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Abstract 

Because of the increasingly diverse and dynamic environments in which they must operate, 

modern middleware platforms need to explicitly support modifiability. Modifiability should 

encompass change that is both static and dynamic; small scale and large scale. Also, the 

process of modification should be flexible, easy to perform, and consistency-preserving. To 

address these needs, this paper proposes a generic component-based modifiability approach, 

and then uses this approach to build a highly-modifiable middleware framework. The 

modifiability approach provides design support for building component frameworks—i.e., 

reusable and extensible component architectures that are targeted at specific domains. In the 

approach, component frameworks build upon a minimal, technology-independent component 

model, and can be recursively assembled into more complex frameworks. Our middleware 

framework—an instantiation of our proposed approach—takes the form of a specific 

assembly of component frameworks, each of which addresses a distinct middleware-related 

concern. Our middleware framework supports two styles of modification: First, ‘architectural 

modification’ enables large-scale, static, changes, such as customizing the framework to a 

new application domain or underlying infrastructure. Second, ‘system modification’ enables 

changes that are based on specific customisations of the framework; these changes are 
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smaller in scope (e.g. replacing protocol implementations) but are applicable at both deploy-

time and run-time. A prototype implementation demonstrates the feasibility of our approach 

and framework, and demonstrates a sufficient degree of supported modifiability. 

1. Introduction 

Middleware platforms are well established as an essential element of large-scale distributed 

software systems. But increasing the applicability, and lengthening the lifespan, of platforms 

requires that they accommodate the vast diversity and fluidity that increasingly characterises 

their deployment environments. Environmental variations that need to be accommodated 

range from large-scale, slow-rate variations (e.g. supporting diverse application domains like 

real-time, mobile, or multimedia applications in varied deployment environments like desktop 

computers, PDAs, or mobile phones), to small-scale, fast-rate variations (e.g. applying 

patches, requesting different qualities in transferring continuous media, or adapting to 

dynamic fluctuations in resource availability).  

To achieve such accommodation, middleware platforms must explicitly support modifiability. 

The modifiability requirement can be refined into three lower-level requirements: flexibility, 

ease of modification, and consistency maintenance. Flexibility relates to the range of possible 

changes that can be supported by a platform. Flexibility can in turn be refined into the 

requirements that the platform supports: i) static and dynamic modification; ii) extension with 

new functionality; and iii) large-scale modification (i.e., support for changes affecting large 

areas of functionality). Ease of modification relates to the effort of performing required 

changes; and consistency maintenance relates to the possibility that modifications may 

introduce inconsistency. As well as being modifiable1, middleware platforms must also be 

efficient. This relates to the resource overhead induced by the platform—that is, any resource 

                                                
1 We use the term ‘modifiable middleware’ rather than ‘adaptive middleware’ because it is a more general term; 
in particular, it covers large-scale, static modification, not typically addressed by adaptive middleware. 
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usage that does not contribute directly to meeting the needs of middleware users. 

Unfortunately, efficiency typically conflicts with, and must be balanced against, modifiability.  

No existing middleware platform satisfies all these requirements in a balanced way. Large-

scale modification, in particular, remains largely unaddressed, thus making it difficult or 

impossible to customise platforms to different application domains and underlying 

infrastructures. Mainstream platforms, such as CORBA and Java EE, suffer from serious 

limitations in terms of flexibility [Kon02, Kordon05]. Modification in these platforms mainly 

consists in statically selecting from a fixed or minimally-extensible set of options. Research 

platforms, such as FlexiNet [Hayton99] and DynamicTAO [Kon00], as well as Microsoft .Net 

[Microsoft05] provide enhanced support for dynamic extension and modification, but lack 

any support for large-scale modification. Platforms that address this issue are OpenORB 

[Blair98], UIC [Roman01], and ExORB [Roman04]. OpenORB requires a large amount of 

effort for performing modifications, and provides weak support for consistency maintenance 

and efficiency. UIC allows large-scale changes, but provides no explicit mechanism to 

support them. ExORB defines a software construction approach that enables large-scale 

changes, but the approach relies on an uncommon programming model that imposes 

complexity on middleware developers.  

 To address the modifiability-related requirements in a balanced and principled way, this 

paper first proposes a generic, component-based, modifiability approach, and then uses this 

approach to build a highly-modifiable component-based middleware framework, called O2. 

The modifiability approach provides concepts and rules for designing component frameworks; 

that is, domain-specific component architectures that enable a variety of run-time component 

configurations. The approach also includes a pattern for supporting dynamic modification in a 

uniform way across component frameworks. Component frameworks can be recursively 

assembled into more complex frameworks. The O2 framework is itself constructed as an 
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assembly of component frameworks, each addressing different concerns. O2 inherently 

supports modifiability as follows: i) it addresses large-scale, static, changes through 

integrating new component frameworks and producing different middleware architectures; 

and ii) it supports smaller-scale changes, both static and dynamic, through managing the 

configuration of plug-in components. This work formalises and extends our previous work on 

OpenORB v2 [Coulson02a]. Specifically, it provides formal support for constructing and 

assembling component frameworks, and adds the capabilities to perform large-scale 

architectural modifications and to target multiple component technologies. 
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Figure 1 depicts the logical relations between the main elements of our work. The vertical 

dimension organises the elements into the three traditional layers of metamodels, models, and 

run-time systems. The horizontal dimension organises the elements in order of increasing 

specialisation. The approach comprises the three categories of concepts in the metamodels 

layer (sections 2.1, 2.2, and 2.3) and the basic reconfiguration pattern in the models layer 

(section 2.4). The O2 middleware framework builds on this pattern and a small number of 

basic frameworks (section 3). Middleware architectures build on O2 and other frameworks. M1 

Figure 1 –The O2 framework and other elements 
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is a representative middleware architecture that forms the basis of our proof-of-concept 

implementation (section 4). We have performed on evaluation of O2 with respect to 

modifiability and efficiency (section 5), and compared O2 with related work (section 6). 

2. A Component-based Approach to Modifiability 

In outline, our proposed approach to the design of modifiable component systems is to build 

such systems in terms of component frameworks (hereafter, CFs) and to provide concepts for 

designing and expressing these CFs. The concepts that we propose for designing CFs fall into 

three categories:  

• component modelling which defines fundamental concepts (e.g., the component concept) 

of the component model upon which CFs are built; 

• collaboration modelling which defines concepts related to collaborations, the main 

constituents of CFs; 

• CF modelling which, building on the above two sets of concepts, defines concepts 

specifically related to CFs themselves.  

Apart from these concepts, we propose a basic reconfiguration pattern to facilitate the design 

of CFs that must support dynamic modification. We also specify how the various concepts are 

represented in terms of UML elements, thus providing a concrete notation for specifying CFs. 

This notation enables the use of existing UML tools to support the development and 

maintenance of CF models2. The three categories of concepts, along with their UML 

representations, are discussed in sections 2.1, 2.2, and 2.3 respectively. The reconfiguration 

pattern is then presented in section 2.4.  

                                                
2  Naturally, representing our concepts in terms of other modelling languages is also possible. 
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2.1 Component modelling concepts 

To specify and build component systems, one needs a component model that defines what 

components are, how they communicate, and what services the supporting execution 

environment should offer. Our component model expresses the essential properties of 

component technologies that are compatible with our approach (one such technology is 

discussed in section 4). 

In defining the component model, two main requirements were identified: 

• The component model should be minimal. Specifically, it should only address the 

following core issues: i) component deployment and interoperation within a common 

address space; ii) component and interface naming; and iii) support for meta-information. 

The motivation here is to maximise the applicability of the component model to different 

types of systems (e.g., both application and infrastructure software), and to allow it to be 

used as a stable foundation for diverse, domain-specific models; that is, CFs.  

• The component model should be abstract in the sense that it should hide technology-

specific details such as binary interoperability standards or underlying virtual machines. 

The motivation here is to increase the ease of designing CFs and to enhance their 

reusability across different target technologies.  

The main concepts of the component model (see Figure 2) are as follows: Components are 

units of implementation that are capable of being integrated into systems without 

modification. Components offer one or more distinct interfaces, that is, coherent sets of 

operations together with supporting specifications (e.g., pre- and post-conditions). Both 

interfaces and components are identified with globally unique identifiers. Components are 

represented at run-time by so-called component objects which are created as a result of 

component instantiation.  
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Components and component objects support introspection; that is, they can be probed for 

meta-information; this corresponds to the information captured in Figure 2 (e.g., information 

on the interfaces offered by a component). In addition, components can be associated with 

extended metadata; i.e., name-value pairs that form generic placeholders for additional self-

descriptive information. The meaning of extended metadata is not prescribed by the 

component model; it depends on the needs of the specific context. For example, metadata 

could contain formal specifications of a component’s behaviour, its contextual dependencies, 

its quality properties and requirements, requirements on infrastructure services, or licensing 

information. The metadata can be accessed through introspection both before and after the 

component is instantiated. 

Components may be independently deployable or not. A component that is not independently 

deployable is termed a subordinate component. Each subordinate component is related to 

some other single independently deployable component, and can be instantiated only by this 

component, or by another of its subordinate components. Subordinate components are not 

separately replaceable. On the other hand, independently deployable components can be 

instantiated directly by any external party; they are separately replaceable units which contain 

all their subordinate components. The motivation for subordinate components is to simplify 

the programming models of component systems. Specifically, exporting a functionality unit as 

an independently deployable and replaceable component incurs a performance overhead, thus 

practically restricting the granularity of such components. Subordinate components enable 

exporting fine-grained units as components, thus providing for uniformity in programming 

models. 

Finally, a supporting execution environment enables interoperation between component 

objects within a common address space and realises dynamic loading and unloading of 

components. It also provides facilities for component instantiation and dynamic interface 
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discovery (i.e., obtaining a reference to an identified interface given any interface reference to 

a component object). 

 

UML representation 

In UML terms, components and interfaces are represented by the corresponding UML 

concepts. The supporting specification information for interfaces can be expressed in various 

notations depending on the required level of precision. For example, one might use OCL 

[OMG05b], UML interaction and state diagrams, or specialised quality of service (QoS) 

notations (e.g., that proposed in [Aagedal02]).  

2.2 Collaboration modeling concepts 

A collaboration describes an ensemble of interacting objects. The structure diagram in Figure 

3 illustrates our collaboration modeling concepts and shows how they are related.  

Before expanding on the collaboration concept, we discuss the central concepts of component 

type and component relationship. A component type is an abstract component description. It 

defines a set of interfaces that are offered by a component as well as a set of interfaces that are 

used by the component. The component type incorporates the specifications of its interfaces 

Figure 2 - Component modelling concepts 
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and possibly adds further information, such as constraints that relate interface specifications 

with each other. For example, such a constraint may prescribe that invoking a specific 

operation in some offered interface has the effect of invoking some operation in some used 

interface.  

A component relationship is then a description of links between component objects of 

particular component types. Three frequently used component relationships are usage, 

creation, and composition, which respectively signify that a component object invokes, 

creates, or is composed of another object. In line with UML semantics, composition requires 

that a part object belongs to at most one composite at a time. Composition relationships 

simplify component system design because they define hierarchical structures of objects; they 

also play an important role in other aspects of our approach as will be seen in sections 2.3 and 

2.4.  

Building on the above definitions, a collaboration is a description of how a collection of 

component objects cooperate to achieve a joint goal. Collaborations comprise both structural 

and behavioural information. First, the structure of a collaboration comprises a set of 

component types and a set of relationships between them. Types and relationships defined 

within a collaboration are termed roles and connectors respectively: roles specify the 

properties that objects must exhibit to be able to participate in the collaboration; and 

connectors specify the properties of the links between participating objects. A collaboration 

definition may also contain multiplicity constraints (e.g., only a single object can play a given 

role) and specialisation constraints (e.g., some roles are specialisations of a given component 

type). Second, the behaviour of a collaboration contains a set of interactions, which define the 

exchange of messages between different roles over connectors.  
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Crucially, existing collaborations can be employed to build new collaborations through the 

specialisation and aggregation mechanisms. A collaboration specialises a base collaboration 

if its definition draws on and refines that of the base collaboration. Thus, a specialised 

collaboration contains all the roles and connectors of the base collaboration, or specialisations 

of them; and may optionally contain additional roles and connectors. A collaboration 

aggregates another collaboration if the definition of the former (the aggregate collaboration) 

contains a use of the latter (the aggregated collaboration). Specifically, a collaboration use 

represents a particular application of the aggregated collaboration to the aggregate 

collaboration by defining a set of attachments between roles/connectors of the two 

collaborations. These attachments indicate which elements of the aggregate collaboration 

correspond to and refine which elements of the aggregated collaboration—a single element of 

the former may correspond to multiple elements of the latter. Note that collaboration 

specialisation can be seen as a special case of aggregation, in which the specialised 

collaboration both contains a use of the base collaboration and refines the base collaboration. 

The next subsection contains an example that illustrates all of these concepts. 

Figure 3 – Collaboration modelling concepts 
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UML representation 

Collaborations, collaboration uses, and interactions are represented as the corresponding 

UML concepts. As regards these concepts, our metamodel (see Figure 3) follows the general 

outline of the UML metamodel, but is significantly simplified for our purposes. Component 

types and relationships are respectively represented as UML classifiers and associations. 

Usage relationships are represented as «uses» associations, composition relationships are 

represented as UML compositions (graphically shown using the filled diamond or the nesting 

notation), and creation relationships are directly represented as «creates» associations. 

Similarly to interfaces, component types may be annotated with supporting specification 

information that is expressed in OCL, state diagrams, or any other convenient notation.  

Example 

To illustrate the notation for collaborations, consider a ‘lookup’ collaboration between client, 

server, service, and registry roles with the goal of enabling dynamic service discovery (see 

Figure 4). In this collaboration, clients use the registry to locate a service that they need, and 

servers use the registry to register services. In addition, consider a ‘simple printing’ 

collaboration involving user and printer roles with the goal of carrying out a printing task. As 

seen in Figure 4, lookup and simple printing can be combined to define a ‘printing’ 

collaboration that supports the dynamic discovery and use of printers. Specifically, ‘printing’ 

specialises ‘simple printing’ and aggregates ‘lookup’. The collaboration use notation shows 

the attachments between roles in ‘lookup’ and ‘printing’, which also determines the 

attachments of connectors. Naturally, interactions between roles in ‘lookup’ apply to their 

corresponding roles in ‘printing’. Note that the ‘printer service’ role is attached to both the 

‘server’ and ‘service’ roles, which indicates that in the ‘printing’ collaboration, printers are 

assumed to register themselves with the registry.  
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2.3 CF modelling concepts 

CFs are reusable architectures for specific domains, and are designed to be instantiated in 

terms of components. Specifically, a CF defines a set of design rules that constrain the 

external characteristics of components, their relationships, and the interactions among them. 

Instantiating a CF involves implementing and integrating components according to the 

prescribed rules. In addition, a CF may include software that supports or enforces the rules. 

The main motivation for CFs—as, indeed, for all kinds of frameworks—is design and code 

reuse. Moreover, since CFs are architectures, they provide a means of ensuring that systems 

maintain desired architectural properties. One property that is supported to some degree by all 

CFs is modifiability; CFs enable modifiability by definition since they can be instantiated in 

multiple ways, forming multiple run-time component configurations.  

Formally, a CF is a grouping of collaborations, components, and supporting documentation 

(see Figure 5). A CF minimally contains a primary collaboration which may be defined as a 

specialisation or aggregation of other collaborations. The structure and behaviour of its 

collaborations express the design rules of the CF. As well as collaborations, a CF may contain 

 

Figure 4 – Example of collaboration specialisation and aggregation 
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a set of components that realise roles defined in its collaborations. These components 

represent CF-provided software, which implements frequently-used or always-required 

functionality, such as functionality to support and/or enforce CF rules. Finally, the CF 

contains supporting documentation that is necessary for understanding, using and evolving the 

CF. This typically comprises the following: a discussion of the problem domain and the goals 

that the CF addresses; conceptual models at high abstraction level; a framework overview; 

design constraints and rationale; and examples of using the CF.  

As with collaborations, CFs can be assembled into more complex CFs through specialisation 

and aggregation. A CF specialises or aggregates another CF if their respective primary 

collaborations are related by specialisation or aggregation respectively. Assembling CFs is a 

key means of managing the complexity of designing, understanding, and evolving component 

architectures.  

Clearly, CF specifications that are expressed using the abstract component modelling 

concepts discussed above are not, in themselves, sufficient to support the implementation of 

executable component systems. To provide this capability, CFs must be refined with details 

that are specific to a target component technology that supports software execution. This 

 

Figure 5 - CF modelling concepts 
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refinement is typically supported by a mapping from the abstract component model to a 

concrete component technology. Using such a mapping, one can straightforwardly concretise 

a technology-independent CF to a technology-specific CF. Of course, the transformation will 

generally require additional input, such as engineering decisions associated with the particular 

technology. 

Encapsulated versus open CFs 

As seen in Figure 5, we distinguish two types of CFs, namely, encapsulated CFs and open 

CFs. Encapsulated CFs integrate component objects to form encapsulated systems; that is, 

groups of objects that are treated as a single behavioural unit at a higher abstraction level.  

An encapsulated CF describes both how its constituent component objects cooperate to realise 

the target system (termed the CF-based system) and how this system interacts with its 

environment. The roles of an encapsulated CF are therefore classified as either external or 

internal roles depending on whether or not the conforming objects are part of the CF-based 
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Figure 6 - Example of encapsulated CF 
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system. The system is itself represented by a distinguished internal role, called CFR (for CF-

based system representative), which is transitively composed of (i.e., has a composition 

relationship to) all the other internal roles, which are termed plug-in roles. In analogy to the 

above-mentioned external/internal role separation, the primary CF collaboration is 

decomposed into external and internal collaborations; that is, the primary collaboration is 

defined as an aggregation of these two collaborations. Figure 6 shows an example of an 

encapsulated CF (CF A) with two contained collaborations (A external and A internal).  

Encapsulated CFs are useful for modelling self-contained, modifiable component systems as 

well as their subsystems; that is, traditional units of functional decomposition. Aggregating 

encapsulated CFs is facilitated by their separation into two collaborations (external and 

internal). This is because the designer of an aggregate CF does not need to know about the 

internal collaborations of the aggregate CF’s constituent CFs. Importantly, encapsulated CFs 

are essential elements of our reconfiguration approach, which is discussed in section 2.4.  

We now turn to open CFs. Open CFs constrain object integration for various purposes without 

explicitly defining an encapsulation boundary. They are useful for capturing component 

integration protocols. For example, open CFs can capture interactions with shared services, 

such as logging, security, or inter-address space communication. Moreover, open CFs can 

capture commonly used interaction styles (e.g., variations of the observer pattern) or domain-

specific composability standards (e.g., data exchange standards in process control 

applications). Naturally, open CFs may be aggregated by an encapsulated CF in order to 

describe different aspects of the CF-based system. An example of an open CF—O2’s resource 

CF—is given in section 3.2. 

UML representation 

A CF is represented as a stereotype of a UML package that collects UML representations of 

its contained collaborations and components. The primary collaboration is given the same 
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name as the CF, and its graphic notation (i.e., the dashed ellipse) is commonly used to 

represent the whole CF. The CF’s supporting documentation is represented as a collection of 

UML artifacts owned by the CF package and is expressed in a combination of formal and 

informal notations. 

2.4 The basic reconfiguration pattern 

CFs allow developers to select independently-deployable components that will populate the 

CF instantiation at run-time, and thus they inherently support static modification of 

component systems. However, CFs do not inherently support dynamic modification. To 

address this, we define a basic reconfiguration pattern, which provides a simple and uniform 

means of supporting both static and dynamic modification. Modification is achieved through 

changing the run-time configuration of CF-based systems comprising component objects and 

the links between them. 

The basic reconfiguration pattern is modelled as a simple, pre-defined, encapsulated CF (i.e., 

it itself is an instance of the CF concept) with the following roles: reconfiguration manager, 

managed part, and configurator. The reconfiguration manager is composed of the managed 

parts and is responsible for establishing their initial configuration and for maintaining and 

managing their dynamic reconfiguration. This responsibility is reflected in offered 

reconfiguration services, which are used by the configurator. The manager accomplishes its 

responsibility by interacting with the managed parts. This may involve creating or deleting 

managed parts or using management services provided by them. The basic reconfiguration 

pattern is specialised by encapsulated CFs that need to support modification, as seen in Figure 

7. Specifically, the encapsulated CF’s CFR role specialises the reconfiguration manager role; 

an external role specialises the configurator role; and plug-in roles specialise the managed part 

role.  
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The basic reconfiguration pattern is intentionally defined at a high abstraction level; it neither 

restricts the reconfiguration services exposed by the CFR, nor does it prescribe how these 

services are realised by cooperating with plug-ins. CF designers make these decisions by 

considering actual modifiability requirements and by exploiting domain-specific knowledge 

and built-in constraints associated with the CF. For example, in a multimedia streaming CF, a 

designer may exploit a constraint that plug-ins are to be arranged in a pipe-and-filter 

architectural style, in order to include a service for inserting a filter between two other filters 

without interrupting the data flow. As another example, the designer may exploit a constraint 

that there must be a single object of a particular plug-in type in order to include a service for 

dynamically replacing the object, but not for removing or adding objects of this type. 

Despite considerable variability in the detail of reconfiguration management across different 

CFs, the basic reconfiguration pattern does define a small set of generic interfaces (see 

[Parlavantzas05] for the full detail), which must be offered along with a reconfigurable CF’s 

CF-specific interfaces (see Figure 7). Specifically, the reconfiguration manager (i.e., the CFR) 

must offer an IPartConfiguration interface, which exposes the configuration of parts as a 

modifiable collection of named objects. This interface has operations to retrieve, add, remove, 

and replace managed parts; one can add both existing objects and new objects that will be 

instantiated by the manager. The interface also has operations to subscribe and unsubscribe to 

events that report changes in the configuration; these events are realised as invocations on an 

associated IPartEvents interface. Managed parts (i.e., plug-ins) must offer another interface 

called IManagedPart which has operations for initialisation and termination that are called 

when a part is added or removed.  
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The behavioural specifications of these generic interfaces are abstract and must be refined 

within specialised CFs. For instance, a CF will typically constrain the types of objects that are 

eligible to be added and the conditions under which part removal or replacement is permitted. 

Moreover, for consistency reasons, the syntactic form of the generic interfaces must be 

followed by CF-specific interfaces when similar functionality is exposed (e.g., part addition). 

Three main benefits accrue from the use of the basic reconfiguration pattern:  

• The pattern supports CF designers by providing a general model of reconfiguration 

management that is applicable to all encapsulated CFs.  

• The pattern allows designers to exploit CF-specific knowledge in order to achieve a 

desired level of modifiability. For example, designers can provide high-level 

reconfiguration services that rely on domain-specific abstractions, thus facilitating 

 

 

 

Figure 7 – The basic reconfiguration pattern and an example of its application to a CF 
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modification. Similarly, designers can provide reconfiguration services that validate 

changes using CF rules and invariants, thus preventing inconsistencies.  

• Providing generic reconfiguration-related interfaces reduces the complexity imposed on 

developers due to the uniformity in syntax and semantics. Moreover, generic interfaces 

promote composability with components that have no built-in knowledge of the CF, such 

as automated management tools.  

The main liability of the basic reconfiguration pattern is the resource overhead for realising 

reconfiguration services. However, apart from the overhead associated with supporting the 

simple generic interfaces, this is CF-specific and can be appropriately traded off against other 

modifiability-related requirements, such as the desired flexibility level.  

Finally, note that our modifiability approach can naturally be extended with more 

prescriptive, domain-specific, forms of the basic reconfiguration pattern (i.e., specialisations 

of the basic reconfiguration CF). These can provide enhanced support to designers at the cost 

of reduced generality. For example, one could define a specialisation that assumes that parts 

interact with each other only through connections initiated and controlled by the manager 

using specific operations on parts. The reconfiguration interface would then treat the part 

configuration as a graph and provide, for example, operations for connecting and 

disconnecting parts. 

3. The O2 framework 

Having discussed the basic concepts of our CF-based modifiability approach, we now present 

a concrete instantiation of our approach: the O2 middleware framework. O2 is designed as an 

encapsulated CF that combines multiple simpler CFs, each of which addresses different sets 

of middleware-related concerns, and supports multiple run-time component configurations. 

However, a fixed CF cannot accommodate the diverse and ever-changing requirements 
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imposed by all possible middleware environments. For this reason, O2 addresses only a basic 

core of general requirements, and it is explicitly designed to support specialisation, which 

opens up two styles of modification (see Figure 8): 

• Architectural modification involves extending O2 by integrating new CFs and adapting the 

result to a specific component technology. The product is an aggregate, technology-

specific CF, which we call a middleware architecture. This modification style is intended 

to enable large-scale and static changes, such as changes to the API exposed to 

middleware users or modifiers. Different middleware architectures will typically be 

designed for different application domains and underlying infrastructures—e.g. 

multimedia applications on desktop computers, or mobile applications on PDAs.  

• System modification then involves providing components that plug into a particular 

middleware architecture’s CF(s), and managing their configuration through CF-provided 

facilities; these facilities minimally include reconfiguration support following the basic 

reconfiguration pattern. System modification enables smaller-scale changes to middleware 

systems both statically and dynamically. For example, it enables replacing resource 

management policy components at either deployment-time or run-time.  
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The rest of this section is structured as follows. First, section 3.1 presents an overview of the 

structure of O2 as an assembly of three basic CFs. Section 3.2 then discusses each of these 

basic CFs, and section 3.3 describes how they are integrated. 

3.1 O2 overview  

O2 is an aggregate CF that combines three constituent CFs: the service CF, the resource CF, 

and the binding CF. This combination of CFs is intended to address three common general 

areas of requirement in the design of middleware systems: i) requirements for supporting 

modifiability; ii) requirements for managing underlying resources; and iii) requirements for 

interconnecting application components (or, establishing bindings between them). More 

specialised requirements are satisfied at the level of particular middleware architectures, 

which may add further CFs. For example, a requirement to support modification of 

communication protocol functionality can be addressed by defining a middleware architecture 

that integrates a CF for composing protocol stacks.  

 

Figure 8 – Modification styles supported by O2  
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In more detail, O2 is defined as a specialisation of the service CF that aggregates the resource 

and binding CFs. The three basic CFs, a subset of their internal structure, and their 

relationship with O2 are shown in Figure 9. 

 

3.2 The basic CFs 

••••    Service CF 

The service CF is a lightweight, minimally-prescriptive CF that provides infrastructural 

support for assembling interdependent components. The CF relies on the abstraction of a 

service, a uniquely-identified and shared unit of functionality. Specifically, it is an 

encapsulated CF that accepts service plug-ins that realise one or more services and submit 

requests for other services at any point during their execution. The service CFR resolves such 

dynamic requests by consulting the current plug-in configuration and dynamically loading 

appropriate plug-ins, if necessary. Dynamically removing and replacing service plug-ins is 

also supported following the basic reconfiguration pattern. To facilitate robust 

reconfiguration, the CF employs a simple notification mechanism whereby registered service 

 

Figure 9 – The basic CFs and part of their structure 
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users are notified when a service is to be removed or replaced. The service CF also supports 

plug-ins called validators. These decide whether proposed changes to the service 

configuration are to be allowed. Their decisions are based on the current configuration, and on 

extended metadata obtained from to-be-added plug-ins, which capture the latters’ resource 

and service requirements. 

The service CF plays two key roles within O2. First, it forms a basis for the specification of 

the basic structure of middleware architectures. This relies on the capability of the service CF 

to be easily specialised by adding constraints on the set of services that must be available. 

Second, it facilitates large-scale, static and dynamic modification of middleware systems by 

enabling changes in the service configuration.  

••••    Resource CF 

The resource CF [Parlavantzas03b] facilitates resource adaptation: that is, monitoring and 

controlling the resource usage of activities within a running middleware system. The resource 

CF is an open CF that relies on the abstractions of tasks and resources. Tasks are units of 

computation to which resources are allocated and resource usage is charged. Tasks are 

organised into a dynamic hierarchy that serves to delineate computations that contribute to the 

same goal. Each resource is associated with a single task, but the association is adjustable. For 

example, a thread (a resource) can be transferred to a different task to reflect the fact that it 

performs work contributing to a different goal.  

Resources of a given type are managed by resource managers, and tasks are managed by the 

task manager. Resource managers enforce task-based resource allocation, accounting, and 

control, and the task manager acts as the access point for obtaining resource allocation 

information. By assigning most of the responsibilities to resource managers, this design can 

accommodate diverse types of resources at different levels of abstraction (e.g., buffers, 
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threads, virtual processors). Importantly, the CF defines low-level adaptation primitives that 

expose a high degree of flexibility to users. The primitives include support for inspecting the 

resources allocated to a task, obtaining/ modifying the properties of individual resources, 

navigating the task hierarchy, transferring resources between tasks, and terminating tasks. The 

role of the CF within O2 is to support adaptation with respect to the resources provided by the 

underlying infrastructure. Resource adaptation is essential for managing QoS requirements 

relating, for instance, to response time or throughput. As an example, a middleware system 

might adapt the CPU time allocated to processing requests in order to sustain response times 

in the face of fluctuating network delays. Resource adaptation is also useful in many other 

situations, such as ringfencing the resource usage of independently-developed and 

dynamically-plugged components.  

••••    Binding CF 

The binding CF [Parlavantzas03a] supports the development and integration of so-called 

binding types, and exposes a simple and consistent programming model for using binding 

types. Binding types (BTs) are middleware-provided interaction paradigms, such as remote 

method invocation, messaging queuing, or group communication, which are modelled as open 

CFs. For instance, a publish/subscribe BT defines publisher, subscriber, and event channel 

roles and specifies that publisher invocations on the channel are propagated to subsribers with 

specific delivery semantics (e.g., at-most-once). The binding CF is an encapsulated CF that 

accepts binding type implementation plug-ins. Its external collaboration captures 

commonalities across BTs and constrains their form, thus providing both guidance for BT 

designers and consistency for binding users. The external collaboration contains, for example, 

a standard binding establishment collaboration, which constrains the process of binding 

publishers and subscribers to event channels. The internal collaboration of the CF provides 

mechanisms to support implementing BTs, such as mechanisms to resolve dependencies on 
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other BTs and low-level services. It also supports managing the plug-in configuration 

following the basic reconfiguration pattern. 

The binding CF can accommodate a wide variety of BTs since it is based on a general binding 

model, which allows distributed or local, multiple-participant, explicit or implicit, and first- or 

third-party bindings. Moreover, the CF enables dynamic inspection and adaptation of bindings 

since bindings are created explicitly and represented as objects. The role of the binding CF 

within O2 is to support extension with respect to supported interaction paradigms, thus 

increasing the applicability and value of the middleware framework. By accommodating high-

level BTs that closely match application needs (e.g., auction or voting BTs), the CF also 

contributes to increasing the usability of O2.  

Full details on the basic CFs are given in [Parlavantzas05]. 

3.3 Integration of the basic CFs  

Having described the three basic CFs, we are now in a position to present the full picture: O2 

is a specialisation of the service CF that adds a number of roles and constraints that are 

associated with the resource and binding CFs. Specifically, O2 defines the following added 

roles: binding service, task service, resource service, and communication service (see Figure 

10). The first three roles are defined as services that respectively refine the CFR role of the 

binding CF, and the task manager and resource manager roles of the resource CF. The 

communication service role captures services that can be used by the binding service; 

communication services are optional. Note that O2’s service roles are separated into three 

layers based on an “allowed to use” relationship: a role in a given layer is allowed to use roles 

in any lower layer. The resource layer contains the task and resource services; the 

communication layer contains communication services; and the binding layer contains the 

binding service. 
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Finally, O2 defines the following two constraints on its roles. First, all services must use 

resource services provided by the resource CF rather than raw resources provided by the 

underlying infrastructure. For example, if there is a resource service for managing threads, 

this must be used instead of native OS or pthread calls. Conformance to this constraint is 

necessary for taking advantage of the resource adaptation facility provided by the resource 

CF. Second, the O2 CFR must create and maintain a unique task for each service. The 

motivation for this constraint is to isolate service implementations and to enable accurate 

tracking of their resource usage.  

 

 

Figure 10 - Structure of O2  
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4. Using O2 

O2 is used to design middleware architectures, that is, aggregate, technology-specific, CFs 

which are published to application and middleware developers, and which form a blueprint 

for using, developing and modifying middleware systems. Producing a middleware 

architecture using O2 involves two activities, not necessarily performed in sequence. First, it 

involves specialising O2 by adding service roles residing at the resource layer, and, optionally, 

at the communication and binding layers. Such added roles are typically associated with new 

CFs, which are thus integrated into the middleware architecture. Second, it involves refining 

the middleware architecture’s CFs with details specific to a target component technology. As 

mentioned in the previous section, this is typically guided by a mapping between the abstract 

component model and the concrete component model.  

To demonstrate the use of O2, we outline a representative middleware architecture, called M1
3 

which forms the basis of our current proof-of-concept implementation. The structure of M1 is 

depicted in Figure 11. M1 specifies the following resource services: memory service, thread 

service, and transport service, which are attached to the CFR roles of corresponding 

encapsulated CFs that (respectively) accept as plug-ins memory allocation policies, thread 

schedulers and transport protocols. Moreover, M1 specifies the following communication 

services: protocol service and multimedia streaming service, which are attached to factory 

roles that create protocol stacks and media filter graphs respectively, and belong to 

corresponding encapsulated CFs that accept protocol and media filter plug-ins respectively. 

Finally, M1 specifies a simple validator (fixed resource validator) that simply forbids the 

dynamic removal of the resource services. The design of the CFs introduced by M1—that is, 

the thread management, memory management, transport management, protocol, and 
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multimedia streaming CFs—draws significantly on previous work, mainly the GOPI platform 

[Coulson02b]. 

The M1 middleware architecture builds on OpenCOM [Clarke01], [Coulson02a], which is a 

concrete component-based programming technology, the concepts of which correspond 

closely to the abstract component model discussed in section 2.1. OpenCOM is based on 

Microsoft’s COM [Microsoft04] and inherits COM’s main benefits; namely, language 

independence and efficient in-memory interoperation between components. However, 

 

 

Figure 11 -  Structure of the M1 middleware architecture 
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OpenCOM relies only on the core elements of COM (mainly, the binary-level interoperability 

standard, and the special IUnknown interface for dynamic interface discovery) and explicitly 

excludes the remaining, higher-level COM/COM+ elements, such as inter-process 

communication and transaction handling. OpenCOM adds a set of reflective facilities to this 

core subset of COM—notably, introspection support—which enable it to be applied in 

building CFs according to the proposed modifiability approach.  

To use OpenCOM as a concrete technology for building CFs, one needs a mapping from 

elements of our minimal, abstract component model to OpenCOM elements. This mapping 

enables one to transform technology-independent CFs to OpenCOM-specific CFs, and it is is 

particularly straightforward. Component and interface identifiers are mapped to OpenCOM’s 

128-bit globally unique identifiers (referred to in COM parlance as CLSIDs and IIDs 

respectively); and independently deployable components and subordinate components are 

mapped to creatable and non-creatable OpenCOM classes respectively. The facilities for 

component instantiation and introspection are mapped to corresponding OpenCOM facilities. 

The facility for dynamic interface discovery is mapped to IUnknown operations. Note that 

OpenCOM includes a reconfiguration facility in which the runtime environment maintains 

and manipulates connections between objects. This facility is unnecessary for realising the 

abstract component model and is not used in M1, which applies CF-managed reconfiguration. 

The simplicity of the abstract component model means that it can be easily mapped to a wide 

range of component technologies beyond OpenCOM. For example, in the case of .Net 

([Microsoft05]), an independently deployable component is mapped to an assembly 

containing a special, annotated class whose instances represent the component instances. 

Subordinate components are mapped to other classes contained in an assembly. Component 

instantiation and introspection are realised using the .Net reflection service.  
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The proof-of-concept M1 implementation comprises a set of components that realise M1 roles 

and populate its multiple run-time configurations. The implementation consists of 

approximately forty OpenCOM creatable components that collectively comprise about 60,000 

lines of C++. Implemented components include the following:  

• components that implement BTs, such as remote method invocation, publish/subscribe, 

group communication, message queuing, and an ‘e-auction’ BT; 

• protocol components, such as components that fragment and reassemble messages, 

components that implement reliable and unreliable multicast protocols, and an 

implementation of CORBA GIOP; 

• scheduler components that realise priority-based and earliest deadline first thread 

scheduling policies; 

• memory allocation policy components that implement first-fit, best-fit, and binary buddy 

allocation schemes; and  

• transport components that support TCP, UDP, and IP multicast.  

The wide range of implemented components demonstrates that the M1–based middleware 

system can be extended along multiple dimensions with multiple, commonly used variants of 

middleware functionality.  

5. Evaluation 

This section presents an evaluation of O2 with respect to the requirements discussed in section 

1: namely, flexibility, ease of modification, consistency maintenance, and efficiency.  
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5.1 Flexibility 

Flexibility is evaluated in terms of the three constraints identified earlier, which consider 

support for: i) static (i.e., at design, implementation, and deployment time) and dynamic (i.e., 

at operating-time) modification; ii) extension; and iii) large-scale modification. 

O2 supports static modification by supporting the design of different middleware architectures 

as O2 specialisations. The flexibility available in designing architectures is particularly high 

since O2 imposes only minimal constraints on the resource, communication, and binding-layer 

services (see section 3.3). In fact, apart from the constraints related to resource management, 

O2 imposes no constraints on the primary functionality of these services, thus allowing the 

creation of a wide range of middleware architectures.  

O2 supports static as well as dynamic modification through the application of the basic 

reconfiguration pattern by all encapsulated CFs. The actual degree of flexibility exposed by 

each pattern application depends on the specific CF. For example, the multimedia streaming 

CF exposes operations to configure a filter graph, i.e., operations for adding, removing, 

replacing, connecting, and disconnecting filter plug-ins. The filter configuration can be 

modified dynamically, while the graph is actively streaming data. Similarly, the protocol CF 

exposes operations to configure a protocol stack, i.e., operations for inserting protocols in 

specified locations, removing, and replacing protocols. However, this CF disallows changing 

the stack after the stack is activated. As another example, the memory management CF allows 

replacing allocation policies at any time since they are stateless. In contrast, the binding CF 

allows replacing BT implementations only when they are not being used.  

O2 supports extension by enabling the incorporation of multiple CFs, each of which supports 

extension with respect to some specific aspect of middleware functionality. For example, the 

resource CF supports extension with respect to resource types, and the multimedia streaming 

CF in M1 supports extension with respect to media filters. 



  32 

Finally, O2 supports large-scale modification in two ways, both based on the service CF. 

First, it supports customisation of middleware architectures by varying the set of available 

services, which represent coarse-grained, shared units of middleware functionality. For 

example, M1 was customised by adding an event-based communication service and a power 

management resource service, thus forming a new platform for mobile computing 

environments [Parlavantzas05]. Second, O2 supports changing the configuration of service 

implementations both statically and dynamically. For instance, it supports statically selecting 

the service implementation components that will realize the architecture-defined services, 

dynamically replacing these components with enhanced or modified versions, dynamically 

removing unused components to reduce memory footprint, or dynamically adding 

implementations of new services to satisfy unanticipated requirements. 

5.2 Ease of modification 

The ease of modification supported by O2 is evaluated in terms of the two identified styles of 

modification: namely, architectural modification and system modification. First, architectural 

modification is facilitated mainly by the ability to derive middleware architectures as 

assemblies of existing CFs, which is a prominent feature of the general modifiability approach 

discussed in section 2. More specifically, architectural modification is facilitated by the ability 

to specialise O2 by adding service roles and validator roles. Added service roles are typically 

attached to roles in other CFs, which are thus integrated into the middleware architecture. 

Another feature that facilitates architectural modification is the ability to express CFs in 

technology-independent terms, thus allowing CFs to be adapted to different component 

technologies. Finally, the layering of services in O2 facilitates modifying architectures while 

structuring and reducing the impact of changes. 

Second, system modification relies on the modification facilities provided by the basic O2 CFs 

plus other CFs that are potentially integrated into middleware architectures. In particular, the 
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application of the basic reconfiguration pattern by all encapsulated CFs enhances the ease of 

system modification for the reasons given in the list in section 2.4. In addition, the pattern 

promotes a separation between reconfiguring and using the middleware system by localising 

the reconfiguration management responsibility to CFR objects that offer and use well-known, 

generic interfaces. 

5.3 Consistency maintenance 

Inconsistencies may potentially be introduced by either of the two O2-supported modification 

styles (i.e., architectural modification or system modification). As an example of the former, 

an architecture role may be defined as a refinement of both an O2 role and a role of an 

aggregated CF, and these two roles may have conflicting constraints. As an example of the 

latter, dynamically replacing a plug-in that is engaged in interactions with other middleware 

parts may cause a system failure. O2 currently offers no support for avoiding inconsistencies 

in middleware architectures; such inconsistencies are managed manually or in a semi-

automated way, using consistency management facilities provided by modelling tools.  

O2 does, however, provide support for avoiding inconsistencies in middleware systems. This 

relies on the application of the basic reconfiguration pattern by all encapsulated CFs. 

Specifically, the pattern has three benefits with respect to consistency:  

• It allows designers to provide consistency maintenance support that exploits CF-specific 

knowledge. For example, when adding a new service plug-in, the service CFR validates 

the CF-specific rule that only one instance of a service can be active in the system. As 

another example, when connecting two filters, the media streaming CFR validates that 

their connection points support a common media type, which describes the data that they 

will exchange.  
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• Since the pattern imposes that every object is associated with at most one reconfiguration 

manager (the manager has a composition relationship to its managed parts), the 

consistency management functionality does not need to account for cases in which 

inconsistencies are introduced through interactions with objects outside the CF (e.g., other 

reconfiguration managers). As a consequence, consistency management is significantly 

simplified. For example, consistency management is unnecessary for constraints that the 

reconfiguration manager enforces by construction.  

• Using the pattern constrains the effects of reconfiguration to a single encapsulated system 

and its dependents, and thus reduces the impact of potential inconsistencies. 

5.4 Efficiency 

Our evaluation of O2 with respect to efficiency is divided into two parts: an in-principle 

analysis of the overall overhead introduced by O2; and an empirical performance comparison 

between the implemented system and two other relevant middleware platforms (GOPI and 

Orbacus). These two parts are presented in turn in the following sub-sections. 

5.4.1 Overhead analysis 

The overhead analysis centres on two types of overhead owing to i) incidental dependencies 

on inefficient underlying technologies; and ii) the application of the basic reconfiguration 

pattern by all encapsulated CFs. 

First, O2 has no direct dependencies on underlying technologies, depending instead on an 

abstract, minimal, component model definition that specifies only a small set of basic features 

and leaves open how these are implemented. As a result, the component model does not 

inherently induce any unnecessary overhead and permits efficient concrete realisations, such 

as OpenCOM as used in the current implementation [Coulson04b]. OpenCOM supports 

native code components that share a minimum runtime environment providing only 
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component instantiation and introspection. Importantly, the runtime is not involved with 

invocations between components, which have the cost of C++ virtual method invocations. 

Second, due to its non-prescriptive nature, the overhead of the basic reconfiguration pattern is 

largely CF-specific. Moreover, the pattern allows designers to exploit CF-specific knowledge 

to provide optimisations and to reduce the reconfiguration overhead. For example, since 

policy plug-ins maintain no state in the memory management CF, plug-in replacement can be 

realised without concern for state migration. Moreover, designers can make CF-specific trade-

offs between efficiency and other modifiability-related requirements, such as consistency 

maintenance and flexibility. For example, most of the M1 CFs employ a small number of 

consistency checks in order to reduce the reconfiguration overhead.  

5.4.2 Performance evaluation 

To examine further the potential efficiency of the O2 approach, the performance of our M1-

based system—configured as a CORBA platform—was compared with that of two other 

CORBA systems, namely GOPI v1.2 and Orbacus 3.3.4 (C++ version). GOPI is a modular 

CORBA platform written in C and implemented in a single library. GOPI provides a useful 

point of comparison because a large part of its source code was reused by the M1-based 

implementation. Orbacus is well known as one of the fastest and most mature CORBA-

compliant commercial ORBs available. 

The performance tests measured method invocations per second (over the loopback interface) 

between a client and a server that both reside on the same machine4. The configuration of the 

M1-based system used in the tests contained our implementation of a remote method 

invocation BT underpinned by the CORBA GIOP protocol. An interface with a single 

                                                
4 Tests were performed on a Dell Precision 410MT workstation equipped with 256Mb RAM and an Intel 
Pentium III processor rated at 550Mhz. The operating system used was Microsoft’s Windows 2000. 
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operation was employed that takes as its argument an array of octets and returns an array of 

the same size. The implementation of the operation at the server side was empty.  

The results of timing a large number of round-trip invocations using this setup are shown in 

Figure 12. 

It can be seen that for packets of less than 1024 octets, the M1-based system performs about 

the same as Orbacus, with GOPI running around 12% faster. As packet size increases, the 

difference between all three systems diminishes—this is presumably because the overhead of 

data copying begins to outweigh the cost of invocation processing. Since GOPI and the used 

M1 configuration share a significant part of code and design, the performance difference 

between them can be attributed largely to two factors: i) the generic O2 overhead that was 

analysed previously; and ii) the use of the OpenCOM component model. The results show 

that the performance of the M1-based system is entirely comparable to that of GOPI and 

Orbacus, even though these systems do not provide a comparable level of modifiability.  
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Figure 12 - Performance comparison between Orbacus, GOPI, and M1-based system 
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5.5 Evaluation summary 

The preceding evaluation demonstrates that O2 sufficiently satisfies the modifiability-related 

requirements we identified in section 1. In particular, it provides a high degree of flexibility 

with respect to designing new architectures and performing large-scale changes to middleware 

systems, and a variable degree of flexibility with respect to other modification facilities, 

which is adaptable to the needs of specific middleware architectures. The ability to integrate 

CFs facilitates architectural modification, and the factoring of the target system into CFs, 

combined with the basic reconfiguration pattern, facilitates system modification. O2 also 

supports consistency maintenance because of the basic reconfiguration pattern. Clearly, 

application of the pattern does not guarantee consistency, but it does facilitate the design of 

CF-specific consistency maintenance support. Finally, O2 satisfies the efficiency requirement 

as its CFs can be mapped straightforwardly to efficient component technologies, and the 

application of the basic reconfiguration pattern overhead can be adjusted depending on 

specific needs. The performance comparison provides further evidence of O2’s potential 

efficiency by showing that a non-trivial O2-based middleware system can perform as well as 

less modifiable, non-component-based equivalents.  

6. Related work 

We first consider work related to our general modifiability approach and then work related to 

the O2 framework. The component framework concept was introduced by [Szyperski98], but 

this work did not address the problem of designing or representing CFs. Our collaboration and 

CF modelling concepts draw on previous role-modelling approaches, such as those of 

[D’Souza98], [Riehle98], and [Reenskaug96], as well as UML 2.0 [OMG05a]. However, our 

modifiability approach specialises these concepts to explicitly target component-based 

development, and packages them in an accessible way as a simple abstract language. The 
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transformation from a technology-independent CF to a technology-specific CF is analogous to 

the transformation from a PIM to a PSM in the MDA approach [OMG03]. However, PIMs 

and PSMs typically describe complete software systems, not frameworks, and the abstraction 

gap between them is typically larger than the gap between technology-independent and 

technology-specific CFs.  

Our basic reconfiguration pattern has similar goals with ‘component configurators’ in 

[Kon00]. Unlike configurators, our pattern exploits the hierarchical structures induced by 

composition relationships among components, which helps simplify reconfiguration 

management and reduce the impact of changes. Specifically, a configurator maintains and 

manipulates the dependencies between a certain component and other components. In 

contrast, our reconfiguration manager maintains and manipulates the parts of an encapsulated 

system and the links among them. Our pattern is also similar to the reconfiguration support in 

Fractal [Bruneton02], a hierarchical component model that has been used to develop 

infrastructure software such as operating systems [Fassino02] and message-oriented 

middleware [Leclercq05]. This work, however, has not addressed design support for building 

and composing Fractal-based component architectures and is thus largely complementary to 

our work. 

We now consider a selection of commercial and research middleware platforms, and assess 

their modifiability. Most commercial, container-based, component technologies, such as CCM 

and EJB, suffer from limited flexibility since they support a predefined set of services from 

which a fixed set of configurations is selected statically. A notable exception is .Net 

[Microsoft05] which provides extensible container-provided services. Web services standards 

are increasingly being embraced by commercial vendors. The ever-growing number of such 

standards has motivated the adoption of extensibility mechanisms, mainly based on 

configurable chains of interceptors (e.g., handler chains in Apache Axis [Apache05]). Such 
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mechanisms, however, provide only low-level, generic support for developing middleware 

logic. In contrast, higher-level, domain-specific support is provided by CFs in O2-based 

systems. Large scale modification remains generally unaddressed in commercial platforms. 

For example, although large-scale changes for accommodating specialised operational 

environments are performed regularly in the CORBA world (e.g., deriving real-time CORBA 

from basic CORBA), CORBA defines no systematic approach for performing such 

modifications. 

Turning now to research platforms, FlexiNet [Hayton99] and Jonathan [ObjectWeb02] are 

Java-based platforms that are structured as white-box object-oriented frameworks. FlexiNet 

concentrates on assembling protocol stacks and supports consistency maintenance by enabling 

the association of constraints with stacks (e.g., constraints on possible transport protocols). 

Jonathan enables large-scale variations in the form of different ‘personalities’ (e.g., a CORBA 

or Java RMI personality) but lacks support for dynamic modification. A general limitation of 

platforms based on object-oriented frameworks is that they tend to embody dependencies on 

implementations (i.e., classes) rather than interfaces. This complicates performing large-scale 

changes in the structure and behaviour of the frameworks themselves.  

OpenORB [Blair98, Costa00, Blair01] represents the first generation of reflective middleware 

developed at Lancaster; it features multiple ‘reflective meta-models’ for inspecting and 

adapting various aspects of components and bindings. OpenORB exposes a high degree of 

flexibility, but performing changes is difficult and error-prone since the meta-models provide 

only low-level primitives (e.g., component replacement). Moreover, OpenORB provides no 

effective support for consistency management, and the reflective facilities incur a substantial 

resource overhead that cannot be avoided or scaled down. The second generation of reflective 

middleware, OpenORB v2, uses CFs and builds on OpenCOM [Coulson02a]. As mentioned 

previously, our current work formalises and extends OpenORB v2, adding support for 
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defining multiple related architectures. The OpenORB v2 architecture is essentially equivalent 

to the M1 architecture. 

DynamicTAO and the Universally Interoperable Core (UIC) [Kon00, Roman01] are reflective 

ORBs that support dynamic change by means of component configurators, mentioned earlier. 

Similarly to O2-derived architectures, dynamicTAO and UIC support consistency 

maintenance by allowing customized implementations of configurators that exploit context-

specific knowledge to validate reconfiguration requests. Moreover, flexibility and resource 

overheads can be adjusted by changing the number of employed configurators. Large-scale 

modification is addressed by UIC, but not dynamicTAO. However, UIC addresses this 

concern by simply proposing a ‘skeleton’ of abstract components that can be specialised 

through inserting concrete components. Unlike our work, UIC provides no design support for 

defining or changing such skeletons. 

[Jørgensen00] presents a component-based middleware platform that supports customisation 

of non-functional application requirements. Specifically, customisation is realised through the 

dynamic selection of alternative component implementations, driven by declarative, 

application-specific, policies (e.g., the expected deadline associated with invocations). 

Customizing the platform is thus very easy for developers; but flexibility is restricted to 

switching between instances in a fixed run-time structure with fixed connections. Large-scale 

change is allowed through changing the component architecture, but this is not particularly 

supported. Moreover, the platform introduces a high performance overhead since policies are 

interpreted at the time of each method invocation.  

DPRS [Roman04] is an approach to constructing dynamically programmable middleware 

services that relies on ‘architecture externalization’; that is, exporting the structure, logic, and 

state of the service so that they can be dynamically inspected and modified. The approach was 

used to build a flexible, multi-protocol ORB, called ExORB. ExORB supports a high degree 
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of flexibility as virtually every aspect of the system is available for inspection and adaptation.  

ExORB also supports consistency maintenance because the approach adopts an execution 

model with well-defined reconfiguration-safe states. However, ExORB cannot prevent 

inconsistencies that stem from violating higher-level, middleware service-specific constraints. 

Importantly, the approach mandates an uncommon programming model that separates state, 

functional units, and execution sequences of those units, thus imposing extra complexity to 

middleware developers. Our approach does not mandate any specialised programming model, 

but it can clearly accommodate them as specific CFs, if necessary. 

Middleware platforms in the form of extensible containers have recently attracted both 

commercial and research interest. The .Net container-based technology mentioned earlier is 

one example. JBoss [Fleury03] is an extensible application server, which, similarly to .Net, 

uses interceptors to realise custom services. AspectJ2EE [Cohen04] is an aspect-oriented 

programming language geared towards the generalised implementation of J2EE application 

servers. Middleware services are implemented as aspects that are woven with enterprise beans 

at deploy-time. Similarly, Alice [Eichberg04] supports implementing services as aspects and 

relies on Java annotations to provide meta-information about components and aspect 

joinpoints. Such work on container/aspect-based middleware investigates primitive 

mechanisms (e.g., interception, metadata, aspects) that remove the need for application logic 

to access middleware services. This work, however, provides little or no support for 

implementing actual infrastructure services. Moreover, there is little support for minimising 

the possibility of interference between independently-developed services, which compromises 

the consistency of such systems. Finally, dynamic reconfiguration of services is typically 

lacking. For example, in .Net, the set of services provided to objects and their properties 

cannot be changed after object instantiation. 
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7. Conclusions 

This paper first presented an approach to the construction of modifiable component systems 

as component frameworks. This approach offers a set of design tools for building CFs—

namely, a set of abstract concepts expressed using a UML-based notation—and has three 

main features. First, it employs a minimal and abstract component model, resulting in wide 

applicability to various application domains and underlying component technologies. Second, 

it provides principled mechanisms for assembling CFs into larger ones, thus helping manage 

the complexity of understanding, designing, and evolving large component architectures. 

Third, it provides a general reconfiguration pattern which helps in designing CFs that expose 

easy to use and consistency-preserving facilities for dynamic reconfiguration.  

Following that, the paper presented the O2 middleware framework, our proposed solution to 

the requirement for middleware modifiability. Based on the generic approach to modifiability 

discussed previously, O2 is designed as an assembly of basic CFs and supports two styles of 

modification: architectural modification, which enables large-scale, static changes, such as 

customizing O2 to different application domains and underlying infrastructures; and system 

modification which enables smaller-scale changes, both static and dynamic, such as replacing 

protocol implementations. O2’s feasibility has been evaluated by providing an implementation 

based on a representative middleware architecture called M1. The paper has also offered 

qualitative and quantitative evidence that O2 satisfies adequately and in a balanced way the 

identified modifiability-related requirements of flexibility, ease of modification, consistency 

maintenance, and efficiency. 

The three main directions for future work are: i) to expand the set of plug-in components, 

CFs, and middleware architectures based on O2; ii) to provide tool support for assembling 

CFs, validating the well-formedness of CF models, and transforming them to component-
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technology specific models; and iii) to apply the modifiability approach to different domains, 

covering both application and infrastructure software. We have already, in recent work, 

successfully used a subset of the approach (namely, the idea of applying CFs that build on a 

minimal component technology) to address the domains of programmable networking 

[Coulson03] and Grid middleware [Coulson04a]. 

Finally, we are convinced that the key to mastering the ever-increasing complexity and 

variability that characterises middleware development is raising the level of abstraction. The 

middleware community has so far paid little attention to higher abstraction levels and 

powerful abstraction mechanisms, such as models, modelling languages, and frameworks. By 

demonstrating the benefits of our approach in enhancing middleware modifiability, we hope 

that this work will accelerate the adoption of such mechanisms by the community. 
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