Kordon05]. Modification in these platforms mainly

consists in statically selecting from a fixed or minimally-extensible set of options. Research

platforms, such as FlexiNet [Hayton99] and DynamicTAO [Kon00], as well as Microsoft .Net

[Microsoft05] provide enhanced support for dynamic extension and modification, but lack

any support for large-scale modification. Platforms that address this issue are OpenORB

[Blair98], UIC [Roman01], and ExORB [Roman04]. OpenORB requires a large amount of

effort for performing modifications, and provides weak support for consistency maintenance

and efficiency. UIC allows large-scale changes, but provides no explicit mechanism to

support them. ExORB defines a software construction approach that enables large-scale

changes, but the approach relies on an uncommon programming model that imposes

complexity on middleware developers.

 To address the modifiability-related requirements in a balanced and principled way, this

paper first proposes a generic, component-based, modifiability approach, and then uses this

approach to build a highly-modifiable component-based middleware framework, called O2.

The modifiability approach provides concepts and rules for designing component frameworks;

that is, domain-specific component architectures that enable a variety of run-time component

configurations. The approach also includes a pattern for supporting dynamic modification in a

uniform way across component frameworks. Component frameworks can be recursively

assembled into more complex frameworks. The O2 framework is itself constructed as an

 4

assembly of component frameworks, each addressing different concerns. O2 inherently

supports modifiability as follows: i) it addresses large-scale, static, changes through

integrating new component frameworks and producing different middleware architectures;

and ii) it supports smaller-scale changes, both static and dynamic, through managing the

configuration of plug-in components. This work formalises and extends our previous work on

OpenORB v2 [Coulson02a]. Specifically, it provides formal support for constructing and

assembling component frameworks, and adds the capabilities to perform large-scale

architectural modifications and to target multiple component technologies.

Middleware
systems

CF
modelling
concepts

Collaboration
modelling
concepts

Component
modelling
concepts

Basic
Reconfig. Pattern

Other Patterns

O2 Framework

M1 Architecture

Other Middleware
Architectures

Metamodels

Models

Run-time
Systems

Various patterns
and CFs

more specialised

Figure 1 depicts the logical relations between the main elements of our work. The vertical

dimension organises the elements into the three traditional layers of metamodels, models, and

run-time systems. The horizontal dimension organises the elements in order of increasing

specialisation. The approach comprises the three categories of concepts in the metamodels

layer (sections 2.1, 2.2, and 2.3) and the basic reconfiguration pattern in the models layer

(section 2.4). The O2 middleware framework builds on this pattern and a small number of

basic frameworks (section 3). Middleware architectures build on O2 and other frameworks. M1

Figure 1 –The O2 framework and other elements

 5

is a representative middleware architecture that forms the basis of our proof-of-concept

implementation (section 4). We have performed on evaluation of O2 with respect to

modifiability and efficiency (section 5), and compared O2 with related work (section 6).

2. A Component-based Approach to Modifiability

In outline, our proposed approach to the design of modifiable component systems is to build

such systems in terms of component frameworks (hereafter, CFs) and to provide concepts for

designing and expressing these CFs. The concepts that we propose for designing CFs fall into

three categories:

• component modelling which defines fundamental concepts (e.g., the component concept)

of the component model upon which CFs are built;

• collaboration modelling which defines concepts related to collaborations, the main

constituents of CFs;

• CF modelling which, building on the above two sets of concepts, defines concepts

specifically related to CFs themselves.

Apart from these concepts, we propose a basic reconfiguration pattern to facilitate the design

of CFs that must support dynamic modification. We also specify how the various concepts are

represented in terms of UML elements, thus providing a concrete notation for specifying CFs.

This notation enables the use of existing UML tools to support the development and

maintenance of CF models2. The three categories of concepts, along with their UML

representations, are discussed in sections 2.1, 2.2, and 2.3 respectively. The reconfiguration

pattern is then presented in section 2.4.

2 Naturally, representing our concepts in terms of other modelling languages is also possible.

 6

2.1 Component modelling concepts

To specify and build component systems, one needs a component model that defines what

components are, how they communicate, and what services the supporting execution

environment should offer. Our component model expresses the essential properties of

component technologies that are compatible with our approach (one such technology is

discussed in section 4).

In defining the component model, two main requirements were identified:

• The component model should be minimal. Specifically, it should only address the

following core issues: i) component deployment and interoperation within a common

address space; ii) component and interface naming; and iii) support for meta-information.

The motivation here is to maximise the applicability of the component model to different

types of systems (e.g., both application and infrastructure software), and to allow it to be

used as a stable foundation for diverse, domain-specific models; that is, CFs.

• The component model should be abstract in the sense that it should hide technology-

specific details such as binary interoperability standards or underlying virtual machines.

The motivation here is to increase the ease of designing CFs and to enhance their

reusability across different target technologies.

The main concepts of the component model (see Figure 2) are as follows: Components are

units of implementation that are capable of being integrated into systems without

modification. Components offer one or more distinct interfaces, that is, coherent sets of

operations together with supporting specifications (e.g., pre- and post-conditions). Both

interfaces and components are identified with globally unique identifiers. Components are

represented at run-time by so-called component objects which are created as a result of

component instantiation.

 7

Components and component objects support introspection; that is, they can be probed for

meta-information; this corresponds to the information captured in Figure 2 (e.g., information

on the interfaces offered by a component). In addition, components can be associated with

extended metadata; i.e., name-value pairs that form generic placeholders for additional self-

descriptive information. The meaning of extended metadata is not prescribed by the

component model; it depends on the needs of the specific context. For example, metadata

could contain formal specifications of a component’s behaviour, its contextual dependencies,

its quality properties and requirements, requirements on infrastructure services, or licensing

information. The metadata can be accessed through introspection both before and after the

component is instantiated.

Components may be independently deployable or not. A component that is not independently

deployable is termed a subordinate component. Each subordinate component is related to

some other single independently deployable component, and can be instantiated only by this

component, or by another of its subordinate components. Subordinate components are not

separately replaceable. On the other hand, independently deployable components can be

instantiated directly by any external party; they are separately replaceable units which contain

all their subordinate components. The motivation for subordinate components is to simplify

the programming models of component systems. Specifically, exporting a functionality unit as

an independently deployable and replaceable component incurs a performance overhead, thus

practically restricting the granularity of such components. Subordinate components enable

exporting fine-grained units as components, thus providing for uniformity in programming

models.

Finally, a supporting execution environment enables interoperation between component

objects within a common address space and realises dynamic loading and unloading of

components. It also provides facilities for component instantiation and dynamic interface

 8

discovery (i.e., obtaining a reference to an identified interface given any interface reference to

a component object).

UML representation

In UML terms, components and interfaces are represented by the corresponding UML

concepts. The supporting specification information for interfaces can be expressed in various

notations depending on the required level of precision. For example, one might use OCL

[OMG05b], UML interaction and state diagrams, or specialised quality of service (QoS)

notations (e.g., that proposed in [Aagedal02]).

2.2 Collaboration modeling concepts

A collaboration describes an ensemble of interacting objects. The structure diagram in Figure

3 illustrates our collaboration modeling concepts and shows how they are related.

Before expanding on the collaboration concept, we discuss the central concepts of component

type and component relationship. A component type is an abstract component description. It

defines a set of interfaces that are offered by a component as well as a set of interfaces that are

used by the component. The component type incorporates the specifications of its interfaces

Figure 2 - Component modelling concepts

 9

and possibly adds further information, such as constraints that relate interface specifications

with each other. For example, such a constraint may prescribe that invoking a specific

operation in some offered interface has the effect of invoking some operation in some used

interface.

A component relationship is then a description of links between component objects of

particular component types. Three frequently used component relationships are usage,

creation, and composition, which respectively signify that a component object invokes,

creates, or is composed of another object. In line with UML semantics, composition requires

that a part object belongs to at most one composite at a time. Composition relationships

simplify component system design because they define hierarchical structures of objects; they

also play an important role in other aspects of our approach as will be seen in sections 2.3 and

2.4.

Building on the above definitions, a collaboration is a description of how a collection of

component objects cooperate to achieve a joint goal. Collaborations comprise both structural

and behavioural information. First, the structure of a collaboration comprises a set of

component types and a set of relationships between them. Types and relationships defined

within a collaboration are termed roles and connectors respectively: roles specify the

properties that objects must exhibit to be able to participate in the collaboration; and

connectors specify the properties of the links between participating objects. A collaboration

definition may also contain multiplicity constraints (e.g., only a single object can play a given

role) and specialisation constraints (e.g., some roles are specialisations of a given component

type). Second, the behaviour of a collaboration contains a set of interactions, which define the

exchange of messages between different roles over connectors.

 10

Crucially, existing collaborations can be employed to build new collaborations through the

specialisation and aggregation mechanisms. A collaboration specialises a base collaboration

if its definition draws on and refines that of the base collaboration. Thus, a specialised

collaboration contains all the roles and connectors of the base collaboration, or specialisations

of them; and may optionally contain additional roles and connectors. A collaboration

aggregates another collaboration if the definition of the former (the aggregate collaboration)

contains a use of the latter (the aggregated collaboration). Specifically, a collaboration use

represents a particular application of the aggregated collaboration to the aggregate

collaboration by defining a set of attachments between roles/connectors of the two

collaborations. These attachments indicate which elements of the aggregate collaboration

correspond to and refine which elements of the aggregated collaboration—a single element of

the former may correspond to multiple elements of the latter. Note that collaboration

specialisation can be seen as a special case of aggregation, in which the specialised

collaboration both contains a use of the base collaboration and refines the base collaboration.

The next subsection contains an example that illustrates all of these concepts.

Figure 3 – Collaboration modelling concepts

 11

UML representation

Collaborations, collaboration uses, and interactions are represented as the corresponding

UML concepts. As regards these concepts, our metamodel (see Figure 3) follows the general

outline of the UML metamodel, but is significantly simplified for our purposes. Component

types and relationships are respectively represented as UML classifiers and associations.

Usage relationships are represented as «uses» associations, composition relationships are

represented as UML compositions (graphically shown using the filled diamond or the nesting

notation), and creation relationships are directly represented as «creates» associations.

Similarly to interfaces, component types may be annotated with supporting specification

information that is expressed in OCL, state diagrams, or any other convenient notation.

Example

To illustrate the notation for collaborations, consider a ‘lookup’ collaboration between client,

server, service, and registry roles with the goal of enabling dynamic service discovery (see

Figure 4). In this collaboration, clients use the registry to locate a service that they need, and

servers use the registry to register services. In addition, consider a ‘simple printing’

collaboration involving user and printer roles with the goal of carrying out a printing task. As

seen in Figure 4, lookup and simple printing can be combined to define a ‘printing’

collaboration that supports the dynamic discovery and use of printers. Specifically, ‘printing’

specialises ‘simple printing’ and aggregates ‘lookup’. The collaboration use notation shows

the attachments between roles in ‘lookup’ and ‘printing’, which also determines the

attachments of connectors. Naturally, interactions between roles in ‘lookup’ apply to their

corresponding roles in ‘printing’. Note that the ‘printer service’ role is attached to both the

‘server’ and ‘service’ roles, which indicates that in the ‘printing’ collaboration, printers are

assumed to register themselves with the registry.

 12

2.3 CF modelling concepts

CFs are reusable architectures for specific domains, and are designed to be instantiated in

terms of components. Specifically, a CF defines a set of design rules that constrain the

external characteristics of components, their relationships, and the interactions among them.

Instantiating a CF involves implementing and integrating components according to the

prescribed rules. In addition, a CF may include software that supports or enforces the rules.

The main motivation for CFs—as, indeed, for all kinds of frameworks—is design and code

reuse. Moreover, since CFs are architectures, they provide a means of ensuring that systems

maintain desired architectural properties. One property that is supported to some degree by all

CFs is modifiability; CFs enable modifiability by definition since they can be instantiated in

multiple ways, forming multiple run-time component configurations.

Formally, a CF is a grouping of collaborations, components, and supporting documentation

(see Figure 5). A CF minimally contains a primary collaboration which may be defined as a

specialisation or aggregation of other collaborations. The structure and behaviour of its

collaborations express the design rules of the CF. As well as collaborations, a CF may contain

Figure 4 – Example of collaboration specialisation and aggregation

 13

a set of components that realise roles defined in its collaborations. These components

represent CF-provided software, which implements frequently-used or always-required

functionality, such as functionality to support and/or enforce CF rules. Finally, the CF

contains supporting documentation that is necessary for understanding, using and evolving the

CF. This typically comprises the following: a discussion of the problem domain and the goals

that the CF addresses; conceptual models at high abstraction level; a framework overview;

design constraints and rationale; and examples of using the CF.

As with collaborations, CFs can be assembled into more complex CFs through specialisation

and aggregation. A CF specialises or aggregates another CF if their respective primary

collaborations are related by specialisation or aggregation respectively. Assembling CFs is a

key means of managing the complexity of designing, understanding, and evolving component

architectures.

Clearly, CF specifications that are expressed using the abstract component modelling

concepts discussed above are not, in themselves, sufficient to support the implementation of

executable component systems. To provide this capability, CFs must be refined with details

that are specific to a target component technology that supports software execution. This

Figure 5 - CF modelling concepts

 14

refinement is typically supported by a mapping from the abstract component model to a

concrete component technology. Using such a mapping, one can straightforwardly concretise

a technology-independent CF to a technology-specific CF. Of course, the transformation will

generally require additional input, such as engineering decisions associated with the particular

technology.

Encapsulated versus open CFs

As seen in Figure 5, we distinguish two types of CFs, namely, encapsulated CFs and open

CFs. Encapsulated CFs integrate component objects to form encapsulated systems; that is,

groups of objects that are treated as a single behavioural unit at a higher abstraction level.

An encapsulated CF describes both how its constituent component objects cooperate to realise

the target system (termed the CF-based system) and how this system interacts with its

environment. The roles of an encapsulated CF are therefore classified as either external or

internal roles depending on whether or not the conforming objects are part of the CF-based

���������	 ��
������	

����

��

�����

��	

��
	����

�� ��

�� ��

���

����

��� ���

����

�����

���� ����

��	

��
	����

��������	�
��

�������	������

������	�
��

Figure 6 - Example of encapsulated CF

 15

system. The system is itself represented by a distinguished internal role, called CFR (for CF-

based system representative), which is transitively composed of (i.e., has a composition

relationship to) all the other internal roles, which are termed plug-in roles. In analogy to the

above-mentioned external/internal role separation, the primary CF collaboration is

decomposed into external and internal collaborations; that is, the primary collaboration is

defined as an aggregation of these two collaborations. Figure 6 shows an example of an

encapsulated CF (CF A) with two contained collaborations (A external and A internal).

Encapsulated CFs are useful for modelling self-contained, modifiable component systems as

well as their subsystems; that is, traditional units of functional decomposition. Aggregating

encapsulated CFs is facilitated by their separation into two collaborations (external and

internal). This is because the designer of an aggregate CF does not need to know about the

internal collaborations of the aggregate CF’s constituent CFs. Importantly, encapsulated CFs

are essential elements of our reconfiguration approach, which is discussed in section 2.4.

We now turn to open CFs. Open CFs constrain object integration for various purposes without

explicitly defining an encapsulation boundary. They are useful for capturing component

integration protocols. For example, open CFs can capture interactions with shared services,

such as logging, security, or inter-address space communication. Moreover, open CFs can

capture commonly used interaction styles (e.g., variations of the observer pattern) or domain-

specific composability standards (e.g., data exchange standards in process control

applications). Naturally, open CFs may be aggregated by an encapsulated CF in order to

describe different aspects of the CF-based system. An example of an open CF—O2’s resource

CF—is given in section 3.2.

UML representation

A CF is represented as a stereotype of a UML package that collects UML representations of

its contained collaborations and components. The primary collaboration is given the same

 16

name as the CF, and its graphic notation (i.e., the dashed ellipse) is commonly used to

represent the whole CF. The CF’s supporting documentation is represented as a collection of

UML artifacts owned by the CF package and is expressed in a combination of formal and

informal notations.

2.4 The basic reconfiguration pattern

CFs allow developers to select independently-deployable components that will populate the

CF instantiation at run-time, and thus they inherently support static modification of

component systems. However, CFs do not inherently support dynamic modification. To

address this, we define a basic reconfiguration pattern, which provides a simple and uniform

means of supporting both static and dynamic modification. Modification is achieved through

changing the run-time configuration of CF-based systems comprising component objects and

the links between them.

The basic reconfiguration pattern is modelled as a simple, pre-defined, encapsulated CF (i.e.,

it itself is an instance of the CF concept) with the following roles: reconfiguration manager,

managed part, and configurator. The reconfiguration manager is composed of the managed

parts and is responsible for establishing their initial configuration and for maintaining and

managing their dynamic reconfiguration. This responsibility is reflected in offered

reconfiguration services, which are used by the configurator. The manager accomplishes its

responsibility by interacting with the managed parts. This may involve creating or deleting

managed parts or using management services provided by them. The basic reconfiguration

pattern is specialised by encapsulated CFs that need to support modification, as seen in Figure

7. Specifically, the encapsulated CF’s CFR role specialises the reconfiguration manager role;

an external role specialises the configurator role; and plug-in roles specialise the managed part

role.

 17

The basic reconfiguration pattern is intentionally defined at a high abstraction level; it neither

restricts the reconfiguration services exposed by the CFR, nor does it prescribe how these

services are realised by cooperating with plug-ins. CF designers make these decisions by

considering actual modifiability requirements and by exploiting domain-specific knowledge

and built-in constraints associated with the CF. For example, in a multimedia streaming CF, a

designer may exploit a constraint that plug-ins are to be arranged in a pipe-and-filter

architectural style, in order to include a service for inserting a filter between two other filters

without interrupting the data flow. As another example, the designer may exploit a constraint

that there must be a single object of a particular plug-in type in order to include a service for

dynamically replacing the object, but not for removing or adding objects of this type.

Despite considerable variability in the detail of reconfiguration management across different

CFs, the basic reconfiguration pattern does define a small set of generic interfaces (see

[Parlavantzas05] for the full detail), which must be offered along with a reconfigurable CF’s

CF-specific interfaces (see Figure 7). Specifically, the reconfiguration manager (i.e., the CFR)

must offer an IPartConfiguration interface, which exposes the configuration of parts as a

modifiable collection of named objects. This interface has operations to retrieve, add, remove,

and replace managed parts; one can add both existing objects and new objects that will be

instantiated by the manager. The interface also has operations to subscribe and unsubscribe to

events that report changes in the configuration; these events are realised as invocations on an

associated IPartEvents interface. Managed parts (i.e., plug-ins) must offer another interface

called IManagedPart which has operations for initialisation and termination that are called

when a part is added or removed.

 18

The behavioural specifications of these generic interfaces are abstract and must be refined

within specialised CFs. For instance, a CF will typically constrain the types of objects that are

eligible to be added and the conditions under which part removal or replacement is permitted.

Moreover, for consistency reasons, the syntactic form of the generic interfaces must be

followed by CF-specific interfaces when similar functionality is exposed (e.g., part addition).

Three main benefits accrue from the use of the basic reconfiguration pattern:

• The pattern supports CF designers by providing a general model of reconfiguration

management that is applicable to all encapsulated CFs.

• The pattern allows designers to exploit CF-specific knowledge in order to achieve a

desired level of modifiability. For example, designers can provide high-level

reconfiguration services that rely on domain-specific abstractions, thus facilitating

Figure 7 – The basic reconfiguration pattern and an example of its application to a CF

 19

modification. Similarly, designers can provide reconfiguration services that validate

changes using CF rules and invariants, thus preventing inconsistencies.

• Providing generic reconfiguration-related interfaces reduces the complexity imposed on

developers due to the uniformity in syntax and semantics. Moreover, generic interfaces

promote composability with components that have no built-in knowledge of the CF, such

as automated management tools.

The main liability of the basic reconfiguration pattern is the resource overhead for realising

reconfiguration services. However, apart from the overhead associated with supporting the

simple generic interfaces, this is CF-specific and can be appropriately traded off against other

modifiability-related requirements, such as the desired flexibility level.

Finally, note that our modifiability approach can naturally be extended with more

prescriptive, domain-specific, forms of the basic reconfiguration pattern (i.e., specialisations

of the basic reconfiguration CF). These can provide enhanced support to designers at the cost

of reduced generality. For example, one could define a specialisation that assumes that parts

interact with each other only through connections initiated and controlled by the manager

using specific operations on parts. The reconfiguration interface would then treat the part

configuration as a graph and provide, for example, operations for connecting and

disconnecting parts.

3. The O2 framework

Having discussed the basic concepts of our CF-based modifiability approach, we now present

a concrete instantiation of our approach: the O2 middleware framework. O2 is designed as an

encapsulated CF that combines multiple simpler CFs, each of which addresses different sets

of middleware-related concerns, and supports multiple run-time component configurations.

However, a fixed CF cannot accommodate the diverse and ever-changing requirements

 20

imposed by all possible middleware environments. For this reason, O2 addresses only a basic

core of general requirements, and it is explicitly designed to support specialisation, which

opens up two styles of modification (see Figure 8):

• Architectural modification involves extending O2 by integrating new CFs and adapting the

result to a specific component technology. The product is an aggregate, technology-

specific CF, which we call a middleware architecture. This modification style is intended

to enable large-scale and static changes, such as changes to the API exposed to

middleware users or modifiers. Different middleware architectures will typically be

designed for different application domains and underlying infrastructures—e.g.

multimedia applications on desktop computers, or mobile applications on PDAs.

• System modification then involves providing components that plug into a particular

middleware architecture’s CF(s), and managing their configuration through CF-provided

facilities; these facilities minimally include reconfiguration support following the basic

reconfiguration pattern. System modification enables smaller-scale changes to middleware

systems both statically and dynamically. For example, it enables replacing resource

management policy components at either deployment-time or run-time.

 21

The rest of this section is structured as follows. First, section 3.1 presents an overview of the

structure of O2 as an assembly of three basic CFs. Section 3.2 then discusses each of these

basic CFs, and section 3.3 describes how they are integrated.

3.1 O2 overview

O2 is an aggregate CF that combines three constituent CFs: the service CF, the resource CF,

and the binding CF. This combination of CFs is intended to address three common general

areas of requirement in the design of middleware systems: i) requirements for supporting

modifiability; ii) requirements for managing underlying resources; and iii) requirements for

interconnecting application components (or, establishing bindings between them). More

specialised requirements are satisfied at the level of particular middleware architectures,

which may add further CFs. For example, a requirement to support modification of

communication protocol functionality can be addressed by defining a middleware architecture

that integrates a CF for composing protocol stacks.

Figure 8 – Modification styles supported by O2

 22

In more detail, O2 is defined as a specialisation of the service CF that aggregates the resource

and binding CFs. The three basic CFs, a subset of their internal structure, and their

relationship with O2 are shown in Figure 9.

3.2 The basic CFs

•••• Service CF

The service CF is a lightweight, minimally-prescriptive CF that provides infrastructural

support for assembling interdependent components. The CF relies on the abstraction of a

service, a uniquely-identified and shared unit of functionality. Specifically, it is an

encapsulated CF that accepts service plug-ins that realise one or more services and submit

requests for other services at any point during their execution. The service CFR resolves such

dynamic requests by consulting the current plug-in configuration and dynamically loading

appropriate plug-ins, if necessary. Dynamically removing and replacing service plug-ins is

also supported following the basic reconfiguration pattern. To facilitate robust

reconfiguration, the CF employs a simple notification mechanism whereby registered service

Figure 9 – The basic CFs and part of their structure

 23

users are notified when a service is to be removed or replaced. The service CF also supports

plug-ins called validators. These decide whether proposed changes to the service

configuration are to be allowed. Their decisions are based on the current configuration, and on

extended metadata obtained from to-be-added plug-ins, which capture the latters’ resource

and service requirements.

The service CF plays two key roles within O2. First, it forms a basis for the specification of

the basic structure of middleware architectures. This relies on the capability of the service CF

to be easily specialised by adding constraints on the set of services that must be available.

Second, it facilitates large-scale, static and dynamic modification of middleware systems by

enabling changes in the service configuration.

•••• Resource CF

The resource CF [Parlavantzas03b] facilitates resource adaptation: that is, monitoring and

controlling the resource usage of activities within a running middleware system. The resource

CF is an open CF that relies on the abstractions of tasks and resources. Tasks are units of

computation to which resources are allocated and resource usage is charged. Tasks are

organised into a dynamic hierarchy that serves to delineate computations that contribute to the

same goal. Each resource is associated with a single task, but the association is adjustable. For

example, a thread (a resource) can be transferred to a different task to reflect the fact that it

performs work contributing to a different goal.

Resources of a given type are managed by resource managers, and tasks are managed by the

task manager. Resource managers enforce task-based resource allocation, accounting, and

control, and the task manager acts as the access point for obtaining resource allocation

information. By assigning most of the responsibilities to resource managers, this design can

accommodate diverse types of resources at different levels of abstraction (e.g., buffers,

 24

threads, virtual processors). Importantly, the CF defines low-level adaptation primitives that

expose a high degree of flexibility to users. The primitives include support for inspecting the

resources allocated to a task, obtaining/ modifying the properties of individual resources,

navigating the task hierarchy, transferring resources between tasks, and terminating tasks. The

role of the CF within O2 is to support adaptation with respect to the resources provided by the

underlying infrastructure. Resource adaptation is essential for managing QoS requirements

relating, for instance, to response time or throughput. As an example, a middleware system

might adapt the CPU time allocated to processing requests in order to sustain response times

in the face of fluctuating network delays. Resource adaptation is also useful in many other

situations, such as ringfencing the resource usage of independently-developed and

dynamically-plugged components.

•••• Binding CF

The binding CF [Parlavantzas03a] supports the development and integration of so-called

binding types, and exposes a simple and consistent programming model for using binding

types. Binding types (BTs) are middleware-provided interaction paradigms, such as remote

method invocation, messaging queuing, or group communication, which are modelled as open

CFs. For instance, a publish/subscribe BT defines publisher, subscriber, and event channel

roles and specifies that publisher invocations on the channel are propagated to subsribers with

specific delivery semantics (e.g., at-most-once). The binding CF is an encapsulated CF that

accepts binding type implementation plug-ins. Its external collaboration captures

commonalities across BTs and constrains their form, thus providing both guidance for BT

designers and consistency for binding users. The external collaboration contains, for example,

a standard binding establishment collaboration, which constrains the process of binding

publishers and subscribers to event channels. The internal collaboration of the CF provides

mechanisms to support implementing BTs, such as mechanisms to resolve dependencies on

 25

other BTs and low-level services. It also supports managing the plug-in configuration

following the basic reconfiguration pattern.

The binding CF can accommodate a wide variety of BTs since it is based on a general binding

model, which allows distributed or local, multiple-participant, explicit or implicit, and first- or

third-party bindings. Moreover, the CF enables dynamic inspection and adaptation of bindings

since bindings are created explicitly and represented as objects. The role of the binding CF

within O2 is to support extension with respect to supported interaction paradigms, thus

increasing the applicability and value of the middleware framework. By accommodating high-

level BTs that closely match application needs (e.g., auction or voting BTs), the CF also

contributes to increasing the usability of O2.

Full details on the basic CFs are given in [Parlavantzas05].

3.3 Integration of the basic CFs

Having described the three basic CFs, we are now in a position to present the full picture: O2

is a specialisation of the service CF that adds a number of roles and constraints that are

associated with the resource and binding CFs. Specifically, O2 defines the following added

roles: binding service, task service, resource service, and communication service (see Figure

10). The first three roles are defined as services that respectively refine the CFR role of the

binding CF, and the task manager and resource manager roles of the resource CF. The

communication service role captures services that can be used by the binding service;

communication services are optional. Note that O2’s service roles are separated into three

layers based on an “allowed to use” relationship: a role in a given layer is allowed to use roles

in any lower layer. The resource layer contains the task and resource services; the

communication layer contains communication services; and the binding layer contains the

binding service.

 26

Finally, O2 defines the following two constraints on its roles. First, all services must use

resource services provided by the resource CF rather than raw resources provided by the

underlying infrastructure. For example, if there is a resource service for managing threads,

this must be used instead of native OS or pthread calls. Conformance to this constraint is

necessary for taking advantage of the resource adaptation facility provided by the resource

CF. Second, the O2 CFR must create and maintain a unique task for each service. The

motivation for this constraint is to isolate service implementations and to enable accurate

tracking of their resource usage.

Figure 10 - Structure of O2

 27

4. Using O2

O2 is used to design middleware architectures, that is, aggregate, technology-specific, CFs

which are published to application and middleware developers, and which form a blueprint

for using, developing and modifying middleware systems. Producing a middleware

architecture using O2 involves two activities, not necessarily performed in sequence. First, it

involves specialising O2 by adding service roles residing at the resource layer, and, optionally,

at the communication and binding layers. Such added roles are typically associated with new

CFs, which are thus integrated into the middleware architecture. Second, it involves refining

the middleware architecture’s CFs with details specific to a target component technology. As

mentioned in the previous section, this is typically guided by a mapping between the abstract

component model and the concrete component model.

To demonstrate the use of O2, we outline a representative middleware architecture, called M1
3

which forms the basis of our current proof-of-concept implementation. The structure of M1 is

depicted in Figure 11. M1 specifies the following resource services: memory service, thread

service, and transport service, which are attached to the CFR roles of corresponding

encapsulated CFs that (respectively) accept as plug-ins memory allocation policies, thread

schedulers and transport protocols. Moreover, M1 specifies the following communication

services: protocol service and multimedia streaming service, which are attached to factory

roles that create protocol stacks and media filter graphs respectively, and belong to

corresponding encapsulated CFs that accept protocol and media filter plug-ins respectively.

Finally, M1 specifies a simple validator (fixed resource validator) that simply forbids the

dynamic removal of the resource services. The design of the CFs introduced by M1—that is,

the thread management, memory management, transport management, protocol, and

 28

multimedia streaming CFs—draws significantly on previous work, mainly the GOPI platform

[Coulson02b].

The M1 middleware architecture builds on OpenCOM [Clarke01], [Coulson02a], which is a

concrete component-based programming technology, the concepts of which correspond

closely to the abstract component model discussed in section 2.1. OpenCOM is based on

Microsoft’s COM [Microsoft04] and inherits COM’s main benefits; namely, language

independence and efficient in-memory interoperation between components. However,

Figure 11 - Structure of the M1 middleware architecture

 29

OpenCOM relies only on the core elements of COM (mainly, the binary-level interoperability

standard, and the special IUnknown interface for dynamic interface discovery) and explicitly

excludes the remaining, higher-level COM/COM+ elements, such as inter-process

communication and transaction handling. OpenCOM adds a set of reflective facilities to this

core subset of COM—notably, introspection support—which enable it to be applied in

building CFs according to the proposed modifiability approach.

To use OpenCOM as a concrete technology for building CFs, one needs a mapping from

elements of our minimal, abstract component model to OpenCOM elements. This mapping

enables one to transform technology-independent CFs to OpenCOM-specific CFs, and it is is

particularly straightforward. Component and interface identifiers are mapped to OpenCOM’s

128-bit globally unique identifiers (referred to in COM parlance as CLSIDs and IIDs

respectively); and independently deployable components and subordinate components are

mapped to creatable and non-creatable OpenCOM classes respectively. The facilities for

component instantiation and introspection are mapped to corresponding OpenCOM facilities.

The facility for dynamic interface discovery is mapped to IUnknown operations. Note that

OpenCOM includes a reconfiguration facility in which the runtime environment maintains

and manipulates connections between objects. This facility is unnecessary for realising the

abstract component model and is not used in M1, which applies CF-managed reconfiguration.

The simplicity of the abstract component model means that it can be easily mapped to a wide

range of component technologies beyond OpenCOM. For example, in the case of .Net

([Microsoft05]), an independently deployable component is mapped to an assembly

containing a special, annotated class whose instances represent the component instances.

Subordinate components are mapped to other classes contained in an assembly. Component

instantiation and introspection are realised using the .Net reflection service.

 30

The proof-of-concept M1 implementation comprises a set of components that realise M1 roles

and populate its multiple run-time configurations. The implementation consists of

approximately forty OpenCOM creatable components that collectively comprise about 60,000

lines of C++. Implemented components include the following:

• components that implement BTs, such as remote method invocation, publish/subscribe,

group communication, message queuing, and an ‘e-auction’ BT;

• protocol components, such as components that fragment and reassemble messages,

components that implement reliable and unreliable multicast protocols, and an

implementation of CORBA GIOP;

• scheduler components that realise priority-based and earliest deadline first thread

scheduling policies;

• memory allocation policy components that implement first-fit, best-fit, and binary buddy

allocation schemes; and

• transport components that support TCP, UDP, and IP multicast.

The wide range of implemented components demonstrates that the M1–based middleware

system can be extended along multiple dimensions with multiple, commonly used variants of

middleware functionality.

5. Evaluation

This section presents an evaluation of O2 with respect to the requirements discussed in section

1: namely, flexibility, ease of modification, consistency maintenance, and efficiency.

 31

5.1 Flexibility

Flexibility is evaluated in terms of the three constraints identified earlier, which consider

support for: i) static (i.e., at design, implementation, and deployment time) and dynamic (i.e.,

at operating-time) modification; ii) extension; and iii) large-scale modification.

O2 supports static modification by supporting the design of different middleware architectures

as O2 specialisations. The flexibility available in designing architectures is particularly high

since O2 imposes only minimal constraints on the resource, communication, and binding-layer

services (see section 3.3). In fact, apart from the constraints related to resource management,

O2 imposes no constraints on the primary functionality of these services, thus allowing the

creation of a wide range of middleware architectures.

O2 supports static as well as dynamic modification through the application of the basic

reconfiguration pattern by all encapsulated CFs. The actual degree of flexibility exposed by

each pattern application depends on the specific CF. For example, the multimedia streaming

CF exposes operations to configure a filter graph, i.e., operations for adding, removing,

replacing, connecting, and disconnecting filter plug-ins. The filter configuration can be

modified dynamically, while the graph is actively streaming data. Similarly, the protocol CF

exposes operations to configure a protocol stack, i.e., operations for inserting protocols in

specified locations, removing, and replacing protocols. However, this CF disallows changing

the stack after the stack is activated. As another example, the memory management CF allows

replacing allocation policies at any time since they are stateless. In contrast, the binding CF

allows replacing BT implementations only when they are not being used.

O2 supports extension by enabling the incorporation of multiple CFs, each of which supports

extension with respect to some specific aspect of middleware functionality. For example, the

resource CF supports extension with respect to resource types, and the multimedia streaming

CF in M1 supports extension with respect to media filters.

 32

Finally, O2 supports large-scale modification in two ways, both based on the service CF.

First, it supports customisation of middleware architectures by varying the set of available

services, which represent coarse-grained, shared units of middleware functionality. For

example, M1 was customised by adding an event-based communication service and a power

management resource service, thus forming a new platform for mobile computing

environments [Parlavantzas05]. Second, O2 supports changing the configuration of service

implementations both statically and dynamically. For instance, it supports statically selecting

the service implementation components that will realize the architecture-defined services,

dynamically replacing these components with enhanced or modified versions, dynamically

removing unused components to reduce memory footprint, or dynamically adding

implementations of new services to satisfy unanticipated requirements.

5.2 Ease of modification

The ease of modification supported by O2 is evaluated in terms of the two identified styles of

modification: namely, architectural modification and system modification. First, architectural

modification is facilitated mainly by the ability to derive middleware architectures as

assemblies of existing CFs, which is a prominent feature of the general modifiability approach

discussed in section 2. More specifically, architectural modification is facilitated by the ability

to specialise O2 by adding service roles and validator roles. Added service roles are typically

attached to roles in other CFs, which are thus integrated into the middleware architecture.

Another feature that facilitates architectural modification is the ability to express CFs in

technology-independent terms, thus allowing CFs to be adapted to different component

technologies. Finally, the layering of services in O2 facilitates modifying architectures while

structuring and reducing the impact of changes.

Second, system modification relies on the modification facilities provided by the basic O2 CFs

plus other CFs that are potentially integrated into middleware architectures. In particular, the

 33

application of the basic reconfiguration pattern by all encapsulated CFs enhances the ease of

system modification for the reasons given in the list in section 2.4. In addition, the pattern

promotes a separation between reconfiguring and using the middleware system by localising

the reconfiguration management responsibility to CFR objects that offer and use well-known,

generic interfaces.

5.3 Consistency maintenance

Inconsistencies may potentially be introduced by either of the two O2-supported modification

styles (i.e., architectural modification or system modification). As an example of the former,

an architecture role may be defined as a refinement of both an O2 role and a role of an

aggregated CF, and these two roles may have conflicting constraints. As an example of the

latter, dynamically replacing a plug-in that is engaged in interactions with other middleware

parts may cause a system failure. O2 currently offers no support for avoiding inconsistencies

in middleware architectures; such inconsistencies are managed manually or in a semi-

automated way, using consistency management facilities provided by modelling tools.

O2 does, however, provide support for avoiding inconsistencies in middleware systems. This

relies on the application of the basic reconfiguration pattern by all encapsulated CFs.

Specifically, the pattern has three benefits with respect to consistency:

• It allows designers to provide consistency maintenance support that exploits CF-specific

knowledge. For example, when adding a new service plug-in, the service CFR validates

the CF-specific rule that only one instance of a service can be active in the system. As

another example, when connecting two filters, the media streaming CFR validates that

their connection points support a common media type, which describes the data that they

will exchange.

 34

• Since the pattern imposes that every object is associated with at most one reconfiguration

manager (the manager has a composition relationship to its managed parts), the

consistency management functionality does not need to account for cases in which

inconsistencies are introduced through interactions with objects outside the CF (e.g., other

reconfiguration managers). As a consequence, consistency management is significantly

simplified. For example, consistency management is unnecessary for constraints that the

reconfiguration manager enforces by construction.

• Using the pattern constrains the effects of reconfiguration to a single encapsulated system

and its dependents, and thus reduces the impact of potential inconsistencies.

5.4 Efficiency

Our evaluation of O2 with respect to efficiency is divided into two parts: an in-principle

analysis of the overall overhead introduced by O2; and an empirical performance comparison

between the implemented system and two other relevant middleware platforms (GOPI and

Orbacus). These two parts are presented in turn in the following sub-sections.

5.4.1 Overhead analysis

The overhead analysis centres on two types of overhead owing to i) incidental dependencies

on inefficient underlying technologies; and ii) the application of the basic reconfiguration

pattern by all encapsulated CFs.

First, O2 has no direct dependencies on underlying technologies, depending instead on an

abstract, minimal, component model definition that specifies only a small set of basic features

and leaves open how these are implemented. As a result, the component model does not

inherently induce any unnecessary overhead and permits efficient concrete realisations, such

as OpenCOM as used in the current implementation [Coulson04b]. OpenCOM supports

native code components that share a minimum runtime environment providing only

 35

component instantiation and introspection. Importantly, the runtime is not involved with

invocations between components, which have the cost of C++ virtual method invocations.

Second, due to its non-prescriptive nature, the overhead of the basic reconfiguration pattern is

largely CF-specific. Moreover, the pattern allows designers to exploit CF-specific knowledge

to provide optimisations and to reduce the reconfiguration overhead. For example, since

policy plug-ins maintain no state in the memory management CF, plug-in replacement can be

realised without concern for state migration. Moreover, designers can make CF-specific trade-

offs between efficiency and other modifiability-related requirements, such as consistency

maintenance and flexibility. For example, most of the M1 CFs employ a small number of

consistency checks in order to reduce the reconfiguration overhead.

5.4.2 Performance evaluation

To examine further the potential efficiency of the O2 approach, the performance of our M1-

based system—configured as a CORBA platform—was compared with that of two other

CORBA systems, namely GOPI v1.2 and Orbacus 3.3.4 (C++ version). GOPI is a modular

CORBA platform written in C and implemented in a single library. GOPI provides a useful

point of comparison because a large part of its source code was reused by the M1-based

implementation. Orbacus is well known as one of the fastest and most mature CORBA-

compliant commercial ORBs available.

The performance tests measured method invocations per second (over the loopback interface)

between a client and a server that both reside on the same machine4. The configuration of the

M1-based system used in the tests contained our implementation of a remote method

invocation BT underpinned by the CORBA GIOP protocol. An interface with a single

4 Tests were performed on a Dell Precision 410MT workstation equipped with 256Mb RAM and an Intel
Pentium III processor rated at 550Mhz. The operating system used was Microsoft’s Windows 2000.

 36

operation was employed that takes as its argument an array of octets and returns an array of

the same size. The implementation of the operation at the server side was empty.

The results of timing a large number of round-trip invocations using this setup are shown in

Figure 12.

It can be seen that for packets of less than 1024 octets, the M1-based system performs about

the same as Orbacus, with GOPI running around 12% faster. As packet size increases, the

difference between all three systems diminishes—this is presumably because the overhead of

data copying begins to outweigh the cost of invocation processing. Since GOPI and the used

M1 configuration share a significant part of code and design, the performance difference

between them can be attributed largely to two factors: i) the generic O2 overhead that was

analysed previously; and ii) the use of the OpenCOM component model. The results show

that the performance of the M1-based system is entirely comparable to that of GOPI and

Orbacus, even though these systems do not provide a comparable level of modifiability.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 32 64 256 1024 2048 4096 8192 16384

Octets per invocation

In
vo

ca
tio

n
s

pe
r

se
co

nd

Orbacus

GOPI

OpenORBM1

Figure 12 - Performance comparison between Orbacus, GOPI, and M1-based system

 37

5.5 Evaluation summary

The preceding evaluation demonstrates that O2 sufficiently satisfies the modifiability-related

requirements we identified in section 1. In particular, it provides a high degree of flexibility

with respect to designing new architectures and performing large-scale changes to middleware

systems, and a variable degree of flexibility with respect to other modification facilities,

which is adaptable to the needs of specific middleware architectures. The ability to integrate

CFs facilitates architectural modification, and the factoring of the target system into CFs,

combined with the basic reconfiguration pattern, facilitates system modification. O2 also

supports consistency maintenance because of the basic reconfiguration pattern. Clearly,

application of the pattern does not guarantee consistency, but it does facilitate the design of

CF-specific consistency maintenance support. Finally, O2 satisfies the efficiency requirement

as its CFs can be mapped straightforwardly to efficient component technologies, and the

application of the basic reconfiguration pattern overhead can be adjusted depending on

specific needs. The performance comparison provides further evidence of O2’s potential

efficiency by showing that a non-trivial O2-based middleware system can perform as well as

less modifiable, non-component-based equivalents.

6. Related work

We first consider work related to our general modifiability approach and then work related to

the O2 framework. The component framework concept was introduced by [Szyperski98], but

this work did not address the problem of designing or representing CFs. Our collaboration and

CF modelling concepts draw on previous role-modelling approaches, such as those of

[D’Souza98], [Riehle98], and [Reenskaug96], as well as UML 2.0 [OMG05a]. However, our

modifiability approach specialises these concepts to explicitly target component-based

development, and packages them in an accessible way as a simple abstract language. The

 38

transformation from a technology-independent CF to a technology-specific CF is analogous to

the transformation from a PIM to a PSM in the MDA approach [OMG03]. However, PIMs

and PSMs typically describe complete software systems, not frameworks, and the abstraction

gap between them is typically larger than the gap between technology-independent and

technology-specific CFs.

Our basic reconfiguration pattern has similar goals with ‘component configurators’ in

[Kon00]. Unlike configurators, our pattern exploits the hierarchical structures induced by

composition relationships among components, which helps simplify reconfiguration

management and reduce the impact of changes. Specifically, a configurator maintains and

manipulates the dependencies between a certain component and other components. In

contrast, our reconfiguration manager maintains and manipulates the parts of an encapsulated

system and the links among them. Our pattern is also similar to the reconfiguration support in

Fractal [Bruneton02], a hierarchical component model that has been used to develop

infrastructure software such as operating systems [Fassino02] and message-oriented

middleware [Leclercq05]. This work, however, has not addressed design support for building

and composing Fractal-based component architectures and is thus largely complementary to

our work.

We now consider a selection of commercial and research middleware platforms, and assess

their modifiability. Most commercial, container-based, component technologies, such as CCM

and EJB, suffer from limited flexibility since they support a predefined set of services from

which a fixed set of configurations is selected statically. A notable exception is .Net

[Microsoft05] which provides extensible container-provided services. Web services standards

are increasingly being embraced by commercial vendors. The ever-growing number of such

standards has motivated the adoption of extensibility mechanisms, mainly based on

configurable chains of interceptors (e.g., handler chains in Apache Axis [Apache05]). Such

 39

mechanisms, however, provide only low-level, generic support for developing middleware

logic. In contrast, higher-level, domain-specific support is provided by CFs in O2-based

systems. Large scale modification remains generally unaddressed in commercial platforms.

For example, although large-scale changes for accommodating specialised operational

environments are performed regularly in the CORBA world (e.g., deriving real-time CORBA

from basic CORBA), CORBA defines no systematic approach for performing such

modifications.

Turning now to research platforms, FlexiNet [Hayton99] and Jonathan [ObjectWeb02] are

Java-based platforms that are structured as white-box object-oriented frameworks. FlexiNet

concentrates on assembling protocol stacks and supports consistency maintenance by enabling

the association of constraints with stacks (e.g., constraints on possible transport protocols).

Jonathan enables large-scale variations in the form of different ‘personalities’ (e.g., a CORBA

or Java RMI personality) but lacks support for dynamic modification. A general limitation of

platforms based on object-oriented frameworks is that they tend to embody dependencies on

implementations (i.e., classes) rather than interfaces. This complicates performing large-scale

changes in the structure and behaviour of the frameworks themselves.

OpenORB [Blair98, Costa00, Blair01] represents the first generation of reflective middleware

developed at Lancaster; it features multiple ‘reflective meta-models’ for inspecting and

adapting various aspects of components and bindings. OpenORB exposes a high degree of

flexibility, but performing changes is difficult and error-prone since the meta-models provide

only low-level primitives (e.g., component replacement). Moreover, OpenORB provides no

effective support for consistency management, and the reflective facilities incur a substantial

resource overhead that cannot be avoided or scaled down. The second generation of reflective

middleware, OpenORB v2, uses CFs and builds on OpenCOM [Coulson02a]. As mentioned

previously, our current work formalises and extends OpenORB v2, adding support for

 40

defining multiple related architectures. The OpenORB v2 architecture is essentially equivalent

to the M1 architecture.

DynamicTAO and the Universally Interoperable Core (UIC) [Kon00, Roman01] are reflective

ORBs that support dynamic change by means of component configurators, mentioned earlier.

Similarly to O2-derived architectures, dynamicTAO and UIC support consistency

maintenance by allowing customized implementations of configurators that exploit context-

specific knowledge to validate reconfiguration requests. Moreover, flexibility and resource

overheads can be adjusted by changing the number of employed configurators. Large-scale

modification is addressed by UIC, but not dynamicTAO. However, UIC addresses this

concern by simply proposing a ‘skeleton’ of abstract components that can be specialised

through inserting concrete components. Unlike our work, UIC provides no design support for

defining or changing such skeletons.

[Jørgensen00] presents a component-based middleware platform that supports customisation

of non-functional application requirements. Specifically, customisation is realised through the

dynamic selection of alternative component implementations, driven by declarative,

application-specific, policies (e.g., the expected deadline associated with invocations).

Customizing the platform is thus very easy for developers; but flexibility is restricted to

switching between instances in a fixed run-time structure with fixed connections. Large-scale

change is allowed through changing the component architecture, but this is not particularly

supported. Moreover, the platform introduces a high performance overhead since policies are

interpreted at the time of each method invocation.

DPRS [Roman04] is an approach to constructing dynamically programmable middleware

services that relies on ‘architecture externalization’; that is, exporting the structure, logic, and

state of the service so that they can be dynamically inspected and modified. The approach was

used to build a flexible, multi-protocol ORB, called ExORB. ExORB supports a high degree

 41

of flexibility as virtually every aspect of the system is available for inspection and adaptation.

ExORB also supports consistency maintenance because the approach adopts an execution

model with well-defined reconfiguration-safe states. However, ExORB cannot prevent

inconsistencies that stem from violating higher-level, middleware service-specific constraints.

Importantly, the approach mandates an uncommon programming model that separates state,

functional units, and execution sequences of those units, thus imposing extra complexity to

middleware developers. Our approach does not mandate any specialised programming model,

but it can clearly accommodate them as specific CFs, if necessary.

Middleware platforms in the form of extensible containers have recently attracted both

commercial and research interest. The .Net container-based technology mentioned earlier is

one example. JBoss [Fleury03] is an extensible application server, which, similarly to .Net,

uses interceptors to realise custom services. AspectJ2EE [Cohen04] is an aspect-oriented

programming language geared towards the generalised implementation of J2EE application

servers. Middleware services are implemented as aspects that are woven with enterprise beans

at deploy-time. Similarly, Alice [Eichberg04] supports implementing services as aspects and

relies on Java annotations to provide meta-information about components and aspect

joinpoints. Such work on container/aspect-based middleware investigates primitive

mechanisms (e.g., interception, metadata, aspects) that remove the need for application logic

to access middleware services. This work, however, provides little or no support for

implementing actual infrastructure services. Moreover, there is little support for minimising

the possibility of interference between independently-developed services, which compromises

the consistency of such systems. Finally, dynamic reconfiguration of services is typically

lacking. For example, in .Net, the set of services provided to objects and their properties

cannot be changed after object instantiation.

 42

7. Conclusions

This paper first presented an approach to the construction of modifiable component systems

as component frameworks. This approach offers a set of design tools for building CFs—

namely, a set of abstract concepts expressed using a UML-based notation—and has three

main features. First, it employs a minimal and abstract component model, resulting in wide

applicability to various application domains and underlying component technologies. Second,

it provides principled mechanisms for assembling CFs into larger ones, thus helping manage

the complexity of understanding, designing, and evolving large component architectures.

Third, it provides a general reconfiguration pattern which helps in designing CFs that expose

easy to use and consistency-preserving facilities for dynamic reconfiguration.

Following that, the paper presented the O2 middleware framework, our proposed solution to

the requirement for middleware modifiability. Based on the generic approach to modifiability

discussed previously, O2 is designed as an assembly of basic CFs and supports two styles of

modification: architectural modification, which enables large-scale, static changes, such as

customizing O2 to different application domains and underlying infrastructures; and system

modification which enables smaller-scale changes, both static and dynamic, such as replacing

protocol implementations. O2’s feasibility has been evaluated by providing an implementation

based on a representative middleware architecture called M1. The paper has also offered

qualitative and quantitative evidence that O2 satisfies adequately and in a balanced way the

identified modifiability-related requirements of flexibility, ease of modification, consistency

maintenance, and efficiency.

The three main directions for future work are: i) to expand the set of plug-in components,

CFs, and middleware architectures based on O2; ii) to provide tool support for assembling

CFs, validating the well-formedness of CF models, and transforming them to component-

 43

technology specific models; and iii) to apply the modifiability approach to different domains,

covering both application and infrastructure software. We have already, in recent work,

successfully used a subset of the approach (namely, the idea of applying CFs that build on a

minimal component technology) to address the domains of programmable networking

[Coulson03] and Grid middleware [Coulson04a].

Finally, we are convinced that the key to mastering the ever-increasing complexity and

variability that characterises middleware development is raising the level of abstraction. The

middleware community has so far paid little attention to higher abstraction levels and

powerful abstraction mechanisms, such as models, modelling languages, and frameworks. By

demonstrating the benefits of our approach in enhancing middleware modifiability, we hope

that this work will accelerate the adoption of such mechanisms by the community.

References

[Aagedal02] Aagedal, J.Ø., Ecklund, E., “Modelling QoS: Towards a UML Profile”, UML

2002, Springer LNCS 2460, Dresden, Germany, September 20 - October 4, 2002, pp.

275-289.

[Apache05] Apache, Web Services - Axis, Oct. 2005, http://ws.apache.org/axis/

[Blair98] Blair G.S., Coulson G., Robin P. and Papathomas M., “An Architecture for Next

Generation Middleware”, IFIP International Conference on Distributed Systems

Platforms and Open Distributed Processing (Middleware'98), Lake District, UK,

Springer-Verlag, Sept. 15-18, 1998, pp. 191-206.

[Blair01] Blair, G.S., Coulson, G., Andersen, A., Blair, L., Clarke, M., Costa, F., Duran-

Limon, H., Fitzpatrick, T., Johnston, L., Moreira, R., Parlavantzas, N., Saikoski, K., “The

Design and Implementation of OpenORB v2”, IEEE Distributed Systems Online, Special

Issue on Reflective Middleware, Vol. 2, No. 6, 2001.

 44

[Bruneton02] Bruneton, E., Coupaye, T., Stefani, J.B., “Recursive and Dynamic Software

Composition with Sharing’. Seventh International Workshop on Component-Oriented

Programming (WCOP02), Monday, June 10, 2002.

 [Clarke01] Clarke, M., Blair, G.S., Coulson, G., Parlavantzas, N., "An Efficient Component

Model for the Construction of Adaptive Middleware", Proceedings of the IFIP / ACM

International Conference on Distributed Systems Platforms (Middleware'2001), LNCS

2218, Heidelberg, Germany, November 2001, pp. 160.

[Cohen04] Cohen, T., Gil, J.Y., “AspectJ2EE = AOP + J2EE Towards an Aspect Based,

Programmable and Extensible Middleware Framework”. In: Proceedings of the 18th

European Conference on Object-Oriented Programming (ECOOP 2004), LNCS Vol.

3086 / 2004, Oslo, Norway, June 14-18, 2004, p 221.

[Costa00] Costa, F., Duran-Limon, H., Parlavantzas, N., Saikoski, K., Blair, G.S., Coulson,

G., "The Role of Reflective Middleware in Supporting the Engineering of Dynamic

Applications". In W. Cazzola, R. J. Stroud and F. Tisato., editors, Reflection and

Software Engineering, Lecture Notes in Computer Science No. 1826, Springer-Verlag,

Heidelberg, Germany, June 2000, pp 79-99.

[Coulson02a] Coulson, G., Blair, G.S., Clarke, M., Parlavantzas, N., "The Design of a Highly

Configurable and Reconfigurable Middleware Platform", ACM Distributed Computing

Journal, Vol 15, No 2, April 2002, pp 109-126.

[Coulson02b] Coulson, G., Baichoo, S., Moonian, O., "A Retrospective on the Design of the

GOPI Middleware Platform", Multimedia Systems, Volume 8, Issue 5, Springer-Verlag,

New York, December 2002, pp 340 - 352.

[Coulson03] Coulson, G., Blair, G.S., Hutchison, D., Joolia, A., Lee, K., Ueyama, J., Gomes,

A.T., Ye, Y., “NETKIT: A Software Component-Based Approach to Programmable

 45

Networking”, ACM SIGCOMM Computer Communications Review (CCR), Vol 33, No 5,

October 2003, pp 55-66.

[Coulson04a] Coulson, G., Blair, G., Parlavantzas, N., Yeung, W.K., Cai, W., "Applying the

Reflective Middleware Approach in Grid Computing", Concurrency and Computation:

Practice and Experience, Vol 16, No 5, 25 April 2004, pp 433-440.

[Coulson04b] Coulson, G., Blair, G.S., Grace, P., “On the Performance of Reflective Systems

Software”, Proc. International Workshop on Middleware Performance (MP 2004), April,

2004, Phoenix, Arizona; Satellite workshop of the IEEE International Performance,

Computing and Communications Conference (IPCCC 2004), pp 763-771, 2004.

[D’Souza98] D’Souza, D. and Wills, A., “Objects, Components, and Frameworks with UML

- the Catalysis Approach”, Addison-Wesley, ISBN: 0201310120, 1998.

[Eichberg04] Eichberg, M., and Mezini, M., “Alice: Modularization of Middleware using

Aspect-Oriented Programming”, Software Engineering and Middleware (SEM 2004),

Linz, Austria, 20-21 September 2004.

[Fassino02] Fassino, J.P., Stefani, J.B., Lawall, J., Muller, G., “Think: A Software

Framework for Component-based Operating System Kernels”, In Proceedings of the

2002 USENIX Annual Technical Conference, Monterey, California, USA June 10-15,

2002.

[Fleury03] Fleury, M. and Reverbel. R., “The JBoss Extensible Server”. ACM/IFIP/USENIX

International Middleware Conference, LNCS Volume 2672, Rio de Janeiro, Brazil, June

2003, pp 344—373.

[Hayton99] Hayton, R. and ANSA Team, FlexiNet Architecture, ANSA Architecture Report,

Citrix Systems Ltd., Cambridge, UK, February 1999. Available at: http://www.ansa.co.uk

[Jørgensen00] Jørgensen, B.N., Truyen, E., Matthijs, F., and Joosen, W., “Customization of

 46

Object Request Brokers by Application Specific Policies”. IFIP International Conference

on Distributed Systems Platforms and Open Distributed Processing (Middleware'2000).

New York. April 3-7, 2000.

[Kon00] Kon, F., Román, M., Liu, P., Mao, J., Yamane, T., Magalhães, L.C., and Campbell,

R.H., “Monitoring, Security, and Dynamic Configuration with the dynamicTAO

Reflective ORB”. IFIP International Conference on Distributed Systems Platforms and

Open Distributed Processing (Middleware'2000). New York. April 3-7, 2000.

[Kon02] Kon, F., Costa, F., Campbell, R., Blair, G., “The Case for Reflective Middleware”.

Communications of the ACM. Vol. 45, No. 6, pp. 33-38. June, 2002.

[Kordon05] Kordon, F., Pautet, L., “Toward Next-Generation Middleware?”, IEEE

Distributed Systems Online, 5(1), 2005.

[Leclercq05] Leclercq, M., Quema, V., Stefani, J.B., “DREAM: A Component Framework

for Constructing Resource-Aware, Configurable Middleware”, IEEE Distributed Systems

Online, Vol. 6, Issue 9, Sept. 2005.

[Microsoft04] Microsoft, COM Component Object Model Technologies, Retrieved: Dec.

2004, http://www.microsoft.com/com/default.mspx

[Microsoft05] Microsoft, .Net Home Page, Retrieved: Oct. 2005,

http://www.microsoft.com/net

[ObjectWeb02] ObjectWeb Consortium, Jonathan v3.0 alpha 10, Oct. 2002,

http://jonathan.objectweb.org/

[OMG03] Object Management Group, MDA Guide V1.0.1, OMG Document omg/03-06-01

[OMG05a] Object Management Group, UML UML 2.0 Superstructure Specification, OMG

Document formal/05-07-04.

 47

[OMG05b] Object Management Group, OCL 2.0 Specification, OMG Document ptc/05-06-

06.

[Parlavantzas03a] Parlavantzas, N., Coulson, G., Blair, G.S., "An Extensible Binding

Framework for Component-Based Middleware", Proceeding of the 7th IEEE

International Enterprise Distributed Object Computing Conference (EDOC 2003),

Brisbane, Australia, September 16-19, 2003, pp 252-263.

[Parlavantzas03b] Parlavantzas, N., Coulson, G., Blair, G.S., "A Resource Adaptation

Framework For Reflective Middleware", Proc. 2nd Intl. Workshop on Reflective and

Adaptive Middleware (located with ACM/IFIP/USENIX Middleware 2003), Rio de

Janeiro, Brazil, June, 2003.

[Parlavantzas05] Parlavantzas, N., "Constructing Modifiable Middleware with Component

Frameworks", Lancaster University Thesis (Ph.D.), 2005.

[Reenskaug96] Reenskaug, T., Wold, P., and Lehne, O., “Working with Objects: The

OORAM Software Engineering Method”. Manning/Prentice Hall, 1996.

[Riehle98] Riehle, D., and Gross, T., "Role Model Based Framework Design and

Integration." In Proceedings of the 1998 Conference on Object-Oriented Programming

Systems, Languages and Applications (OOPSLA '98). ACM Press, 1998. pp 117-133.

[Roman01] Roman, M., Kon, F., and Campbell R., “Reflective Middleware: From Your Desk

to Your Hand”, IEEE Distributed Systems Online, Vol. 2, No. 5, July 2001.

[Roman04] Roman, M., Islam, N., “Dynamically Programmable and Reconfigurable

Middleware Services”, Proc of ACM/IFIP/USENIX 5th International Middleware

Conference, ISBN:3-540-23428-4, Toronto, Canada, October 2004, pp 372 - 396.

[Szyperski98] Szyperski, C., Component Software: Beyond Object-Oriented Programming,

Addison-Wesley, 1998.

